The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks

Glenn D. Rudebusch Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

> AEA Meetings, Atlanta January 4, 2010

Part of a Broader Project

• Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.

Part of a Broader Project

- Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.
- Rudebusch-Swanson (2008): term premium in NK DSGE model with Campbell-Cochrane habits is far too small, stable relative to the data.

Part of a Broader Project

- Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.
- Rudebusch-Swanson (2008): term premium in NK DSGE model with Campbell-Cochrane habits is far too small, stable relative to the data.
- this paper: Epstein-Zin preferences in a NK DSGE model

Why Study the Term Premium?

Why Study the Term Premium in a DSGE Model?

Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- only requires modeling short-term interest rate, not dividends or leverage
- is used by central banks to measure expectations of monetary policy, inflation
- applies to a larger volume of securities
- provides an additional perspective on the model
- tests nominal rigidities

Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- only requires modeling short-term interest rate, not dividends or leverage
- is used by central banks to measure expectations of monetary policy, inflation
- applies to a larger volume of securities
- provides an additional perspective on the model
- tests nominal rigidities

DSGE model:

- many empirical questions about risk premia require a structural DSGE model to provide reliable answers
- DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model

Standard preferences:

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Standard preferences:

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, l_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Standard preferences:

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

We'll use standard NK utility kernel:

$$u(c_t, l_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi}$$

Household optimality conditions with EZ preferences:

$$\mu_{t} u_{1}|_{(c_{t}, h)} = P_{t} \lambda_{t}$$

$$-\mu_{t} u_{2}|_{(c_{t}, h)} = w_{t} \lambda_{t}$$

$$\lambda_{t} = \beta E_{t} \lambda_{t+1} (1 + r_{t+1})$$

$$\mu_{t} = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_{0} = 1$$

Household optimality conditions with EZ preferences:

$$\mu_{t} u_{1}|_{(c_{t}, h)} = P_{t} \lambda_{t}$$

$$-\mu_{t} u_{2}|_{(c_{t}, h)} = w_{t} \lambda_{t}$$

$$\lambda_{t} = \beta E_{t} \lambda_{t+1} (1 + r_{t+1})$$

$$\mu_{t} = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_{0} = 1$$

Recall: $V_t = u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}$

The DSGE Model

- Continuum of households with Epstein-Zin preferences
 - consume output, supply labor
- Continuum of Dixit-Stiglitz differentiated firms
 - set prices in Calvo contracts with avg. duration 4 quarters
 - identical Cobb-Douglas production functions
 - face aggregate technology: $\log A_t = \rho_A \log A_{t-1} + \varepsilon_t^A$
- Government
 - purchases G_t, financed by lump-sum taxes
 - $\log G_t = \rho_G \log G_{t-1} + (1 \rho_g) \log \overline{G} + \varepsilon_t^G$
- Monetary Authority
 - sets short-term nominal interest rate using a Taylor-type rule
 - monetary policy shock

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$
$$i_t^{(n)} = -\frac{1}{n}\log p_t^{(n)}$$

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$
$$i_t^{(n)} = -\frac{1}{n}\log p_t^{(n)}$$

Risk-neutral bond price:

$$\hat{p}_t^{(n)} = e^{-i_t} E_t [\hat{p}_{t+1}^{(n-1)}]$$

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$
$$i_t^{(n)} = -\frac{1}{n}\log p_t^{(n)}$$

Risk-neutral bond price:

$$\hat{p}_t^{(n)} = e^{-i_t} E_t [\hat{p}_{t+1}^{(n-1)}]$$

Term premium:

$$\psi_t^{(n)} \equiv i_t^{(n)} - \hat{i}_t^{(n)}$$

Solving the Model

State variables of the model:

$$A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon_t^A, \varepsilon_t^G, \varepsilon_t^i$$

Solving the Model

State variables of the model:

$$A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon_t^A, \varepsilon_t^G, \varepsilon_t^i$$

We solve the model by perturbation methods

Solving the Model

State variables of the model:

$$A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon_t^A, \varepsilon_t^G, \varepsilon_t^i$$

We solve the model by perturbation methods

- We compute a *third*-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes *n*th order approximations

