Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions

Risk Aversion, Risk Premia, and the Labor Margin with Generalized Recursive Preferences

Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

Macroeconomics Seminar Birkbeck College, London November 7, 2013
 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 •••••
 ••••
 ••••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 •••••
 ••••
 ••••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

Answer: 0

 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 o●oo
 oooo
 oooo
 ooo
 ooo
 ooo
 oooo
 ooooo
 oooo
 ooooooooooooo
 oooooooooooo
 <td

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t, l_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

What is the household's coefficient of relative risk aversion?

Answer:
$$\frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}}$$

Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):

 Individuals who win a lottery prize reduce labor supply by \$.11 for every \$1 won (note: spouse may also reduce labor supply)

Coile and Levine (2009):

 Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Coronado and Perozek (2003):

 Individuals who held more stocks in late 1990s retired 7 months earlier

Large literature estimating wealth effects on labor supply (e.g., Pencavel 1986)

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Outline	e of Pre	sentatio	n			

- Define risk aversion rigorously for expected utility preferences
- Show the labor margin can have big effects on risk aversion
- Generalize the results to Epstein-Zin preferences
- Discuss asset pricing examples

Introduction 000●	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Outline	of Pre	sentatio	า			

- Define risk aversion rigorously for expected utility preferences
- Show the labor margin can have big effects on risk aversion
- Generalize the results to Epstein-Zin preferences
- Discuss asset pricing examples

See the paper for:

- More asset pricing details
- Numerical solutions far away from steady state
- Multiplier preferences

Introduction	Framework ●000	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
	sehold					

Household preferences:

$$\mathsf{E}_t\sum_{\tau=t}^{\infty}\beta^{\tau-t}u(c_{\tau},l_{\tau}),$$

Flow budget constraint:

$$a_{\tau+1} = (1+r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

No-Ponzi condition:

$$\lim_{T\to\infty}\prod_{\tau=t}^{T}(1+r_{\tau+1})^{-1}a_{T+1}\geq 0,$$

 $\{\textit{w}_{\tau},\textit{r}_{\tau},\textit{d}_{\tau}\}$ are exogenous processes, governed by θ_{τ}

State variables of the household's problem are $(a_t; \theta_t)$.

Let:

$$c_t^* \equiv c^*(a_t; \theta_t),$$
$$l_t^* \equiv l^*(a_t; \theta_t).$$

Introduction Framework •••••
Absolute RA conclusions conclusions

State variables of the household's problem are $(a_t; \theta_t)$.

Let:

$$egin{aligned} m{c}_t^* &\equiv m{c}^*(m{a}_t;m{ heta}_t), \ m{l}_t^* &\equiv m{l}^*(m{a}_t;m{ heta}_t). \end{aligned}$$

Value function, Bellman equation:

$$V(\boldsymbol{a}_t; \boldsymbol{\theta}_t) = u(\boldsymbol{c}_t^*, \boldsymbol{l}_t^*) + \beta \boldsymbol{E}_t V(\boldsymbol{a}_{t+1}^*; \boldsymbol{\theta}_{t+1}),$$

where:

$$a_{t+1}^* \equiv (1+r_t)a_t + w_t l_t^* + d_t - c_t^*.$$

Introduction Framework Absolute RA coordination of the second sec

Assumption 1. The function $u(c_t, l_t)$ is increasing in its first argument, decreasing in its second, twice-differentiable, and strictly concave.

Assumption 2. The value function $V : X \to \mathbb{R}$ for the household's optimization problem exists and satisfies the Bellman equation

$$V(a_t;\theta_t) = \max_{(c_t,l_t)\in \Gamma(a_t;\theta_t)} u(c_t,l_t) + \beta E_t V(a_{t+1};\theta_{t+1}).$$

Assumption 3. For any $(a_t; \theta_t) \in X$, the household's optimal choice (c_t^*, l_t^*) lies in the interior of $\Gamma(a_t; \theta_t)$.

Assumption 4. The value function $V(\cdot; \cdot)$ is twice-differentiable in its first argument. (It then follows that c^* , I^* are differentiable.)

Assumptions about the Economic Environment

Assumption 5. The household is infinitesimal.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, ..., and x \in \{c, l, a, w, r, d, \theta\}$.

