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Coefficient of Relative Risk Aversion

Suppose a household has preferences:

E0

∞∑
t=0

βtu(ct , lt ),

u(ct , lt ) =
c1−γ

t
1− γ

− η lt

What is the household’s coefficient of relative risk aversion?

Answer: 0
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Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
Individuals who win a lottery prize reduce labor supply by $.11
for every $1 won (note: spouse may also reduce labor supply)

Coile and Levine (2009):
Older individuals are 7% less likely to retire in a given year after
a 30% fall in stock market

Coronado and Perozek (2003):
Individuals who held more stocks in late 1990s retired 7 months
earlier

Large literature estimating wealth effects on labor supply (e.g.,
Pencavel 1986)
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Household with Generalized Recursive Preferences

Household chooses state-contingent {(ct , l t )} to maximize

V (at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

u(ct , lt ) + β
(

Et V (at+1; θt+1)1−α
)1/(1−α)

Note: Generalized recursive preferences are often written as:

U(at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

[
ũ(ct , lt )ρ + β

(
Et U(at+1; θt+1)α̃

)ρ/α̃]1/ρ

It’s easy to map back and forth from U to V ; moreover,
V is more closely related to standard dynamic programming
results, regularity conditions, and FOCs
V makes derivations, formulas in the paper simpler
additively separable u is easier to consider in V
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Household with Generalized Recursive Preferences

Household chooses state-contingent {(ct , l t )} to maximize

V (at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

u(ct , lt ) + β
(

Et V (at+1; θt+1)1−α
)1/(1−α)

subject to flow budget constraint

aτ+1 = (1 + rτ )aτ + wτ lτ + dτ − cτ

and No-Ponzi condition.

{wτ , rτ ,dτ} are exogenous processes, governed by θτ .

State variables of the household’s problem are (at ; θt ).

Let: c∗t ≡ c∗(at ; θt ),

l∗t ≡ l∗(at ; θt ).



Introduction Framework Risk Aversion Asset Pricing Conclusions

Household with Generalized Recursive Preferences

Household chooses state-contingent {(ct , l t )} to maximize

V (at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

u(ct , lt ) + β
(

Et V (at+1; θt+1)1−α
)1/(1−α)

subject to flow budget constraint

aτ+1 = (1 + rτ )aτ + wτ lτ + dτ − cτ

and No-Ponzi condition.

{wτ , rτ ,dτ} are exogenous processes, governed by θτ .

State variables of the household’s problem are (at ; θt ).

Let: c∗t ≡ c∗(at ; θt ),

l∗t ≡ l∗(at ; θt ).



Introduction Framework Risk Aversion Asset Pricing Conclusions

Household with Generalized Recursive Preferences

Household chooses state-contingent {(ct , l t )} to maximize

V (at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

u(ct , lt ) + β
(

Et V (at+1; θt+1)1−α
)1/(1−α)

subject to flow budget constraint

aτ+1 = (1 + rτ )aτ + wτ lτ + dτ − cτ

and No-Ponzi condition.

{wτ , rτ ,dτ} are exogenous processes, governed by θτ .

State variables of the household’s problem are (at ; θt ).

Let: c∗t ≡ c∗(at ; θt ),

l∗t ≡ l∗(at ; θt ).



Introduction Framework Risk Aversion Asset Pricing Conclusions

Technical Conditions

Assumption 1. The function u(ct , lt ) is increasing in its first
argument, decreasing in its second, twice-differentiable, and strictly
concave.

Assumption 2. Either u : Ω→ [ 0,∞) or u : Ω→ (−∞,0 ].

Assumption 3. A solution V : X → R to the household’s
generalized Bellman equation exists and is unique, continuous,
and concave.

Assumption 4. For any (at ; θt ) ∈ X, the household’s optimal
choice (c∗t , l

∗
t ) exists, is unique, and lies in the interior of Γ(at ; θt ).

Assumption 5. For any (at ; θt ) in the interior of X , the second
derivative of V with respect to its first argument, V11(at ; θt ), exists.
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Assumptions about the Economic Environment

Assumption 6. The household is infinitesimal.

Assumption 7. The household is representative.

Assumption 8. The model has a nonstochastic steady state,
xt = xt+k for k = 1,2, . . . , and x ∈ {c, l ,a,w , r ,d , θ}.

Assumption 8′. The model has a balanced growth path that can
be renormalized to a nonstochastic steady state after a suitable
change of variables.
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Arrow-Pratt in a Static One-Good Model

Compare:
E u(c + σε) vs. u(c − µ)

Arrow-Pratt coefficient of absolute risk aversion:

lim
σ→0

2µ(σ)/σ2
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t :

at+1 = (1 + rt )at + wt lt + dt − ct + σεt+1,

vs.

at+1 = (1 + rt )at + wt lt + dt − ct − µ.

Definition 1. The household’s coefficient of absolute risk aversion
at (at ; θt ) is given by Ra(at ; θt ) = limσ→0 2µ(σ)/σ2.
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Coefficient of Absolute Risk Aversion

Proposition 1. The household’s coefficient of absolute risk
aversion at (at ; θt ), denoted Ra(at ; θt ), satisfies

−Et
[
V (a∗t+1; θt+1)−αV11(a∗t+1; θt+1)− αV (a∗t+1; θt+1)−α−1V1(a∗t+1; θt+1)2]

Et V (a∗t+1; θt+1)−αV1(a∗t+1; θt+1)
.

