Optimal Time-Consistent Monetary Policy in the New Keynesian Model with Repeated Simultaneous Play

Gauti B. Eggertsson1 Eric T. Swanson2

1Federal Reserve Bank of New York
2Federal Reserve Bank of San Francisco

SCE Meetings, Paris
June 27, 2008
Summary

- There are two definitions of “discretion” in the literature
- These definitions differ in terms of within-period timing of play
- Within-period timing makes a huge difference
- In the New Keynesian model with repeated Stackelberg play, there are multiple equilibria (King-Wolman, 2004)
- In the New Keynesian model with repeated simultaneous play, there is a unique equilibrium (this paper)
- Empirical relevance: Will the 1970s repeat itself?
Background and Motivation

Time-consistent (discretionary) policy: Kydland and Prescott (1977)

There are multiple equilibria under discretion:
- Barro and Gordon (1983)
- Chari, Christiano, Eichenbaum (1998)

Critiques of the Barro-Gordon/CEE result:
- enormous number, range of equilibria make theory impossible to test or reject
- equilibria require fantastic sophistication, coordination across continuum of atomistic agents
Background and Motivation

Literature has thus changed focus to *Markov perfect equilibria*:

- King and Wolman (2004)

King and Wolman (2004):

- standard New Keynesian model
- assume repeated Stackelberg within-period play
- there are two Markov perfect equilibria

But recall LQ literature:

- Pearlman (1994)
- assume repeated simultaneous within-period play
Comparison: Fiscal Policy

- two definitions of discretion in the tax literature
- Klein, Krusell, Rios-Rull (2004): repeated Stackelberg
- different timing assumption lead to different equilibria, welfare

In this paper:
- defining repeated simultaneous play is more subtle: Walras
- timing assumption changes not just payoffs, welfare, but多licity of equilibria
The Game Γ_0

Discretion is a game between private sector and central bank.

For clarity, begin definition of game without central bank:
- Assume interest rate process $\{r_t\}$ is i.i.d.
- Call this game Γ_0

Game Γ_0:
- Players
- Payoffs
- Information sets
- Action spaces
Game Γ_0: Players and Payoffs

1. Firms indexed by $i \in [0, 1]$:
 produce differentiated products; face Dixit-Stiglitz demand curves; have production function $y_t(i) = l_t(i)$; hire labor at wage rate w_t; payoff each period is profit:
 $$\Pi_t(i) = p_t(i)y_t(i) - w_t l_t(i)$$

2. Households indexed by $j \in [0, 1]$:
 supply labor $L_t(j)$; consume final good $C_t(j)$; borrow or lend a one-period nominal bond $B_t(j)$; payoff each period is utility flow:
 $$u(C_s(j), L_s(j)) = \frac{C_s(j)^{1-\varphi} - 1}{1 - \varphi} - \chi_0 \frac{L_s(j)^{1+\chi}}{1 + \chi}$$

Note: there is a final good aggregator that is not a player of Γ_0
Game Γ_0: Information Sets

Individual households and firms are anonymous:
- only aggregate variables and aggregate outcomes are publicly observed

Information set of each firm i at time t is thus:
- history of aggregate outcomes: $\{C_s, L_s, P_s, r_s, w_s, \Pi_s\}$, $s < t$
- history of firm i’s own actions

Information set of each household j at time t is thus:
- history of aggregate outcomes: $\{C_s, L_s, P_s, r_s, w_s, \Pi_s\}$, $s < t$
- history of household j’s own actions
Aggregate Resource Constraints

In games of industry competition:
- Bertrand
- Cournot
- Stackelberg

Action spaces are just real numbers: e.g., price, quantity

In a macroeconomic game, there are aggregate resource constraints that must be respected, e.g.:
- total labor supplied by households must equal total labor demanded by firms
- total output supplied by firms must equal total consumption demanded by households
- money supplied by central bank must equal total money demanded by households (in game Γ_1)
To ensure that aggregate resource constraints are respected, we introduce a Walrasian auctioneer

- Instead of playing a price p_t, firms now play a price schedule $p_t(X_t)$, where X_t denotes aggregate variables realized at t
- this is just the usual NK assumption that firms take wages, interest rate, aggregates at time t as given
To ensure that aggregate resource constraints are respected, we introduce a Walrasian auctioneer

- Instead of playing a price p_t, firms now play a price schedule $p_t(X_t)$, where X_t denotes aggregate variables realized at t
- this is just the usual NK assumption that firms take wages, interest rate, aggregates at time t as given
- Instead of playing a consumption-labor pair (C_t, L_t), households play a joint schedule $(C_t(X_t), L_t(X_t))$
- this is just the usual NK assumption that households take wages, prices, interest rate, aggregates at time t as given
Walrasian Auctioneer