Assumptions about the Economic Environment

Assumption 5. The household is infinitesimal.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, ..., and x \in \{c, l, a, w, r, d, \theta\}$.

Assumption 7'. The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable change of variables.

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

Introduction Framework Absolute RA elative RA coordinate R

Arrow-Pratt in a Static One-Good Model (Review)

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + u'(c)\sigma E[\varepsilon] + \frac{1}{2}u''(c)\sigma^2 E[\varepsilon^2],$$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

 $E u(c+\sigma \varepsilon) \approx u(c) + \frac{1}{2}u''(c)\sigma^2.$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^{2}.$$

$$\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^{2}}{2}.$$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Compute:

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^{2}.$$

$$\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^{2}}{2}.$$

Coefficient of absolute risk aversion is defined to be:

$$\lim_{\sigma\to 0} 2\mu(\sigma)/\sigma^2 = \frac{-u''(c)}{u'(c)}.$$

Introduction Framework Absolute RA ooo Relative RA coo Conclusions conclusions conclusions coo Conclusions conclu

Arrow-Pratt in a Dynamic Model

Introduction Framework Absolute RA of the second se

Consider a one-shot gamble in period *t*:

$$\mathbf{a}_{t+1} = (1 + r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$\mathbf{a}_{t+1} = (1+\mathbf{r}_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Note we cannot easily consider gambles over:

- ct (choice variable)
- *a_t* (state variable, already known at *t*)

Introduction Framework Absolute RA ooo Relative RA coordinate Relative RA coordinate R

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$\mathbf{a}_{t+1} = (1+\mathbf{r}_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{I}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma \varepsilon_{t+1}, \qquad (*)$$

Note we cannot easily consider gambles over:

- ct (choice variable)
- *a_t* (state variable, already known at *t*)

Note (*) is equivalent to gamble over asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t I_t + d_t - c_t.$$

or income:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 0000
 0000
 000
 000
 000
 000
 000
 000

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1}=(1+r_t)a_t+w_tl_t+d_t-c_t-\mu.$$

 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 0000
 000
 000
 000
 000
 000
 000
 000

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1}=(1+r_t)a_t+w_tI_t+d_t-c_t-\mu.$$

Welfare loss from μ :

$$V_1(a_t;\theta_t)\,\frac{\mu}{(1+r_t)}$$

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1}=(1+r_t)a_t+w_tI_t+d_t-c_t-\mu.$$

Welfare loss from μ :

 $\beta E_t V_1(a_{t+1}^*; \theta_{t+1}) \mu.$

 Introduction
 Framework
 Absolute RA
 Relative RA
 EZ Preferences
 Asset Pricing
 Conclusions

 0000
 000
 000
 000
 000
 000
 000
 000

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t\mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \sigma\varepsilon_{t+1},$$

VS.

$$a_{t+1}=(1+r_t)a_t+w_tI_t+d_t-c_t-\mu.$$

Welfare loss from μ :

$$\beta E_t V_1(a_{t+1}^*; \theta_{t+1}) \mu.$$

Loss from σ :

$$\beta E_t V_{11}(a_{t+1}^*; \theta_{t+1}) \frac{\sigma^2}{2}$$

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by $R^a(a_t; \theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by $R^a(a_t; \theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is well defined and given by

$$R^{a}(a_{t};\theta_{t}) = \frac{-E_{t}V_{11}(a_{t+1}^{*};\theta_{t+1})}{E_{t}V_{1}(a_{t+1}^{*};\theta_{t+1})}.$$

Introduction Framework Absolute RA control con

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by $R^a(a_t; \theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is well defined and given by

$$R^{a}(a_{t};\theta_{t}) = \frac{-E_{t}V_{11}(a_{t+1}^{*};\theta_{t+1})}{E_{t}V_{1}(a_{t+1}^{*};\theta_{t+1})}.$$

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-Fisher (1997, 2001), Campbell-Cochrane (1999), Flavin-Nakagawa (2008)

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ is given by $R^a(a_t; \theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$ satisfies

$$R^{a}(a_{t};\theta_{t}) = \frac{-E_{t}V_{11}(a_{t+1}^{*};\theta_{t+1})}{E_{t}V_{1}(a_{t+1}^{*};\theta_{t+1})}.$$