Result: Model Fits Basic Macro, Finance Moments

Table 2: Empirical and Model-Based Unconditional Moments

Variable	U.S. Data 1961–2007	EU Preferences	EZ Preferences	"best fit" EZ Preferences		
sd[<i>C</i>]	1.19	1.40	1.46	2.12		
sd[<i>L</i>]	1.71	2.48	2.50	1.89		
sd[w ^r]	0.82	2.02	2.02	2.02		
$sd[\pi]$	2.52	2.22	2.30	2.96		
sd[<i>i</i>]	2.71	1.86	1.93	2.65		
sd[<i>i</i> ⁽⁴⁰⁾]	2.41	0.52	0.57	1.17		
mean[$\psi^{(40)}$]	1.06	.010	.438	1.06		
$sd[\psi^{(40)}]$	0.54	.000	.053	.162		
mean[$i^{(40)} - i$]	1.43	038	.390	0.95		
sd[<i>i</i> ⁽⁴⁰⁾ - <i>i</i>]	1.33	1.41	1.43	1.59		
mean[$x^{(40)}$]	1.76	.010	.431	1.04		
$sd[x^{(40)}]$	23.43	6.52	6.87	10.77		
memo: IES		.5	.5	.5		
guasi-CRRA		2	75	90		

Result: Model Fits Basic Macro, Finance Moments

Table 2: Empirical and Model-Based Unconditional Moments

	I			
Variable	U.S. Data 1961–2007	EU Preferences	EZ Preferences	"best fit" EZ Preferences
sd[C]	1.19	1.40	1.46	2.12
sd[L]	1.71	2.48	2.50	1.89
sd[w ^r]	0.82	2.02	2.02	2.02
$sd[\pi]$	2.52	2.22	2.30	2.96
sd[<i>i</i>]	2.71	1.86	1.93	2.65
sd[<i>i</i> ⁽⁴⁰⁾]	2.41	0.52	0.57	1.17
mean[$\psi^{(40)}$]	1.06	.010	.438	1.06
$sd[\psi^{(40)}]$	0.54	.000	.053	.162
mean[<i>i</i> ⁽⁴⁰⁾ – <i>i</i>]	1.43	038	.390	0.95
sd[<i>i</i> ⁽⁴⁰⁾ - <i>i</i>]	1.33	1.41	1.43	1.59
mean[$x^{(40)}$]	1.76	.010	.431	1.04
sd[x ⁽⁴⁰⁾]	23.43	6.52	6.87	10.77
memo: IES		.5	.5	.5
quasi-CRRA		2	75	90

Coefficient of Relative Risk Aversion

• Epstein-Zin preferences:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

Coefficient of Relative Risk Aversion

• Epstein-Zin preferences:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

• Barillas-Hansen-Sargent (2008):

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \frac{\phi_{t+1}}{\phi_t} \frac{P_t}{P_{t+1}}$$

Coefficient of Relative Risk Aversion

• Epstein-Zin preferences:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

• Barillas-Hansen-Sargent (2008):

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1}, l_{t+1})}}{u_1 \big|_{(c_t, l_t)}} \, \frac{\phi_{t+1}}{\phi_t} \, \frac{P_t}{P_{t+1}}$$

 Guvenen (2006), Moskowitz-Vissing-Jorgensen (2009): heterogeneous agents

Long-Run Inflation Risk

Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary

Long-Run Inflation Risk

Long-Run Inflation Risk and the Term Premium

Long-Run Inflation Risk and the Term Premium

quasi-CRRA

Long-Run Inflation Risk and the Term Premium

quasi-CRRA

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions
- then bond prices rise in recessions
- ullet \Longrightarrow the term premium should be negative
- the yield curve slopes downward

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions
- then bond prices rise in recessions
- ullet \Longrightarrow the term premium should be negative
- the yield curve slopes downward

This paper:

- technology/supply shocks imply inflation is high in recessions
- then nominal bond prices fall in recessions
- \implies the nominal yield curve slopes upward

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions
- then bond prices rise in recessions
- \implies the term premium should be negative
- the yield curve slopes downward

This paper:

- technology/supply shocks imply inflation is high in recessions
- then nominal bond prices fall in recessions
- \implies the nominal yield curve slopes upward

Note: Backus et. al intuition still applies to real yield curve

Maturity (months)

Result: Model Term Premium is Countercylical

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$\begin{aligned} x_t &= \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_t \\ &+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \dots \end{aligned}$$

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$\begin{aligned} x_t &= \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_t \\ &+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \dots \end{aligned}$$

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$\begin{aligned} x_t &= \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_t \\ &+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \dots \end{aligned}$$

Model	term premium mean (bp)	term premium std dev (bp)
baseline model	86.5	11.0
log-linear log-normal	86.5	0.0

The term premium in standard NK DSGE models is very small, even more stable

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework:

agents are risk-averse and cannot offset long-run real or nominal risks

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or

nominal risks

Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments