Intro
 Framework
 Absolute Risk Aversion
 Relative Risk Aversion
 Examples
 Conclusions

 000
 0000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Risk Aversion and the Labor Margin in Dynamic Equilibrium Models

Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

SCE Meetings, San Francisco July 1, 2011
 Intro
 Framework
 Absolute Risk Aversion
 Relative Risk Aversion
 Examples
 Conclusions

 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 •••••
 ••••
 ••••

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

IntroFrameworkAbsolute Risk AversionRelative Risk AversionExamplesConclusions•00000000000000000000000000000000

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

Answer: 0

IntroFrameworkAbsolute Risk AversionRelative Risk AversionExamplesConclusions○●○○○○○○○○○○○○○○○○○○○○○○○○○○

Coefficient of Relative Risk Aversion

Suppose the household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

What is the household's coefficient of relative risk aversion?

Answer:
$$\frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}}$$

Intro ○○●	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions O
Outlir	ne of Pre	sentation			

- Define risk aversion rigorously in dynamic equilibrium models
- Derive closed-form expressions
- Show the labor margin has dramatic effects on risk aversion

Intro ○○●	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Outlir	ne of Pre	sentation			

- Define risk aversion rigorously in dynamic equilibrium models
- Derive closed-form expressions
- Show the labor margin has dramatic effects on risk aversion

See the paper for:

- Epstein-Zin preferences
- internal, external habits
- asset pricing details
- numerical computations

Intro 000	Framework ●000	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
ΔΗ	ousehold	4			

Household preferences:

$$\mathsf{E}_t\sum_{\tau=t}^{\infty}\beta^{\tau-t}\mathsf{u}(c_{\tau},\mathsf{l}_{\tau}),$$

Flow budget constraint:

$$a_{\tau+1} = (1+r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

No-Ponzi condition:

$$\lim_{T\to\infty}\prod_{\tau=t}^{T}(1+r_{\tau+1})^{-1}a_{T+1}\geq 0,$$

 $\{\textit{w}_{\tau},\textit{r}_{\tau},\textit{d}_{\tau}\}$ are exogenous processes, governed by θ_{τ}

Intro 000	Framework ○●○○	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions o			
The	The Value Function							

State variables of the household's problem are $(a_t; \theta_t)$.

Let:

$$c_t^* \equiv c^*(a_t; \theta_t),$$

 $l_t^* \equiv l^*(a_t; \theta_t).$

Intro 000	Framework o●oo	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o				
The	The Value Function								

State variables of the household's problem are $(a_t; \theta_t)$.

Let:

$$egin{aligned} m{c}_t^* &\equiv m{c}^*(m{a}_t;m{ heta}_t), \ m{l}_t^* &\equiv m{l}^*(m{a}_t;m{ heta}_t). \end{aligned}$$

Value function, Bellman equation:

$$V(\boldsymbol{a}_t; \boldsymbol{\theta}_t) = u(\boldsymbol{c}_t^*, \boldsymbol{l}_t^*) + \beta \boldsymbol{E}_t V(\boldsymbol{a}_{t+1}^*; \boldsymbol{\theta}_{t+1}),$$

where:

$$a_{t+1}^* \equiv (1+r_t)a_t + w_t l_t^* + d_t - c_t^*.$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions o
Tecl	hnical Co	onditions			

Assumption 1. The function $u(c_t, I_t)$ is increasing in its first argument, decreasing in its second, twice-differentiable, and strictly concave.

Assumption 2. The value function $V : X \to \mathbb{R}$ for the household's optimization problem exists and satisfies the Bellman equation

$$V(a_t;\theta_t) = \max_{(c_t,l_t)\in \Gamma(a_t;\theta_t)} u(c_t,l_t) + \beta E_t V(a_{t+1};\theta_{t+1}).$$

Assumption 3. For any $(a_t; \theta_t) \in X$, the household's optimal choice (c_t^*, l_t^*) lies in the interior of $\Gamma(a_t; \theta_t)$.

Assumption 4. The value function $V(\cdot; \cdot)$ is twice-differentiable. (It then follows that c^* , l^* are differentiable.)