Evaluated at the nonstochastic steady state, this simplifies to:

$$R^{a}(a;\theta) = \frac{-V_{11}(a;\theta)}{V_{1}(a;\theta)}$$

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-Fisher (1997, 2001), Campbell-Cochrane (1999), Flavin-Nakagawa (2008)

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Solve	for V_1 a	nd V_{11}				

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) \, u_1(c_t^*, l_t^*). \tag{(*)}$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Solve	for V₁ a	nd V_{11}				

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) \, u_1(c_t^*, l_t^*). \tag{(*)}$$

.

Differentiate (*) to get:

$$V_{11}(\boldsymbol{a}_t;\boldsymbol{\theta}_t) = (1+r_t) \left[u_{11}(\boldsymbol{c}_t^*,\boldsymbol{l}_t^*) \frac{\partial \boldsymbol{c}_t^*}{\partial \boldsymbol{a}_t} + u_{12}(\boldsymbol{c}_t^*,\boldsymbol{l}_t^*) \frac{\partial \boldsymbol{l}_t^*}{\partial \boldsymbol{a}_t} \right]$$

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Introduction Framework Absolute RA oooooooo Relative RA coo

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$.

Introduction Framework Absolute RA oco Conclusions

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$. Differentiate to get:

$$\frac{\partial I_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t} \,,$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing Conclusions

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$. Differentiate to get:

$$\frac{\partial I_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t} \,,$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$

Household Euler equation:

$$u_1(c_t^*, l_t^*) = \beta E_t(1 + r_{t+1}) u_1(c_{t+1}^*, l_{t+1}^*),$$

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing Conclusions

Solve for $\partial I_t^* / \partial a_t$ and $\partial c_t^* / \partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$. Differentiate to get:

$$\frac{\partial I_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t},$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$

Household Euler equation:

$$u_1(c_t^*, l_t^*) = \beta E_t(1 + r_{t+1}) u_1(c_{t+1}^*, l_{t+1}^*),$$

Differentiate, substitute out for $\partial l_t^* / \partial a_t$, and use BC, TVC to get:

$$\frac{\partial c_t^*}{\partial a_t} = \frac{r}{1+w\lambda}$$

Introduction Framework Absolute RA coordee coo

Solve for Coefficient of Absolute Risk Aversion

$$V_1(a; \theta) = (1 + r) u_1(c, l),$$

Introduction Framework Absolute RA ooo Absolu

Solve for Coefficient of Absolute Risk Aversion

2

. . .

$$V_{1}(a;\theta) = (1+r) u_{1}(c,l),$$
$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

. .

n

Solve for Coefficient of Absolute Risk Aversion

$$V_{1}(a;\theta) = (1+r) u_{1}(c,l),$$

$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

$$\frac{\partial l_{t}^{*}}{\partial a_{t}} = -\lambda \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1+w\lambda}.$$

Introduction Framework Absolute RA cocooco Absolute RA cocooco Absolute RA cocooco Absolute RA cocooco Absolute Risk Aversion

$$V_{1}(a;\theta) = (1+r) u_{1}(c,l),$$

$$V_{11}(a;\theta) = (1+r) \left[u_{11}(c,l) \frac{\partial c_{t}^{*}}{\partial a_{t}} + u_{12}(c,l) \frac{\partial l_{t}^{*}}{\partial a_{t}} \right],$$

$$\frac{\partial l_{t}^{*}}{\partial a_{t}} = -\lambda \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1+w\lambda}.$$

Proposition 2. The household's coefficient of absolute risk aversion in Proposition 1, evaluated at steady state, satisfies:

$$R^{a}(a;\theta) = \frac{-V_{11}(a;\theta)}{V_{1}(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda}$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
O (()	· · ·	AL 1.				

Corollary 3.

$$R^{a}(a;\theta) = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda} \leq \frac{-u_{11}}{u_{1}} r.$$

If r < 1, then $R^a(a; \theta)$ is also less than $-u_{11}/u_1$.

