In conclusion:

1. This book is timely, interesting, even provocative, and well worth reading. It is especially likely to be of considerable interest to the mathematical psychology community because vision has always enjoyed a special status in the field.

2. This book is unique. It is unique because it has a solid foundation in: (i) the history of its subject, (ii) contemporary empirical research, (iii) projective geometry, (iv) Inverse Problem Theory, and (v) the use of Bayesian and regularization methods to solve such problems. The underlying concept driving this book is symmetry. The ubiquity of symmetry in our natural environment should not come as a surprise because symmetry serves as the fundamental concept in both mathematics and physics. This book provides convincing arguments that symmetry can serve effectively as a fundamental concept in vision, as well.

3. The book is intuitive. The authors’ explanations are done rather well without using any equations. Instead, the underlying geometry and computations are explained by illustrations, online demonstrations and animations. The underlying idea is that it should be possible to explain vision by using vision: by having the reader visualize what is going on. This strategy works pretty well for explaining the gist of the model, but understanding how the model actually works is another matter. For those readers who are interested in implementing the model themselves, the equations and computational details are available in published journal papers.

Adele Diederich
Jacobs University Bremen, Germany