Structural Analysis

Reduced-Form Analysis

Conclusions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

# Macroeconomic Implications of Changes in the Term Premium

#### Glenn D. Rudebusch<sup>1</sup> Brian P. Sack<sup>2</sup> Eric T. Swanson<sup>1</sup>

<sup>1</sup>Economic Research Federal Reserve Bank of San Francisco

<sup>2</sup>Macroeconomic Advisers

AEA Meetings, Chicago January 6, 2007

| Background/Motivation | Structural Analysis | Reduced-Form Analysis<br>000 | Conclusions<br>00 |
|-----------------------|---------------------|------------------------------|-------------------|
| Web Site              |                     |                              |                   |

For additional information:

- a copy of these slides
- a copy of the paper
- related papers
- computer code
- etc.

visit http://www.ericswanson.pro

Structural Analysis

Reduced-Form Analysis

Conclusions

#### Long-Term Interest Rates Very Low in 2004-5

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Structural Analysis

Reduced-Form Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

#### Long-Term Interest Rates Very Low in 2004-5

Long-term interest rates have trended lower in recent months even as the Federal Reserve has raised the level of the target federal funds rate by 150 basis points... For the moment, the broadly unanticipated behavior of world bond markets remains a conundrum.

Alan Greenspan, February 2005

Structural Analysis

Reduced-Form Analysis

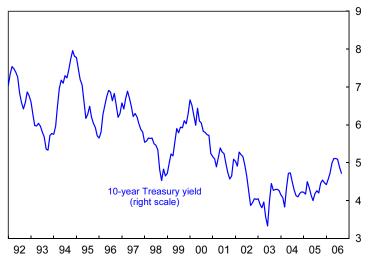
Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

#### Long-Term Interest Rates Very Low in 2004-5

Long-term interest rates have trended lower in recent months even as the Federal Reserve has raised the level of the target federal funds rate by 150 basis points... For the moment, the broadly unanticipated behavior of world bond markets remains a conundrum.

Alan Greenspan, February 2005


Structural Analysis

Reduced-Form Analysis

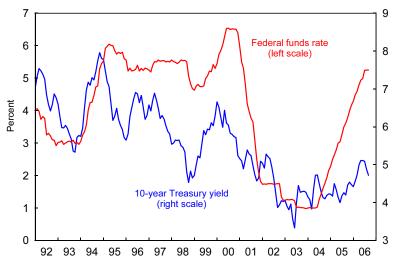
Conclusions

#### Long-Term Interest Rates Very Low in 2004-5

#### Yield on 10-Year US Treasury Securities and Federal Funds Rate



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Structural Analysis

Reduced-Form Analysis

Conclusions

#### Long-Term Interest Rates Very Low in 2004-5





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Structural Analysis

Reduced-Form Analysis

Conclusions

#### Term Premium Also Unusually Low in 2004-5

Structural Analysis

Reduced-Form Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

#### Term Premium Also Unusually Low in 2004-5

A significant portion of the sharp decline in the ten-year forward one-year rate over the past year appears to have resulted from a fall in term premiums.

Alan Greenspan, July 2005

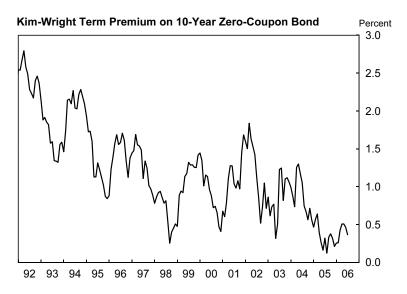
Structural Analysis

Reduced-Form Analysis

Conclusions

#### Term Premium Also Unusually Low in 2004-5

A significant portion of the sharp decline in the ten-year forward one-year rate over the past year appears to have resulted from a fall in term premiums.