Introduction	Framework	Absolute RA oooooooo●	Relative RA	EZ Preferences	Asset Pricing	Conclusions
• • • •						

Corollary 3.

$$R^{a}(a;\theta) = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda} \leq \frac{-u_{11}}{u_{1}} r.$$

If r < 1, then $R^a(a; \theta)$ is also less than $-u_{11}/u_1$.

Corollary 4. The household's coefficient of absolute risk aversion is 0 if and only if the discriminant $u_{11}u_{22} - u_{12}^2 = 0$.

Introduction 0000	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
0						

Corollary 3.

$$R^{a}(a;\theta) = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda} \leq \frac{-u_{11}}{u_{1}} r.$$

If r < 1, then $R^a(a; \theta)$ is also less than $-u_{11}/u_1$.

Corollary 4. The household's coefficient of absolute risk aversion is 0 if and only if the discriminant $u_{11}u_{22} - u_{12}^2 = 0$.

e.g.:

$$u(c_t, I_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta I_t.$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions

Corollary 3.

$$R^{a}(a;\theta) = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda} \leq \frac{-u_{11}}{u_{1}} r.$$

If r < 1, then $R^a(a; \theta)$ is also less than $-u_{11}/u_1$.

Corollary 4. The household's coefficient of absolute risk aversion is 0 if and only if the discriminant $u_{11}u_{22} - u_{12}^2 = 0$.

e.g.:

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t.$$
$$u(c_t, l_t) = c_t^{\theta} (\bar{l} - l_t)^{1-\theta}.$$

Introduction Absolute RA Relative RA **EZ** Preferences Conclusions •00 **Relative Risk Aversion**

Consider Arrow-Pratt gamble of general size A_t :

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$
vs.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Consider Arrow-Pratt gamble of general size A_t :

$$a_{t+1} = (1+r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$\frac{-A_t E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.$$
(*)

Consider Arrow-Pratt gamble of general size A_t :

$$\mathbf{a}_{t+1} = (1+r_t)\mathbf{a}_t + \mathbf{w}_t \mathbf{l}_t + \mathbf{d}_t - \mathbf{c}_t + \mathbf{A}_t \sigma \varepsilon_{t+1},$$

VS.

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$\frac{-A_t E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.$$
(*)

A natural benchmark for A_t is household wealth at time t.

Introduction	Framework 0000	Absolute RA	Relative RA o●o	EZ Preferences	Asset Pricing	Conclusions
House	hold We	alth				

In DSGE framework, household wealth has more than one component:

- financial assets at
- present value of labor income, $w_t l_t$
- present value of net transfers, d_t
- present value of leisure, $w_t(\bar{l} l_t)$?

Introduction	Framework 0000	Absolute RA	Relative RA o●o	EZ Preferences	Asset Pricing	Conclusions
House	hold We	ealth				

In DSGE framework, household wealth has more than one component:

- financial assets at
- present value of labor income, $w_t l_t$
- present value of net transfers, dt
- present value of leisure, $w_t(\bar{l} l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \overline{l} is arbitrary.

Introduction	Framework 0000	Absolute RA	Relative RA o●o	EZ Preferences	Asset Pricing	Conclusions
House	hold We	ealth				

In DSGE framework, household wealth has more than one component:

- financial assets a_t
- present value of labor income, $w_t l_t$
- present value of net transfers, d_t
- present value of leisure, $w_t(\bar{l} l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \overline{l} is arbitrary.

Different definitions of household wealth lead to different definitions of relative risk aversion.

Introduction Framework Absolute RA oco Preferences Asset Pricing Conclusions oco Conclusions

Two Coefficients of Relative Risk Aversion

Definition 2. The consumption-wealth coefficient of relative risk aversion, $R^c(a_t; \theta_t)$, is given by (*) with $A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} c_{\tau}^*$.

In steady state:

$$R^{c}(a;\theta) = \frac{-A V_{11}(a;\theta)}{V_{1}(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{c}{1 + w\lambda}.$$

Introduction Framework Absolute RA oco Preferences Asset Pricing Conclusions oco Conclusions

Two Coefficients of Relative Risk Aversion

Definition 2. The consumption-wealth coefficient of relative risk aversion, $R^c(a_t; \theta_t)$, is given by (*) with $A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} c_{\tau}^*$.

In steady state:

$$R^{c}(a;\theta) = \frac{-A V_{11}(a;\theta)}{V_{1}(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{c}{1 + w\lambda}.$$

Definition 3. The consumption-and-leisure-wealth coefficient of relative risk aversion, $R^{cl}(a_t; \theta_t)$, is given by (*) with $\widetilde{A}_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} (c_{\tau}^* + w_{\tau}(\overline{l} - l_{\tau}^*))$.

In steady state:

$$R^{cl}(a;\theta) = \frac{-\widetilde{A} V_{11}(a;\theta)}{V_1(a;\theta)} = \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c + w(\overline{l} - l)}{1 + w\lambda}.$$

Introduction Framework Absolute RA constraints and the second sec

Household with Generalized Recursive Preferences

Household chooses state-contingent $\{(c^t, l^t)\}$ to maximize

$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in\Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

Introduction Framework Absolute RA contractive RA c

Household with Generalized Recursive Preferences

Household chooses state-contingent $\{(c^t, l^t)\}$ to maximize

$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in\Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

Note: Generalized recursive preferences are often written as:

$$U(a_t;\theta_t) = \max_{(c_t,l_t)\in\Gamma(a_t;\theta_t)} \left[\widetilde{u}(c_t,l_t)^{\rho} + \beta \left(E_t U(a_{t+1};\theta_{t+1})^{\widetilde{\alpha}} \right)^{\rho/\widetilde{\alpha}} \right]^{1/\rho}$$

Introduction Framework Absolute RA contractive RA c

Household with Generalized Recursive Preferences

Household chooses state-contingent $\{(c^t, l^t)\}$ to maximize

$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in\Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

Note: Generalized recursive preferences are often written as:

$$U(\boldsymbol{a}_{t};\boldsymbol{\theta}_{t}) = \max_{(\boldsymbol{c}_{t},\boldsymbol{l}_{t})\in\Gamma(\boldsymbol{a}_{t};\boldsymbol{\theta}_{t})} \left[\widetilde{u}(\boldsymbol{c}_{t},\boldsymbol{l}_{t})^{\rho} + \beta \left(\boldsymbol{E}_{t} U(\boldsymbol{a}_{t+1};\boldsymbol{\theta}_{t+1})^{\widetilde{\alpha}} \right)^{\rho/\widetilde{\alpha}} \right]^{1/\rho}$$

It's easy to map back and forth from U to V; moreover,

- *V* is more closely related to standard dynamic programming results, regularity conditions, and FOCs
- V makes derivations, formulas in the paper simpler
- additively separable *u* is easier to consider in *V*

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing Conclusions 0000 0000 000 000 000 000 000 000

Household with Generalized Recursive Preferences

Household chooses state-contingent $\{(c^t, l^t)\}$ to maximize

$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in\Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

subject to flow budget constraint

$$a_{\tau+1} = (1+r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau}$$

and No-Ponzi condition.

 $\{w_{\tau}, r_{\tau}, d_{\tau}\}$ are exogenous processes, governed by θ_{τ} . State variables of the household's problem are $(a_t; \theta_t)$.

Introduction Framework Absolute RA oco Absolut

Coefficient of Absolute Risk Aversion

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$, denoted $R^a(a_t; \theta_t)$, satisfies

 $-E_t\left[V(a_{t+1}^*;\theta_{t+1})^{-\alpha}V_{11}(a_{t+1}^*;\theta_{t+1}) - \alpha V(a_{t+1}^*;\theta_{t+1})^{-\alpha-1}V_1(a_{t+1}^*;\theta_{t+1})^2\right]$

 $E_t V(a_{t+1}^*; \theta_{t+1})^{-\alpha} V_1(a_{t+1}^*; \theta_{t+1})$

Relative RA

EZ Preferences

Asset Pricing

Conclusions

Absolute RA

Introduction

Framework

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$, denoted $R^a(a_t; \theta_t)$, satisfies

 $\frac{-E_t \left[V(a_{t+1}^*; \theta_{t+1})^{-\alpha} V_{11}(a_{t+1}^*; \theta_{t+1}) - \alpha V(a_{t+1}^*; \theta_{t+1})^{-\alpha-1} V_1(a_{t+1}^*; \theta_{t+1})^2 \right]}{E_t V(a_{t+1}^*; \theta_{t+1})^{-\alpha} V_1(a_{t+1}^*; \theta_{t+1})}$