To ensure that aggregate resource constraints are respected, we introduce a Walrasian auctioneer

- Instead of playing a price p_t, firms now play a price schedule $p_t(X_t)$, where X_t denotes aggregate variables realized at t
- this is just the usual NK assumption that firms take wages, interest rate, aggregates at time t as given
- Instead of playing a consumption-labor pair (C_t, L_t), households play a joint schedule $(C_t(X_t), L_t(X_t))$
- this is just the usual NK assumption that households take wages, prices, interest rate, aggregates at time t as given

Walrasian auctioneer then determines the equilibrium X_t that satisfies aggregate resource constraints
Game Γ_0: Action Spaces

1. Firms
 - set prices for two periods in Taylor contracts; must supply whatever output is demanded at posted price
 - firms in $[0, 1/2)$:
 - for t odd, action space is set of measurable functions $p_t(X_t)$
 - for t even, action space is trivial
 - firms in $[1/2, 1)$:
 - for t even, action space is set of measurable functions $p_t(X_t)$
 - for t odd, action space is trivial

2. Households
 - in each period, action space is set of measurable functions $(C_t(X_t), L_t(X_t))$
Note:
- all firms i and households j play simultaneously in each period t
- Walrasian auctioneer clears markets, aggregate resource constraints

Also, do not confuse action spaces here with strategies:
- a strategy is a mapping from history h^t to the action space
- here, action spaces are functions of aggregate variables realized at t
- but strategies are unrestricted, may depend on arbitrary history of aggregate variables (until we impose Markovian restriction)
The Game \(\Gamma_1 \)

Now, extend the game \(\Gamma_0 \) to include an optimizing central bank:

- interest rate \(r_t \) is set by central bank each period
- call this game \(\Gamma_1 \)

First two sets of players (firms and households) are defined exactly as in \(\Gamma_0 \)
Game Γ_1: Central Bank

3. Central bank:

sets one-period nominal interest rate r_t; payoff each period is given by average household welfare:

$$\int \frac{C_s(j)^{1-\varphi} - 1}{1 - \varphi} - \chi_0 \frac{L_s(j)^{1+\chi}}{1 + \chi} \, dj$$

Central bank’s information set is the history of aggregate outcomes:

$\{C_s, L_s, P_s, r_s, w_s, \Pi_s\}, \ s < t$

Note:

- central bank has no ability to commit to future actions (discretion)
- central bank is *monolithic*, while private sector is *atomistic*
Within-Period Timing of Play

Repeated Stackelberg play:
- each period divided into two halves
- first, central bank precommits to a value for r_t (or m_t)
- second, firms and households play simultaneously
- Walrasian auctioneer determines equilibrium
 note: one can drop the Walrasian auctioneer here if willing to ignore out-of-equilibrium play by positive μ of firms, households

Repeated simultaneous play:
- firms, households, and central bank all play simultaneously
- Walrasian auctioneer determines equilibrium
 note: Walrasian auctioneer is crucial, cannot be dropped (central bank is nonatomistic)
Game Γ_1: Action Spaces

In defining the game Γ_1, we assume repeated simultaneous play:

- firms i, households j, and central bank all play simultaneously in each period t
- action spaces of firms, households are same as in Γ_0
- for central bank, action space each period is set of measurable functions $r_t(X_t)$ (simultaneous play)
- Walrasian auctioneer clears markets, aggregate resource constraints

Again, do not confuse action spaces with strategies:

- strategies are unrestricted, may depend on arbitrary history of aggregate variables (until we impose Markovian restriction)
Why Assume Simultaneous Play?

Practical considerations/realism:
- Makes no difference whether monetary instrument is r_t or m_t
- Central banks monitor economic conditions continuously, adjust policy as needed

Theoretical considerations:
- Why treat central bank, private sector so asymmetrically?
- LQ literature (Svensson-Woodford 2003, 2004, Woodford 2003, Pearlman 1994, etc.) assumes simultaneous play
- Investigate sensitivity of multiple equilibria to within-period timing
Solving for Markov Perfect Equilibria

- State Variables of the Game Γ_1
- Policymaker Bellman Equation
- Markov Perfect Equilibria of the Game Γ_1
State Variables of the Game Γ_1

There are two sets of state variables for the game Γ_1 (and also Γ_0):
State Variables of the Game Γ_1