Alan Greenspan, July 2005



 Background/Motivation
 Structural Analysis
 Reduced-Form Analysis
 Conclusions

 0000000
 0000000
 000
 000
 000

#### Term Premium Also Unusually Low in 2004-5



| Background/Motivation |  |
|-----------------------|--|
| 00000000              |  |

Structural Analysis

Reduced-Form Analysis

Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# **Two Questions**

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| Two Questions         |                     |                       |             |

What are the macroeconomic implications of a change in the term premium?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ④□ ● ● ●

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| Two Questions         |                     |                       |             |

What are the macroeconomic implications of a change in the term premium?

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

How should monetary policy respond to a change in the term premium?

Reduced-Form Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

#### The Practitioner View

To the extent that the decline in forward rates can be traced to a decline in the term premium.... the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006

Structural Analysis

Reduced-Form Analysis

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

#### The Practitioner View

To the extent that the decline in forward rates can be traced to a decline in the term premium.... the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006

Structural Analysis

Reduced-Form Analysis

Conclusions

## The Practitioner View

To the extent that the decline in forward rates can be traced to a decline in the term premium.... the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates. special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006

Structural Analysis

Reduced-Form Analysis

Conclusions

## Foundations of Practitioner/Chairman View Unclear

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Note: no role for the term premium in this model

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

Note: no role for the term premium in this model Instead, practitioners' model may be more informal:

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

Note: no role for the term premium in this model

Instead, practitioners' model may be more informal:

IS-LM intuition

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 00000000              |                     |                       |             |
|                       |                     |                       |             |

New Keynesian IS curve (linearized):

$$\mathbf{y}_t = \beta \mathbf{E}_t \mathbf{y}_{t+1} - \frac{1}{\gamma} (\mathbf{i}_t - \mathbf{E}_t \pi_{t+1}) + \varepsilon_t$$

Solving forward:

$$y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t$$

Note: no role for the term premium in this model

Instead, practitioners' model may be more informal:

- IS-LM intuition
- Partial equilibrium analysis

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       | -                   |                       |             |

In general equilibrium, implications of change in term premium are not clear:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       |                     |                       |             |

In general equilibrium, implications of change in term premium are not clear:

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• Why did the term premium change?

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 0000000               |                     |                       |             |
|                       |                     |                       |             |

In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 0000000               |                     |                       |             |

In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy

Term premium might be partly a "wedge"

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
| 0000000               |                     |                       |             |

In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy
- Term premium might be partly a "wedge"
- Term premium might be related to potential output rather than output gap

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Structural Analysis

Reduced-Form Analysis

Conclusions

#### **Structural Analysis**



#### **Structural Analysis**

- Review Asset Pricing
- Define Benchmark New Keynesian Model
- Graph Impulse Responses

| Background/N | lotivation |
|--------------|------------|
|              |            |

#### Structural Analysis

Reduced-Form Analysis

Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# **Asset Pricing**

| Background/Motivation | Structural Analysis<br>●○○○○○○ | Reduced-Form Analysis | Conclusions |
|-----------------------|--------------------------------|-----------------------|-------------|
| Asset Pricing         |                                |                       |             |

 $p_t = d_t + E_t[m_{t+1}p_{t+1}]$ 



| Background/Motivation | Structural Analysis<br>●○○○○○○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Asset Pricing         |                                |                       |                   |

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Background/Motivation | Structural Analysis<br>●○○○○○○ | Reduced-Form Analysis | Conclusions |
|-----------------------|--------------------------------|-----------------------|-------------|
| Asset Pricing         |                                |                       |             |

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

| Background/Motivation | Structural Analysis<br>●○○○○○○ | Reduced-Form Analysis | Conclusions |
|-----------------------|--------------------------------|-----------------------|-------------|
| Asset Pricing         |                                |                       |             |

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Notation: let  $i_t \equiv i_t^{(1)}$ 

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|

|                       |                     |                       | ما م بدما ) |
|-----------------------|---------------------|-----------------------|-------------|
| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left( \frac{(c_t - bC_{t-1})^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Background/Motivation | Structural Analysis  | Reduced-Form Analysis | Conclusions |
|-----------------------|----------------------|-----------------------|-------------|
| Benchmark New         | <i>i</i> Keynesian M | odel (Very Stan       | dard)       |