Assumptions about the Economic Environment

Assumption 5. The household is atomistic.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, ..., and x \in \{c, l, a, w, r, d, \theta\}$.

Assumptions about the Economic Environment

Assumption 5. The household is atomistic.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, ..., and x \in \{c, l, a, w, r, d, \theta\}$.

Assumption 7'. The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable change of variables.

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions o
	D				N

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
		000000			

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusion
		000000			

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + u'(c)\sigma E[\varepsilon] + \frac{1}{2}u''(c)\sigma^2 E[\varepsilon^2],$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusion
		000000			

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2}u''(c)\sigma^2.$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusion
		000000			

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2}u''(c)\sigma^2.$$

$$\mu=\frac{-u''(c)}{u'(c)}\frac{\sigma^2}{2}.$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusion
		000000			

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Compute:

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2}u''(c)\sigma^{2}.$$
$$\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^{2}}{2}.$$

Coefficient of absolute risk aversion is defined to be:

$$\lim_{\sigma\to 0} 2\mu(\sigma)/\sigma^2 = \frac{-u''(c)}{u'(c)}.$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions O
Arrow	-Pratt in	a Dynamic M	odel		

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Arro	w-Pratt	in a Dvnamic I	Model		

$$\mathbf{a}_{t+1} = (1+\mathbf{r}_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
000	0000	o●ooooo		0000	o
Arrow	<i>i</i> -Pratt in	a Dynamic M	odel		

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Note we cannot easily consider gambles over:

- *a_t* (state variable, already known at *t*)
- c_t (choice variable)

Intro 000	Framework 0000	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Arrov	<i>ı</i> -Pratt in	a Dynamic M	odel		

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Note we cannot easily consider gambles over:

- *a_t* (state variable, already known at *t*)
- ct (choice variable)

Note also (*) is equivalent to gambles over income:

$$a_{t+1} = (1+r_t)a_t + w_t I_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

or asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t l_t + d_t - c_t,$$

Intro 000	Framework 0000	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Arrow	<i>ı</i> -Pratt in	a Dynamic M	odel		

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Note we cannot easily consider gambles over:

- *a_t* (state variable, already known at *t*)
- c_t (choice variable)

Note also (*) is equivalent to gambles over income:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

or asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t l_t + d_t - c_t,$$

Note connection to asset pricing.

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Arro	w-Pratt i	n a Dynamic I	Model		

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu.$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions o
Arrov	v-Pratt ir	n a Dvnamic I	Model		

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t\mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma\varepsilon_{t+1},$$

VS.

$$a_{t+1}=(1+r_t)a_t+w_tI_t+d_t-c_t-\mu.$$

Welfare loss from μ :

$$V_1(a_t;\theta_t)\,\frac{\mu}{(1+r_t)}$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
000	0000	00●0000		0000	O
Arrov	v-Pratt i	n a Dynamic I	Vlodel		

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Welfare loss from μ :

 $\beta E_t V_1(a_{t+1}^*; \theta_{t+1}) \mu.$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Arro	w-Pratt i	n a Dvnamic I	Model		

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Welfare loss from μ :

$$\beta E_t V_1(a_{t+1}^*; \theta_{t+1}) \mu.$$

Loss from σ :

$$\beta E_t V_{11}(a_{t+1}^*; \theta_{t+1}) \frac{\sigma^2}{2}$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
		0000000			

Coefficient of Absolute Risk Aversion

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by:

$$\frac{-E_t V_{11}(a_{t+1}^*;\theta_{t+1})}{E_t V_1(a_{t+1}^*;\theta_{t+1})}$$

.

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
		0000000			

Coefficient of Absolute Risk Aversion

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by:

$$\frac{-E_t V_{11}(a_{t+1}^*;\theta_{t+1})}{E_t V_1(a_{t+1}^*;\theta_{t+1})}$$

.

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-Fisher (1997, 2001), Cochrane (2001), Flavin-Nakagawa (2008)

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
		000000			

Coefficient of Absolute Risk Aversion

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by:

$$\frac{-E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}$$

.

Evaluated at the nonstochastic steady state, this simplifies to:

$$rac{-V_{11}(a; heta)}{V_1(a; heta)}$$
 .