There are two sets of state variables for the game Γ_1 (and also Γ_0):

- distribution of household bond holdings, $B_{t-1}(j), j \in [0, 1]$
State Variables of the Game Γ_1

There are two sets of state variables for the game Γ_1 (and also Γ_0):

- distribution of household bond holdings, $B_{t-1}(j), j \in [0, 1]$
- two measures of the distribution of inherited prices:

\[
\int p_{t-1}(i)^{-1/\theta} \, di
\]

and

\[
\int p_{t-1}(i)^{-\frac{(1+\theta)}{\theta}} \, di
\]
State Variables of the Game Γ_1

However, starting from symmetric initial conditions in period $t - 1$:

Proposition 1:
- household optimality conditions imply all households play identically in period t in any subgame perfect equilibrium of Γ_1
State Variables of the Game Γ_1

However, starting from symmetric initial conditions in period $t - 1$:

Proposition 1:
- household optimality conditions imply all households play identically in period t in any subgame perfect equilibrium of Γ_1

Proposition 2:
- firm optimality conditions imply all firms that reset price in period t play identically in any subgame perfect equilibrium of Γ_1
State Variables of the Game Γ_1

However, starting from symmetric initial conditions in period $t - 1$:

Proposition 1:
- household optimality conditions imply all households play identically in period t in any subgame perfect equilibrium of Γ_1

Proposition 2:
- firm optimality conditions imply all firms that reset price in period t play identically in any subgame perfect equilibrium of Γ_1

That is, starting from symmetric initial conditions in period t_0, we show these state variables are degenerate in any subgame perfect equilibrium of Γ_1 for all times $t \geq t_0$.
State Variables of the Game Γ_1

However, starting from symmetric initial conditions in period $t - 1$:

Proposition 1:
- household optimality conditions imply all households play identically in period t in any subgame perfect equilibrium of Γ_1

Proposition 2:
- firm optimality conditions imply all firms that reset price in period t play identically in any subgame perfect equilibrium of Γ_1

That is, starting from symmetric initial conditions in period t_0, we show these state variables are degenerate in any subgame perfect equilibrium of Γ_1 for all times $t \geq t_0$.

We henceforth restrict definition of game Γ_1 to case of symmetric initial conditions in period t_0.
Policymaker Bellman Equation

\[V_t = \max_{\{r_t\}} \left\{ \int \frac{Y_t(j)^{1-\varphi}}{1 - \varphi} - \chi_0 \frac{L_t(j)^{1+\chi}}{1 + \chi} \, dj + \beta E_t V_{t+1} \right\} \]
Policymaker Bellman Equation

\[V_t = \max_{\{r_t\}} \left\{ \int \frac{Y_t(j)^{1-\varphi}}{1-\varphi} - \chi_0 \frac{L_t(j)^{1+\chi}}{1+\chi} \, dj + \beta E_t V_{t+1} \right\} \]

subject to:

\[\frac{L_t}{Y_t} = 2^\theta \frac{1 + x_t^{(1+\theta)/\theta}}{(1 + x_t^{1/\theta})^{1+\theta}}, \]

\[Y_t^{-\varphi}(1 + x_t^{1/\theta}) = \beta(1 + r_t)h_{1t}, \]

\[2^{-\theta}(1+x_t^{1/\theta})^\theta \left[Y_t^{1-\varphi} + \beta(1 + x_t^{1/\theta})h_{2t} \right] = (1+\theta)\chi_0 \left[Y_t L_t^x + \beta(1+x_t^{1/\theta})^{1+\theta} h_{3t} \right]. \]
Policymaker Bellman Equation

\[V_t = \max \{ r_t \} \left\{ \int \frac{Y_t(j)^{1-\varphi}}{1 - \varphi} - \chi_0 \frac{L_t(j)^{1+\chi}}{1 + \chi} \, dj + \beta E_t V_{t+1} \right\} \]

subject to:

\[\frac{L_t}{Y_t} = 2^\theta \frac{1 + x_t^{(1+\theta)/\theta}}{(1 + x_t^{1/\theta})^{1+\theta}}, \]

\[Y_t^{-\varphi}(1 + x_t^{1/\theta}) = \beta(1 + r_t)h_{1t}, \]

\[2^{-\theta}(1+x_t^{1/\theta})^{\theta} \left[Y_t^{-\varphi} + \beta(1 + x_t^{1/\theta})h_{2t} \right] = (1+\theta)\chi_0 \left[Y_tL_t^\chi + \beta(1+x_t^{1/\theta})^{1+\theta}h_{3t} \right]. \]

where expectations of next period variables are given functions of this period’s economic state: \(h_{1t}, h_{2t}, h_{3t} \) (discretion)
Markov Perfect Equilibria of the Game Γ_1