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left( \frac{(c_t - bC_{t-1})^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta (C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

| Description           |                     |                       | -L IV       |
|-----------------------|---------------------|-----------------------|-------------|
| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left( \frac{(c_t - bC_{t-1})^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta (C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Parameters:  $\beta = .99$ , b = .66,  $\gamma = 2$ ,  $\chi = 1.5$ 

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       |                     |                       |             |

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity  $\frac{1+\theta}{\theta}$ , markup  $\theta$
- set prices in Calvo contracts with avg. duration 4 quarters

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- identical production functions  $y_t = A_t \bar{k}^{1-\alpha} I_t^{\alpha}$
- have firm-specific capital stocks
- face aggregate technology  $A_t = \rho_A A_{t-1} + \varepsilon_t^A$

Parameters  $\theta = .2$ ,  $\rho_A = .9$ ,  $\sigma_A^2 = .01^2$ 

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       | 000000              |                       |             |
|                       |                     |                       |             |

Government:

- imposes lump-sum taxes G<sub>t</sub> on households
- destroys the resources it collects

• 
$$G_t = \rho_G G_{t-1} + \varepsilon_t^G$$

Parameters 
$$\rho_G = .9$$
,  $\sigma_G^2 = .004^2$ 

Monetary Authority:

$$i_t = \rho_i i_{t-1} + (1 - \rho_i) [i^* + g_y(y_t - y_{t-1}) + g_\pi \pi_t] + \varepsilon_t^i$$

Parameters  $\rho_i = .7, g_y = 0.5, g_{\pi} = 2, \sigma_i^2 = .004^2$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| 0000000 0 <b>0000</b> 000 00 | Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|------------------------------|-----------------------|---------------------|-----------------------|-------------|
|                              |                       | 0000000             |                       |             |

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1 (nominal) every period

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       | 0000000             |                       |             |
|                       |                     |                       |             |

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1 (nominal) every period

Price of the consol:

$$p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)}$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       | 0000000             |                       |             |
|                       |                     |                       |             |

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1 (nominal) every period

Price of the consol:

$$p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)}$$

Risk-neutral consol price:

$$p_t^{(\infty)rn} = 1 + e^{-i_t} E_t p_{t+1}^{(\infty)rn}$$

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions |
|-----------------------|---------------------|-----------------------|-------------|
|                       | 0000000             |                       |             |
|                       |                     |                       |             |

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1 (nominal) every period

Price of the consol:

$$p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)}$$

Risk-neutral consol price:

$$oldsymbol{p}_t^{(\infty) r n} = 1 + oldsymbol{e}^{-i_t} oldsymbol{E}_t oldsymbol{p}_{t+1}^{(\infty) r n}$$

Term premium:

$$\log\left(\frac{p_t^{(\infty)}}{p_t^{(\infty)}-1}\right) - \log\left(\frac{p_t^{(\infty)rn}}{p_t^{(\infty)rn}-1}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Solving the Mod       | lel                            |                       |                   |

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions |
|-----------------------|--------------------------------|-----------------------|-------------|
| Solving the Mod       | el                             |                       |             |

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Value function iteration strategies are intractable

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|---------------------|-----------------------|-------------------|
| Solving the Model     |                     |                       |                   |

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Solving the Model     |                                |                       |                   |

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

• In a first-order approximation, term premium is zero

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Solving the Mod       | lel                            |                       |                   |

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Solving the Model     |                                |                       |                   |