Evaluated at the nonstochastic steady state, this simplifies to:

Ra(a; θ) =
−V11(a; θ)

V1(a; θ)
+ α

V1(a; θ)

V (a; θ)
.

Folk wisdom (α = 0): Constantinides (1990), Farmer (1990),
Campbell-Cochrane (1999), Boldrin-Christiano-Fisher (1997,
2001), Flavin-Nakagawa (2008)
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Solve for V1 and V11

Benveniste-Scheinkman:

V1(at ; θt ) = (1 + rt ) u1(c∗t , l
∗
t ). (∗)

Differentiate (∗) to get:

V11(at ; θt ) = (1 + rt )

[
u11(c∗t , l

∗
t )
∂c∗t
∂at

+ u12(c∗t , l
∗
t )
∂l∗t
∂at

]
.

Intratemporal optimality:
∂l∗t
∂at

= −λ
∂c∗t
∂at

, λ = wu11+u12
u22+wu12

Euler equation and BC: ∂c∗t
∂at

=
r

1 + wλ
.

Proposition 3. The household’s coefficient of absolute risk
aversion in Proposition 1, evaluated at steady state, satisfies:

Ra(a; θ) =
−u11 + λu12

u1

r
1 + wλ

+ α
r u1

u
.
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Relative vs. Absolute Risk Aversion

Relative risk aversion depends on household wealth.

Household wealth includes:
financial assets at

present value of nonlabor income, dt

present value of labor income, wt lt
maybe present value of leisure, wt (̄l − lt )?

Leisure can be hard to define, e.g.,

u(ct , lt ) =
c1−γ

t
1− γ

− η
l1+χ
t

1 + χ
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Two Coefficients of Relative Risk Aversion

Definition 2. The consumption-wealth coefficient of relative risk
aversion, Rc(at ; θt ) ≡ Ac

t Ra(at ; θt ), where Ac
t denotes the present

discounted value of household consumption.

At steady state:

Rc(a; θ) =
−u11 + λu12

u1

c
1 + wλ

+ α
cu1

u
.

Definition 3. The consumption-and-leisure-wealth coefficient of
relative risk aversion, Rcl(at ; θt ) ≡ Acl

t Ra(at ; θt ), where Acl
t denotes

the present discounted value of consumption and leisure.

At steady state:

Rcl(a; θ) =
−u11 + λu12

u1

c + w (̄l − l)
1 + wλ

+ α

(
c + w (̄l − l)

)
u1

u
.
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Asset Pricing

Expected excess return on asset i :

ψi
t ≡ Et r i

t+1 − r f
t+1

= −Covt (mt+1, r i
t+1)

Proposition 7. To first order around the nonstochastic steady
state,

dmt+1 = −Ra(a; θ) dÂt+1 + dΦt+1

To second order around the nonstochastic steady state,

ψi
t = Ra(a; θ) Covt (dr i

t+1,dÂt+1) − Covt (dr i
t+1,dΦt+1)
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To second order around the nonstochastic steady state,

ψi
t = Ra(a; θ) Covt (dr i
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Numerical Example

Economy is a very simple, standard RBC model:

Competitive firms

Cobb-Douglas production, yt = Ztk
1−ζ
t lζt

AR(1) technology, log Zt+1 = ρz log Zt + εt

Capital accumulation, kt+1 = (1− δ)kt + yt − ct

Equity is a consumption claim

Equity premium is expected excess return,

ψt =
Et (Ct+1 + pt+1)

pt
− (1 + r f

t )
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Numerical Example: Preferences

Period utility

u(ct , lt ) =
c1−γ

t
1− γ

− η
l1+χ
t

1 + χ

Generalized recursive preferences

V (at ; θt ) = max
(ct ,lt )∈Γ(at ;θt )

u(ct , lt ) + β
(

Et V (at+1; θt+1)1−α
)1/(1−α)

Note:
IES = 1/γ
If labor fixed, relative risk aversion is Rfl = γ + α(1− γ)

Epstein-Zin, Weil define α̃ = γ + α(1− γ)

If labor flexible, relative risk aversion is Rc , depends on χ, γ, α
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Additively Separable Period Utility
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Additively Separable Period Utility
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Second Numerical Example

Same RBC model as before, with Cobb-Douglas period utility

u(ct , lt ) =

(
cχt (1−lt )1−χ)1−γ

1− γ

and random-walk technology, ρz = 1.

Note:
IES = 1/γ
If labor fixed, risk aversion is Rfl =

(
1− χ(1− γ)

)
+ α(1− γ)

For composite good, risk aversion is Rcl = γ + α(1− γ)

Epstein-Zin-Weil consider χ = 1, define α̃ = γ + α(1− γ)

Risk aversion Rc recognizes labor is flexible, excludes value of
leisure from household wealth, Rc = χγ + χα(1− γ)
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Conclusions

1 A flexible labor margin affects risk aversion

2 Risk premia are related to risk aversion

3 Fixed-labor and composite-good measures of risk aversion
perform poorly

4 For multiplier preferences, risk aversion is very sensitive to
scaling by (1− β)

5 Simple, closed-form expressions for risk aversion with:
flexible labor margin
generalized recursive preferences
external or internal habits
validity away from steady state
correspondence to risk premia in the model

6 Ongoing work: frictional labor markets
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