In any Markov Perfect Equilibrium of Γ_1, state variables are degenerate (only operative off of the equilibrium path)
In any Markov Perfect Equilibrium of Γ_1, state variables are degenerate (only operative off of the equilibrium path)

As a result, along the equilibrium path:

\[
\begin{align*}
 h_{1t} &= E_t Y_{t+1}^{-\varphi}(1 + x_{t+1}^{-1/\theta}) = h_1 \\
 h_{2t} &= E_t \frac{Y_{t+1}^{1-\varphi}}{1 + x_{t+1}^{-1/\theta}} = h_2 \\
 h_{3t} &= E_t \frac{Y_{t+1} L_{t+1}^x}{(1 + x_{t+1}^{-1/\theta})^{1+\theta}} = h_3
\end{align*}
\]
Markov Perfect Equilibria of the Game Γ_1

In any Markov Perfect Equilibrium of Γ_1, state variables are degenerate (only operative off of the equilibrium path).

As a result, along the equilibrium path:

$$h_{1t} = E_t Y_{t+1}^{1-\varphi} (1 + x_{t+1}^{-1/\theta}) = h_1$$

$$h_{2t} = E_t \frac{Y_{t+1}^{1-\varphi}}{1 + x_{t+1}^{-1/\theta}} = h_2$$

$$h_{3t} = E_t \frac{Y_{t+1} L_{t+1}^x}{(1 + x_{t+1}^{-1/\theta})^{1+\theta}} = h_3$$

Note: we will not write out how play evolves off of the equilibrium path, but simply assert that it agents will continue to play optimally (Phelan-Stachetti, 2001)
Solving for Markov Perfect Equilibria

Solve: \[V_t = \max_{\{r_t\}} \left\{ \frac{Y_t^{1-\varphi}}{1-\varphi} - \chi_0 \frac{L_t^{1+\chi}}{1+\chi} + \beta E_t V_{t+1} \right\} \]
subject to:

\[\frac{L_t}{Y_t} = 2^\theta \frac{1 + x_t^{(1+\theta)/\theta}}{(1 + x_t^{1/\theta})^{1+\theta}}, \]

\[Y_t^{-\varphi}(1 + x_t^{1/\theta}) = \beta(1 + r_t)h_1, \]

\[2^{-\theta}(1+x_t^{1/\theta})^\theta \left[Y_t^{1-\varphi} + \beta(1 + x_t^{1/\theta})h_2 \right] = (1+\theta)\chi_0 \left[Y_t L_t^\chi + \beta(1+x_t^{1/\theta})^{1+\theta} h_3 \right]. \]

where \(h_1, h_2, h_3 \) are exogenous constants.
Solving for Markov Perfect Equilibria

Solve: \[V_t = \max_{\{r_t\}} \left\{ \frac{Y_t^{1-\varphi}}{1-\varphi} - \chi_0 \frac{L_t^{1+\chi}}{1+\chi} + \beta E_t V_{t+1} \right\} \]
subject to:
\[\frac{L_t}{Y_t} = 2^{\theta} \frac{1 + x_t^{(1+\theta)/\theta}}{(1 + x_t^{1/\theta})^{1+\theta}}, \]
\[Y_t^{-\varphi} (1 + x_t^{1/\theta}) = \beta (1 + r_t) h_1, \]
\[2^{-\theta} (1 + x_t^{1/\theta})^\theta \left[Y_t^{1-\varphi} + \beta (1 + x_t^{1/\theta}) h_2 \right] = (1+\theta) \chi_0 \left[Y_t L_t^\chi + \beta (1 + x_t^{1/\theta})^{1+\theta} h_3 \right]. \]

where \(h_1, h_2, h_3 \) are exogenous constants.