Value function iteration strategies are intractable

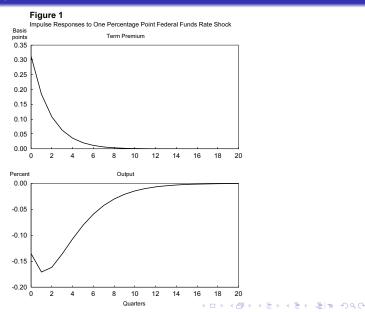
We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a *third*-order approximation of the solution around nonstochastic steady state

| Background/Motivation | Structural Analysis<br>○○○○○●○ | Reduced-Form Analysis | Conclusions<br>00 |
|-----------------------|--------------------------------|-----------------------|-------------------|
| Solving the Model     |                                |                       |                   |

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

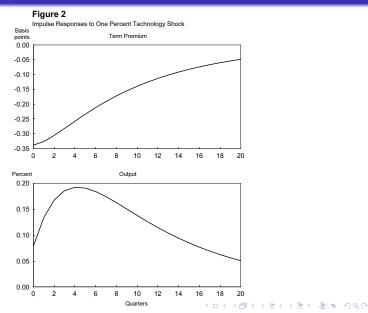

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a *third*-order approximation of the solution around nonstochastic steady state
- perturbationAIM algorithm in Swanson, Anderson, Levin (2006) quickly computes *n*th order approximations

Structural Analysis

Reduced-Form Analysis

Conclusions

### Impulse Responses



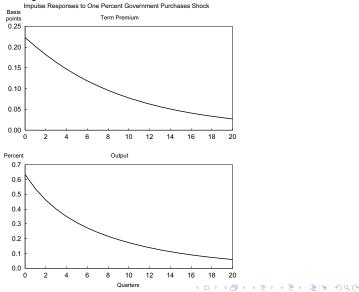

Structural Analysis

Reduced-Form Analysis

Conclusions

### Impulse Responses




Structural Analysis

Reduced-Form Analysis

Conclusions

#### Impulse Responses

Figure 3



Structural Analysis

Reduced-Form Analysis

Conclusions

### **Reduced-Form Analysis**

#### 3 Reduced-Form Analysis

- The Yield Curve Slope and Forecasting GDP
- Importance of Term Premium for Forecasting GDP

Structural Analysis

Reduced-Form Analysis

Conclusions

# The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

$$(\mathbf{y}_{t+4} - \mathbf{y}_t) = \beta_0 + \beta_1(\mathbf{y}_t - \mathbf{y}_{t-4}) + \beta_2(\mathbf{i}_t^{(n)} - \mathbf{i}_t) + \varepsilon_t$$



Structural Analysis

Reduced-Form Analysis

Conclusions

# The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

$$(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \varepsilon_t$$

Note: This is a reduced-form forecasting equation, no structure

| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis

Conclusions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

# The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

$$(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \varepsilon_t$$

Note: This is a reduced-form forecasting equation, no structure

Motivation:  $i_t^{(n)}$  proxies for  $i^*$ , so  $i_t^{(n)} - i_t$  proxies for stance of monetary policy

| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

$$(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \varepsilon_t$$

Note: This is a reduced-form forecasting equation, no structure

Motivation:  $i_t^{(n)}$  proxies for  $i^*$ , so  $i_t^{(n)} - i_t$  proxies for stance of monetary policy

Estimates in literature consistently find  $\beta_2 > 0$ , highly significant

| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis ○●○ Conclusions

### The Term Premium and Forecasting GDP

If  $i_t^{(n)}$  proxies for  $i^*$ , then:

| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$

| Background/ | Motivation |
|-------------|------------|
|             |            |

Reduced-Form Analysis

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$
  - term premium itself might have predictive power for GDP

| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis

Conclusions

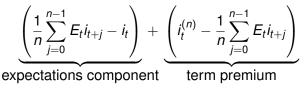
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$
  - term premium itself might have predictive power for GDP

Separate yield curve slope  $i_t^{(n)} - i_t$  into:

| Background/Motivation |  |
|-----------------------|--|
|                       |  |


Reduced-Form Analysis

Conclusions

## The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$
  - term premium itself might have predictive power for GDP

Separate yield curve slope  $i_t^{(n)} - i_t$  into:



| Background/Motivation |  |
|-----------------------|--|
|                       |  |

