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only requires modeling short-term interest rate, not dividends
or leverage
is used by central banks to measure expectations of monetary
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The DSGE Model

Continuum of households with Epstein-Zin preferences
consume output, supply labor

Continuum of Dixit-Stiglitz differentiated firms
set prices in Calvo contracts with avg. duration 4 quarters
identical Cobb-Douglas production functions
face aggregate technology: log At = ρA log At−1 + εA

t

Government
purchases Gt , financed by lump-sum taxes
log Gt = ρG log Gt−1 + (1− ρg) log Ḡ + εG

t

Monetary Authority
sets short-term nominal interest rate using a Taylor-type rule
monetary policy shock
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Asset pricing:
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Solving the Model

State variables of the model:

At−1, Gt−1, it−1, π̄t−1, ∆t−1, εA
t , εG

t , εi
t

We solve the model by perturbation methods

We compute a third-order approximation of the solution
around nonstochastic steady state
Perturbation AIM algorithm in Swanson, Anderson, Levin
(2006) quickly computes nth order approximations
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Result: Model Fits Basic Macro, Finance Moments

Table 2: Empirical and Model-Based Unconditional Moments

U.S. Data EU EZ “best fit” EZ
Variable 1961–2007 Preferences Preferences Preferences

sd[C] 1.19 1.40 1.46 2.12
sd[L] 1.71 2.48 2.50 1.89

sd[w r ] 0.82 2.02 2.02 2.02
sd[π] 2.52 2.22 2.30 2.96
sd[i ] 2.71 1.86 1.93 2.65

sd[i (40)] 2.41 0.52 0.57 1.17

mean[ψ(40)] 1.06 .010 .438 1.06
sd[ψ(40)] 0.54 .000 .053 .162

mean[i (40) − i ] 1.43 −.038 .390 0.95
sd[i (40) − i ] 1.33 1.41 1.43 1.59
mean[x (40)] 1.76 .010 .431 1.04

sd[x (40)] 23.43 6.52 6.87 10.77

memo: IES .5 .5 .5
quasi-CRRA 2 75 90
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Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky:
same idea as Bansal-Yaron (2004), but with nominal risk
rather than real risk
long-term inflation expectations more observable than
long-term consumption growth
other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack,
Swanson, 2005) that long-term inflation expectations in the
U.S. vary
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Result: Nominal Yield Curve is Upward-Sloping

Backus-Gregory-Zin (1989), Den Haan (1995)
if interest rates are low in recessions
then bond prices rise in recessions
=⇒ the term premium should be negative
the yield curve slopes downward

This paper:
technology/supply shocks imply inflation is high in recessions
then nominal bond prices fall in recessions
=⇒ the nominal yield curve slopes upward

Note: Backus et. al intuition still applies to real yield curve
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Result: Model Term Premium is Countercylical
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Figure 2. Impulse responses to structural shocks.

Impulse responses of consumption, inflation, long-term bond prices, and term 

premiums to positive one standard deviation shocks to technology, government 

spending, and monetary policy.
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Result: Model Generates Endogenous Heterosked.
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Conclusions

1 The term premium in standard NK DSGE models is very
small, even more stable

2 Habit-based preferences can solve bond premium puzzle in
endowment economy, but fail in NK DSGE framework:
although agents are risk-averse, they can offset that risk

3 Epstein-Zin preferences can solve bond premium puzzle in
endowment economy, are much more promising in NK DSGE
framework:
agents are risk-averse and cannot offset long-run real or
nominal risks

4 Long-run risks reduce the required quasi-CRRA, increase
volatility of risk premia, help fit financial moments
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