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-Fisher (1997, 2001), Cochrane (2001), Flavin-Nakagawa (2008)

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions O
Solve	e for V_1 a	and V_{11}			

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) \, u_1(c_t^*, l_t^*). \tag{(*)}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Solve	e for V_1 a	and V_{11}			

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) \, u_1(c_t^*, l_t^*). \tag{(*)}$$

.

Differentiate (*) to get:

$$V_{11}(a_t;\theta_t) = (1+r_t) \left[u_{11}(c_t^*,l_t^*) \frac{\partial c_t^*}{\partial a_t} + u_{12}(c_t^*,l_t^*) \frac{\partial l_t^*}{\partial a_t} \right]$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions o
- ·		1.0	1 -		

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$.

Intro Framework Absolute Risk Aversion Relative Risk Aversion Examples Conclusions

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$. Differentiate to get:

$$\frac{\partial I_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t} \,,$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}$$

Intro Framework Absolute Risk Aversion Relative Risk Aversion Examples Conclusions

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$. Differentiate to get:

$$\frac{\partial I_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t} \,,$$

$$\lambda_t \equiv rac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$

Use Euler equation and budget constraint to derive:

$$\frac{\partial \boldsymbol{c}_t^*}{\partial \boldsymbol{a}_t} = \frac{r}{1+\boldsymbol{w}\boldsymbol{\lambda}}.$$

Absolute Risk Aversion Framework 000000

Relative Risk Aversion

Solve for Coefficient of Absolute Risk Aversion

$$V_1(\boldsymbol{a};\boldsymbol{\theta}) = (1+r)\,\boldsymbol{u}_1(\boldsymbol{c},\boldsymbol{l}),$$

 Intro
 Framework
 Absolute Risk Aversion
 Relative Risk Aversion
 Examples
 C

 000
 000000●
 000
 000
 000
 000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</

Solve for Coefficient of Absolute Risk Aversion

$$V_{1}(a;\theta) = (1+r) U_{1}(c,l),$$
$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

1/(-0) (-1)

 Intro
 Framework
 Absolute Risk Aversion
 Relative Risk Aversion
 Examples

 000
 0000
 000
 000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Solve for Coefficient of Absolute Risk Aversion

$$V_{1}(a;\theta) = (1+r) u_{1}(c,l),$$

$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

$$\frac{\partial l_{t}^{*}}{\partial a_{t}} = -\lambda \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1+w\lambda}.$$

 Intro
 Framework
 Absolute Risk Aversion
 Relative Risk Aversion
 Examples

 000
 0000
 000
 000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000<

Solve for Coefficient of Absolute Risk Aversion

$$V_{1}(a;\theta) = (1+r) u_{1}(c,l),$$

$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

$$\frac{\partial l_{t}^{*}}{\partial a_{t}} = -\lambda \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1+w\lambda}.$$

Conclusions

Proposition 2. The household's coefficient of absolute risk aversion in Proposition 1, evaluated at steady state, satisfies:

$$\frac{-V_{11}(a;\theta)}{V_{1}(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda}$$

.

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Rel	ative Risl	Aversion			

Consider Arrow-Pratt gamble of general size A_t :

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$
vs.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion ●○○	Examples 0000	Conclusions o
Rela	ative Risl	Aversion			

Consider Arrow-Pratt gamble of general size A_t :

$$a_{t+1} = (1+r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$\frac{-A_t E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.$$
(*)

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion ●○○	Examples 0000	Conclusions o
Rela	ative Risl	Aversion			

Consider Arrow-Pratt gamble of general size A_t :

$$a_{t+1} = (1+r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$\frac{-A_t E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.$$
(*)

A natural benchmark for A_t is household wealth at time t.

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion ○●○	Examples 0000	Conclusions O
Hous	ehold We	ealth			

In DSGE framework, household wealth has more than one component:

- present value of labor income, $w_t l_t$
- present value of net transfers, *d*_t
- present value of leisure, $w_t(\bar{l} l_t)$?

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion ○●○	Examples 0000	Conclusions O
Hous	ehold We	ealth			

In DSGE framework, household wealth has more than one component:

- present value of labor income, w_t l_t
- present value of net transfers, d_t
- present value of leisure, $w_t(\bar{l} l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \overline{l} is arbitrary.

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions O
Hous	ehold W	ealth			

In DSGE framework, household wealth has more than one component:

- present value of labor income, w_t l_t
- present value of net transfers, d_t
- present value of leisure, $w_t(\bar{l} l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \overline{l} is arbitrary.

Different definitions of household wealth lead to different definitions of relative risk aversion.

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
			000		

Two Coefficients of Relative Risk Aversion

Definition 1. The consumption-based coefficient of relative risk aversion is given by (*), with $A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} c_{\tau}^*$.

In steady state:

$$\frac{-A V_{11}(a;\theta)}{V_1(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda}$$

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
			000		

Two Coefficients of Relative Risk Aversion

Definition 1. The consumption-based coefficient of relative risk aversion is given by (*), with $A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} c_{\tau}^*$.

In steady state:

$$\frac{-A V_{11}(a;\theta)}{V_1(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda}$$

Definition 2. The consumption-and-leisure-based coefficient of relative risk aversion is given by (*), with $\tilde{A}_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} (c_{\tau}^* + w_{\tau}(\bar{l} - l_{\tau}^*)).$

In steady state:

$$\frac{-\tilde{A} V_{11}(\boldsymbol{a}; \boldsymbol{\theta})}{V_1(\boldsymbol{a}; \boldsymbol{\theta})} = \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{\boldsymbol{c} + \boldsymbol{w}(\bar{l} - l)}{1 + \boldsymbol{w}\lambda}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples ••••	Conclusions o
Exa	mple 1				

Ð

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples ••••	Conclusions o
Eva	mole 1				

٩Ľ

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

$$\frac{-u_{11}+\lambda u_{12}}{u_1} \frac{c}{1+w\lambda}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples ●○○○	Conclusions o
Exan	nple 1				

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

$$\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda}$$
$$= \frac{-c u_{11}}{u_1} \frac{1}{1 + w\lambda}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples ●○○○	Conclusions o
Exan	nple 1				

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

$$\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda}$$
$$= \frac{-c u_{11}}{u_1} \frac{1}{1 + w\lambda}$$
$$= \gamma \frac{1}{1 + \gamma/\chi}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples ●○○○	Conclusions o
Exan	nple 1				

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

$$\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda}$$
$$= \frac{-c u_{11}}{u_1} \frac{1}{1 + w\lambda}$$
$$= \gamma \frac{1}{1 + \gamma/\chi}$$
$$= \frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}}$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples oeoo	Conclusions o

Example 1

htro Framework Absolute Risk Aversion

Relative Risk Aversion

Examples

Conclusions o

Risk Aversion Away from the Steady State

Utility:

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \qquad \gamma = 2, \ \chi = 1.5$$

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples 0000	Conclusions o
Risk /	Aversion	Away from the	e Steady Stat	е	

Utility:

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

$$\gamma=$$
 2, $\chi=$ 1.5

Plus standard RBC model, solved numerically:

Intro	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions
				0000	

Risk Aversion Away from the Steady State

Utility:

$$u(c_t, l_t) = rac{c_t^{1-\gamma}}{1-\gamma} - \eta rac{l_t^{1+\chi}}{1+\chi} \qquad \gamma = 2, \ \chi = 1.5$$

Plus standard RBC model, solved numerically:

Risk Aversion and the Equity Premium ($\gamma = 200$)

χ

Intro 000	Framework	Absolute Risk Aversion	Relative Risk Aversion	Examples	Conclusions •
Cond	clusions				

- The labor margin has dramatic effects on risk aversion
- ② Risk aversion is the right concept for asset pricing, $E_t m_{t+1} p_{t+1}$
- Solution Arrow-Pratt risk neutrality holds for any *u* with $u_{11}u_{22} u_{12}^2 = 0$
- Risk aversion and the intertemporal elasticity of substitution are nonreciprocal when there is labor in the model
- Simple, closed-form expressions for risk aversion in DSGE models with:
 - expected utility preferences
 - Epstein-Zin preferences
 - external or internal habits
 - valid away from steady state