Reduced-Form Analysis

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

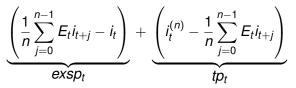
### The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$
  - term premium itself might have predictive power for GDP

Separate yield curve slope  $i_t^{(n)} - i_t$  into:

$$\underbrace{\left(\frac{1}{n}\sum_{j=0}^{n-1}E_ti_{t+j}-i_t\right)}_{exsp_t} + \underbrace{\left(i_t^{(n)}-\frac{1}{n}\sum_{j=0}^{n-1}E_ti_{t+j}\right)}_{tp_t}$$

| Background/Motivation |  |
|-----------------------|--|
|                       |  |


Reduced-Form Analysis

Conclusions

## The Term Premium and Forecasting GDP

- If  $i_t^{(n)}$  proxies for  $i^*$ , then:
  - expectations component of  $i_t^{(n)}$  should be better measure of  $i^*$
  - term premium itself might have predictive power for GDP

Separate yield curve slope  $i_t^{(n)} - i_t$  into:



Generalize basic GDP forecasting equation to:

$$(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \exp_t + \beta_3 tp_t + \varepsilon_t$$

Structural Analysis

Reduced-Form Analysis ○○● Conclusions

# **GDP** Forecasting Results

#### Table 2 Prediction Equations for GDP Growth dependent variable: $y_{t+4} - y_t$

|                       | 1962–2005 Sample |               |  |
|-----------------------|------------------|---------------|--|
|                       | (3)              | (4)           |  |
| $y_t - y_{t-4}$       | 0.32 (3.04)      | 0.38 (4.22)   |  |
| exsp <sub>t</sub>     | 1.03 (5.64)      |               |  |
| exsp <sub>t-4</sub>   | -0.79 (-3.49)    |               |  |
| tp <sub>t</sub>       | -0.61 (-1.34)    |               |  |
| $tp_{t-4}$            | 0.54 (1.24)      |               |  |
| $exsp_t - exsp_{t-4}$ |                  | 0.96 (5.62)   |  |
| $tp_t - tp_{t-4}$     |                  | -0.77 (-1.95) |  |

うせん 判所 スポットポット 白マ

Structural Analysis

Reduced-Form Analysis ○○● Conclusions

# **GDP** Forecasting Results

#### Table 2 Prediction Equations for GDP Growth dependent variable: $y_{t+4} - y_t$

|                       | 1962–2005 Sample |               |  |
|-----------------------|------------------|---------------|--|
|                       | (3)              | (4)           |  |
| $y_t - y_{t-4}$       | 0.32 (3.04)      | 0.38 (4.22)   |  |
| exsp <sub>t</sub>     | 1.03 (5.64)      |               |  |
| exsp <sub>t-4</sub>   | -0.79 (-3.49)    |               |  |
| tp <sub>t</sub>       | -0.61 (-1.34)    |               |  |
| $tp_{t-4}$            | 0.54 (1.24)      |               |  |
| $exsp_t - exsp_{t-4}$ |                  | 0.96 (5.62)   |  |
| $tp_t - tp_{t-4}$     |                  | -0.77 (-1.95) |  |

we strongly reject hypothesis that coefficients on  $exsp_t$ ,  $tp_t$  are equal

| Background/Motivatior |
|-----------------------|
|                       |

Reduced-Form Analysis

Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Conclusions

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

There is no structural, causal relationship running from the term premium to the economy



| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>•• |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect

Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect
- Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
  - strongly rejected hypothesis that coefficients on *exsp<sub>t</sub>*, *tp<sub>t</sub>* were equal in forecasting regression

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect
- Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
  - strongly rejected hypothesis that coefficients on *exsp<sub>t</sub>*, *tp<sub>t</sub>* were equal in forecasting regression
- Oeclines in the term premium have typically been followed by economic expansion