Evaluated at the nonstochastic steady state, this simplifies to:

$$R^{a}(a;\theta) = \frac{-V_{11}(a;\theta)}{V_{1}(a;\theta)} + \alpha \frac{V_{1}(a;\theta)}{V(a;\theta)}$$

Absolute RA

Introduction

Framework

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t; \theta_t)$, denoted $R^a(a_t; \theta_t)$, satisfies

Relative RA

EZ Preferences

000

Asset Pricing

Conclusions

 $\frac{-E_t \left[V(a_{t+1}^*; \theta_{t+1})^{-\alpha} V_{11}(a_{t+1}^*; \theta_{t+1}) - \alpha V(a_{t+1}^*; \theta_{t+1})^{-\alpha-1} V_1(a_{t+1}^*; \theta_{t+1})^2 \right]}{E_t V(a_{t+1}^*; \theta_{t+1})^{-\alpha} V_1(a_{t+1}^*; \theta_{t+1})}$

Evaluated at the nonstochastic steady state, this simplifies to:

$$R^{a}(a;\theta) = \frac{-V_{11}(a;\theta)}{V_{1}(a;\theta)} + \alpha \frac{V_{1}(a;\theta)}{V(a;\theta)}$$

Proposition 3. The household's coefficient of absolute risk aversion in Proposition 1, evaluated at steady state, satisfies:

$$R^{a}(a;\theta) = \frac{-u_{11} + \lambda u_{12}}{u_{1}} \frac{r}{1 + w\lambda} + \alpha \frac{r u_{1}}{u}$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Asset I	Pricing					

Expected excess return on asset *i*:

$$\psi_t^i \equiv E_t r_{t+1}^i - r_{t+1}^f$$
$$= -\operatorname{Cov}_t(m_{t+1}, r_{t+1}^i)$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing ●0000000	Conclusions
Asset I	Pricina					

Expected excess return on asset *i*:

$$\psi_t^i \equiv E_t r_{t+1}^i - r_{t+1}^f$$
$$= -\operatorname{Cov}_t(m_{t+1}, r_{t+1}^i)$$

Proposition 7. To first order around the nonstochastic steady state,

$$dm_{t+1} = -\mathbf{R}^{a}(\mathbf{a};\theta) d\hat{A}_{t+1} + d\Phi_{t+1}$$

To second order around the nonstochastic steady state,

$$\psi_t^i = \boldsymbol{R}^{\boldsymbol{a}}(\boldsymbol{a}; \boldsymbol{\theta}) \operatorname{Cov}_t(dr_{t+1}^i, d\hat{\boldsymbol{A}}_{t+1}) - \operatorname{Cov}_t(dr_{t+1}^i, d\Phi_{t+1})$$

Introduction Framework Absolute RA CONTROL RELATIVE RA CONTROL REL

Economy is a very simple, standard RBC model:

- Competitive firms
- Cobb-Douglas production, $y_t = Z_t k_t^{1-\zeta} I_t^{\zeta}$
- AR(1) technology, $\log Z_{t+1} = \rho_z \log Z_t + \varepsilon_t$
- Capital accumulation, $k_{t+1} = (1 \delta)k_t + y_t c_t$
- Equity is a consumption claim
- Equity premium is expected excess return,

$$\psi_t = \frac{E_t(C_{t+1} + p_{t+1})}{p_t} - (1 + r_t^f)$$

Introduction 0000	Framework 0000	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions

Numerical Example: Preferences

Period utility

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

Generalized recursive preferences

$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in \Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Numer	ical Exa	ample: F	referen	ces		

Period utility

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

Generalized recursive preferences

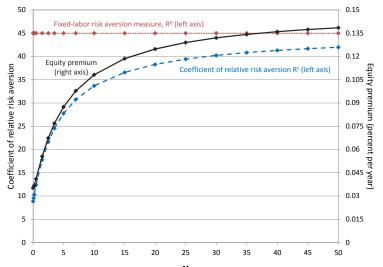
$$V(a_{t};\theta_{t}) = \max_{(c_{t},l_{t})\in\Gamma(a_{t};\theta_{t})} u(c_{t},l_{t}) + \beta \left(E_{t} V(a_{t+1};\theta_{t+1})^{1-\alpha}\right)^{1/(1-\alpha)}$$

