Pradelski studies decentralized learning dynamics for the classic assignment game with transferable utility but without a central clearing house. At random points in time firms and workers match, break up, and re-match in the search for better opportunities. Agents employ uncoupled learning rules, that is, their strategies are not dependent on other agents’ payoffs or the structure of the game. This talk proposes a simple learning process that converges to stable and optimal outcomes (the core). Pradelski then shows that naïve strategies are inefficient, that is, the rate of convergence to core outcomes grows exponentially in the number of players. He then discusses behaviorally motivated learning rules that achieve efficiency.

© UC Irvine School of Social Sciences - 3151 Social Sciences Plaza, Irvine, CA 92697-5100 - 949.824.2766