Finally, impose equilibrium conditions: \(h_1 = E_t Y_{t+1}^{-\varphi} (1 + x_{t+1}^{-1/\theta}), \)
\(h_2 = E_t \frac{Y_{t+1}^{1-\varphi}}{1 + x_{t+1}^{1/\theta}}, \) \(h_3 = E_t \frac{Y_{t+1} L_{t+1}^\chi}{(1 + x_{t+1}^{-1/\theta})^{1+\theta}}. \)
Solving for Markov Perfect Equilibria

Solve: \[V_t = \max_{\{r_t\}} \left\{ \frac{Y_t^{1-\varphi}}{1-\varphi} - \chi_0 \frac{L_t^{1+\chi}}{1+\chi} + \beta E_t V_{t+1} \right\} \]

subject to:

\[L_t = \frac{2^\theta \left(1 + x_t^{(1+\theta)/\theta}\right)}{(1 + x_t^{1/\theta})^{1+\theta}}, \]

\[Y_t^{-\varphi}(1 + x_t^{1/\theta}) = \beta(1 + r_t)h_1, \]

\[2^{-\theta}(1+x_t^{1/\theta})^{\theta} [Y_t^{1-\varphi} + \beta(1 + x_t^{1/\theta})h_2] = (1+\theta)\chi_0 [Y_t L_t^{\chi} + \beta(1+x_t^{1/\theta})^{1+\theta} h_3]. \]

where \(h_1, h_2, h_3 \) are exogenous constants.

Finally, impose equilibrium conditions: \(h_1 = E_t Y_{t+1}^{-\varphi}(1 + x_{t+1}^{-1/\theta}), \)

\(h_2 = E_t \frac{Y_{t+1}^{1-\varphi}}{1+x_{t+1}^{-1/\theta}}, h_3 = E_t \frac{Y_{t+1} L_{t+1}^{\chi}}{(1+x_{t+1}^{-1/\theta})^{1+\theta}}. \)

Note: there can still be multiplicity here, e.g. if \(h_1, h_2, h_3 \) are “bad”
Proposition 6: The inflation rate π in any Markov Perfect Equilibrium of the game Γ_1 must satisfy the condition:

$$\frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \times \frac{1 + \pi^{1/\theta}}{1 + \pi^{(1+\theta)/\theta}} \times \left\{ \begin{array}{l}
1 - \frac{(\pi - 1) \left[1 + \chi - (1 - \varphi) \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right]}{(\pi - 1) \left[1 - (1 - \varphi) \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right] + (1 + \pi^{(1+\theta)/\theta}) \left[1 - \frac{1}{1 + \theta} \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right]} \end{array} \right\} = \frac{1}{1 + \theta} \quad (\star)$$
Proposition 6: The inflation rate π in any Markov Perfect Equilibrium of the game Γ_1 must satisfy the condition:

\[
\frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \times \frac{1 + \pi^{1/\theta}}{1 + \pi^{(1+\theta)/\theta}} \times \left\{ 1 - \frac{(\pi - 1) \left[1 + \chi - (1 - \varphi) \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right]}{(\pi - 1) \left[1 - (1 - \varphi) \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right] + (1 + \pi^{(1+\theta)/\theta}) \left[1 - \frac{1}{1+\theta} \frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \right]} \right\} = \frac{1}{1 + \theta}
\]

Proposition 7: Let $\varphi = 1$, $\chi = 0$, and $\beta > \max\{1/2, 1/(1 + 2\theta)\}$. Then there is precisely one value of π that satisfies equation (\ast).
Proposition 6: The inflation rate π in any Markov Perfect Equilibrium of the game Γ_1 must satisfy the condition:

\[
\frac{1 + \beta \pi^{(1+\theta)/\theta}}{1 + \beta \pi^{1/\theta}} \times \frac{1 + \pi^{1/\theta}}{1 + \pi^{(1+\theta)/\theta}} \times \frac{(\pi - 1)}{(\pi - 1)^2 + (1 - \varphi) \frac{1+\beta \pi^{(1+\theta)/\theta}}{1+\beta \pi^{1/\theta}}} + (1 + \pi^{(1+\theta)/\theta}) \left[1 - \frac{1}{1+\theta} \frac{1+\beta \pi^{(1+\theta)/\theta}}{1+\beta \pi^{1/\theta}} \right] = \frac{1}{1+\theta}
\]

Proposition 7: Let $\varphi = 1$, $\chi = 0$, and $\beta > \max\{1/2, 1/(1 + 2\theta)\}$.

Then there is precisely one value of π that satisfies equation ()*.

Note:

- $\varphi = 1$, $\chi = 0$ are not special, but simplify algebra in proofs
- there is a unique equilibrium for wide range of parameters
- confirmed by extensive numerical simulation in Matlab
Conclusions

- There are two definitions of “discretion” in the literature.
- These definitions differ in terms of within-period timing of play.
- Within-period timing makes a huge difference.
- In the New Keynesian model with repeated Stackelberg play, there are multiple equilibria (King-Wolman, 2004).
- In the New Keynesian model with repeated simultaneous play, there is a unique equilibrium (this paper).
- Open questions: other NK models, models with a (nondegenerate) state variable.