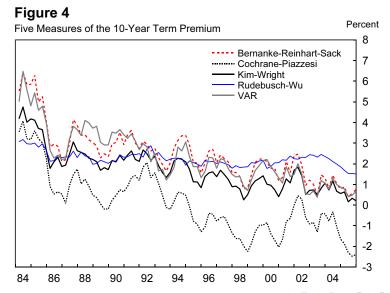
| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect
- Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
  - strongly rejected hypothesis that coefficients on *exsp<sub>t</sub>*, *tp<sub>t</sub>* were equal in forecasting regression
- Oeclines in the term premium have typically been followed by economic expansion
  - true in both the post-1960 and post-1985 periods

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>●○ |
|-----------------------|---------------------|-----------------------|-------------------|
| Conclusions           |                     |                       |                   |

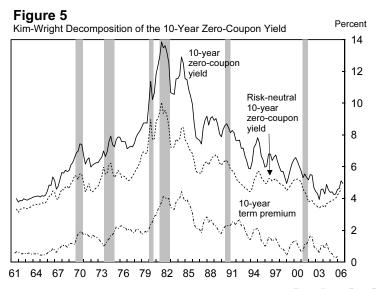
- There is no structural, causal relationship running from the term premium to the economy
  - correlation is different for different structural shocks
  - in this respect, the Practitioner View of declines in the term premium is simplistic, incorrect
- Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
  - strongly rejected hypothesis that coefficients on *exsp<sub>t</sub>*, *tp<sub>t</sub>* were equal in forecasting regression
- Oeclines in the term premium have typically been followed by economic expansion
  - true in both the post-1960 and post-1985 periods
  - in this reduced-form sense, the Practitioner View of declines in the term premium may have some merit

| Background/Motivation | Structural Analysis | Reduced-Form Analysis | Conclusions<br>○● |
|-----------------------|---------------------|-----------------------|-------------------|
| Web Site              |                     |                       |                   |


For additional information:

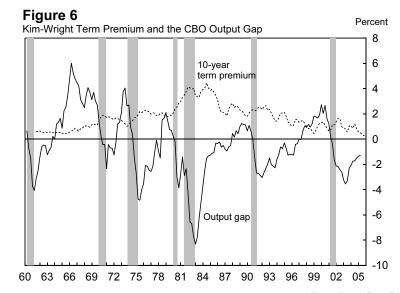
- a copy of these slides
- a copy of the paper
- related papers
- computer code
- etc.

visit http://www.ericswanson.pro




## Five Measures of the Term Premium




□ ▶ < @ ▶ < 별 ▶ < 별 ▶ 될 말 </p>

# Kim-Wright Term Premium



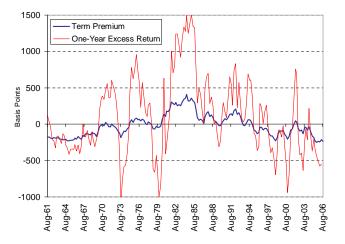
きょう しょう ストット きょう ショー

## Kim-Wright Term Premium and Output Gap



◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

### Cochrane-Piazzesi Term Premium Measure


Figure 1 Term Premium for Ten-Year Treasury Security Implied by Cochrane-Piazzesi Results



'돌▶ 토|= **'**Q@

#### Cochrane-Piazzesi Term Premium Measure

Figure 2 Comparison of Term Premium and One-Year Expected Excess Returns for Ten-Year Treasury Security



#### Table 1

Correlations between Five Measures of the Term Premium

|     | BRS  | RW   | KW           | CP   | VAR  |
|-----|------|------|--------------|------|------|
| BRS |      |      |              |      |      |
| RW  | 0.76 |      |              |      |      |
| KW  | 0.98 | 0.81 | 1.00         |      |      |
| CP  | 0.92 | 0.87 | 1.00<br>0.96 | 1.00 |      |
| VAR | 0.96 | 0.68 | 0.94         | 0.88 | 1.00 |

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