Note:

- IES = $1/\gamma$
- If labor fixed, relative risk aversion is $R^{fl} = \gamma + \alpha(1 \gamma)$
- If labor flexible, relative risk aversion is R^c , depends on χ , γ , α

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
					0000000	

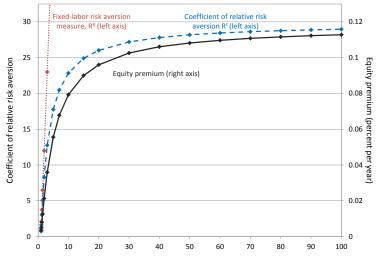
Additively Separable Period Utility



χ

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
					00000000	

Additively Separable Period Utility



γ

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing Conclusions

Second Numerical Example

Same RBC model as before, with Cobb-Douglas period utility

$$u(c_t, l_t) = \frac{\left(c_t^{\chi}(1-l_t)^{1-\chi}\right)^{1-\gamma}}{1-\gamma}$$

and random-walk technology, $\rho_z = 1$.

Note:

- IES = $1/\gamma$
- If labor fixed, risk aversion is $R^{fl} = (1 \chi(1 \gamma)) + \alpha(1 \gamma)$
- For composite good, risk aversion is $R^{cl} = \gamma + \alpha(1 \gamma)$
- Risk aversion R^c recognizes labor is flexible, excludes value of leisure from household wealth, R^c = χγ + χα(1 γ)

0000 0000000 000 000 000 000000 000	Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
						00000000	

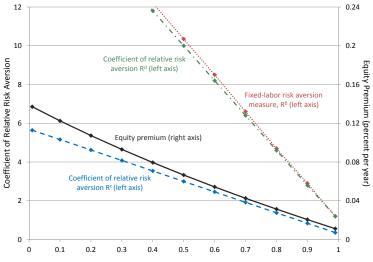
Cobb-Douglas Period Utility



χ

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing 0000000●	Conclusions

Cobb-Douglas Period Utility



γ

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions ●○○○
Risk N	leutrality	/				

- Extensive labor margin: Hansen (1985), Rogerson (1988)
- Monetary search: Lagos-Wright (2005)
- Investment: Khan-Thomas (2008), Bachmann-Caballero-Engel (2010), Bachmann-Bayer (2009)

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions ●○○○
Risk N	leutrality	/				

- Extensive labor margin: Hansen (1985), Rogerson (1988)
- Monetary search: Lagos-Wright (2005)
- Investment: Khan-Thomas (2008), Bachmann-Caballero-Engel (2010), Bachmann-Bayer (2009)

These papers all effectively assume risk neutrality.

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions •ooo
Risk N	eutrality	/				

- Extensive labor margin: Hansen (1985), Rogerson (1988)
- Monetary search: Lagos-Wright (2005)
- Investment: Khan-Thomas (2008), Bachmann-Caballero-Engel (2010), Bachmann-Bayer (2009)

These papers all effectively assume risk neutrality.

Risk neutrality is a desirable simplifying assumption in some applications:

- Labor search: Mortensen-Pissarides (1994)
- Financial frictions: Bernanke-Gertler-Gilchrist (1996, 1999)

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions ●○○○
Risk N	eutrality	/				

- Extensive labor margin: Hansen (1985), Rogerson (1988)
- Monetary search: Lagos-Wright (2005)
- Investment: Khan-Thomas (2008), Bachmann-Caballero-Engel (2010), Bachmann-Bayer (2009)

These papers all effectively assume risk neutrality.

Risk neutrality is a desirable simplifying assumption in some applications:

- Labor search: Mortensen-Pissarides (1994)
- Financial frictions: Bernanke-Gertler-Gilchrist (1996, 1999)

The present paper suggests ways to model risk neutrality that do not require linear utility of consumption.

Introduction Framework Absolute RA oco boot oco Conclusions

Empirical Estimates of Risk Aversion

Barsky-Juster-Kimball-Shaprio (1997):

"Suppose that you are the only income earner in the family, and you have a good job guaranteed to give you your current (family) income every year for life. You are given the opportunity to take a new and equally good job, with a 50–50 chance it will double your (family) income and a 50–50 chance that it will cut your (family) income by a third. Would you take the new job?"

Introduction Framework Absolute RA coordination of the second sec

Empirical Estimates of Risk Aversion

Barsky-Juster-Kimball-Shaprio (1997):

"Suppose that you are the only income earner in the family, and you have a good job guaranteed to give you your current (family) income every year for life. You are given the opportunity to take a new and equally good job, with a 50–50 chance it will double your (family) income and a 50–50 chance that it will cut your (family) income by a third. Would you take the new job?"

Empirical estimates of risk aversion using methods like these remain generally valid in the framework of the present paper, but should be phrased more carefully.

What is different is how these estimates are mapped into model parameters (i.e., risk aversion $\neq -cu_{11}/u_1$)

Introduction	Framework	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
						0000

Empirical Asset Pricing

Campbell (1996, 1999):
$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}, \quad m_{t+1} = \log \beta - \gamma \Delta c_{t+1}$$

Introduction Framework Absolute RA ooo Preferences Asset Pricing Conclusions

Empirical Asset Pricing

Campbell (1996, 1999):
$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}, \quad m_{t+1} = \log \beta - \gamma \Delta c_{t+1}$$

$$E_t(r_{i,t}-r_{f,t}) = \gamma \operatorname{Cov}(r_{i,t+1}, \Delta c_{t+1})$$

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing Conclusions

Empirical Asset Pricing

Campbell (1996, 1999):
$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}, \quad m_{t+1} = \log \beta - \gamma \Delta c_{t+1}$$

 $E_t(r_{i,t} - r_{f,t}) = \gamma \operatorname{Cov}(r_{i,t+1}, \Delta c_{t+1})$

Country	$E_t(r_{e,t}-r_{f,t})$	$std(r_{e,t} - r_{f,t})$	$std(\Delta c)$	γ
USA	5.82	17.0	0.91	37.3
JPN	6.83	21.6	2.35	13.4
GER	6.77	20.4	2.50	13.3
FRA	7.12	22.8	2.13	14.6
UK	8.31	21.6	2.59	14.9
ITA	2.17	27.3	1.68	4.7
CAN	3.04	16.7	2.03	9.0

Introduction Framework Absolute RA Relative RA EZ Preferences Asset Pricing

Empirical Asset Pricing

Campbell (1996, 1999):
$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}, \quad m_{t+1} = \log \beta - \gamma \Delta c_{t+1}$$

 $E_t(r_{i,t} - r_{t,t}) = \gamma \operatorname{Cov}(r_{i,t+1}, \Delta c_{t+1})$

Conclusions

Country	$E_t(r_{e,t}-r_{f,t})$	$std(r_{e,t} - r_{f,t})$	$std(\Delta c)$	γ
USA	5.82	17.0	0.91	37.3
JPN	6.83	21.6	2.35	13.4
GER	6.77	20.4	2.50	13.3
FRA	7.12	22.8	2.13	14.6
UK	8.31	21.6	2.59	14.9
ITA	2.17	27.3	1.68	4.7
CAN	3.04	16.7	2.03	9.0

If
$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma} - \eta \frac{L_t^{1+\chi}}{1+\chi}$$
, then $\gamma \neq$ risk aversion.

Introduction	Framework 0000	Absolute RA	Relative RA	EZ Preferences	Asset Pricing	Conclusions
Conclu	usions					

- A flexible labor margin affects risk aversion
- Isk premia are related to risk aversion
- Fixed-labor measure of risk aversion performs poorly
- Composite-good measure of risk aversion also seems to perform poorly
- So For multiplier preferences, risk aversion is very sensitive to scaling by (1β)
- Simple, closed-form expressions for risk aversion with:
 - flexible labor margin
 - generalized recursive preferences
 - external or internal habits
 - validity away from steady state
 - correspondence to risk premia in the model
- New paper: frictional labor markets