Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates

Eric T. Swanson John C. Williams

Federal Reserve Bank of San Francisco

AEA Meetings, San Diego
January 5, 2013
Three Motivating Observations

1. New Keynesian IS curve:

\[
y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t = -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t
\]
Three Motivating Observations

1. New Keynesian IS curve:

\[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]

\[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]
Three Motivating Observations

1. New Keynesian IS curve:

\[
y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \\
= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t
\]

2. Brian Sack: “The best measure of the stance of monetary policy is the 2-year Treasury yield.”
Three Motivating Observations

1. New Keynesian IS curve:

\[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]
\[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]

2. Brian Sack: “The best measure of the stance of monetary policy is the 2-year Treasury yield.”

3. The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:
Three Motivating Observations

1. New Keynesian IS curve:

\[
y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t
\]

\[
= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t
\]

2. Brian Sack: “The best measure of the stance of monetary policy is the 2-year Treasury yield.”

3. The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:
 - Gürkaynak, Sack, and Swanson (2005):
 60–90% of the response of 2- to 10-year Treasury yields to FOMC announcements is due to statement, not funds rate
2-Year Treasury Yield $\gg 0$ for Much of 2008–10
2-Year Treasury Yield $\gg 0$ for Much of 2008–10
Questions We Address

- Was the ZLB a substantial constraint on monetary policy? —e.g., was the 2-year Treasury yield constrained?
- If so, when?
- And how severely?
Questions We Address

- Was the ZLB a substantial constraint on monetary policy? —e.g., was the 2-year Treasury yield constrained?
- If so, when?
- And how severely?

Implications for fiscal as well as monetary policy:

- Several papers show fiscal multiplier larger when ZLB binds (Christiano-Eichenbaum-Rebelo 2011, Erceg-Lindé 2010, Eggertsson-Krugman 2011)
- But did ZLB constrain yields that matter for private-sector spending?
Empirical:

- We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
- And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.
Empirical:
- We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000).
- And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

Modeling:
- Simple NK model with ZLB motivates empirical specification.
- Shows ZLB able to explain all of our results.
What We Do

1. **Empirical:**
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

2. **Modeling:**
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:
What We Do

1. Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000).
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

2. Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:
- No way to measure severity or statistical significance —e.g., is a 50 bp 2-year Treasury yield constrained or not?
- Crowding out, fiscal multiplier determined by response of yields to fiscal policy, not level of yields
- Effective lower bound may be $\gg 0$, e.g. 50bp in the UK
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

\[\Delta y_t = \alpha + \beta X_t + \varepsilon_t \]
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

\[\Delta y_t = \alpha + \beta X_t + \varepsilon_t \]

- regression is at daily frequency
- \(\Delta y_t \) denotes one-day change in Treasury yield on date \(t \)
- \(X_t \) is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date \(t \)
- \(\varepsilon_t \) denotes effects of other news and other factors on yields
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

$$\Delta y_t = \alpha + \beta X_t + \varepsilon_t$$

- regression is at daily frequency
- Δy_t denotes one-day change in Treasury yield on date t
- X_t is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date t
- ε_t denotes effects of other news and other factors on yields

Surprise component of data release: $x_t - E_{t-1}x_t$.

Market expectation of macroeconomic data releases measured by Money Market Services, Bloomberg surveys.
Measuring Time-Varying Sensitivity to News

Time-varying sensitivity version:

\[\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \]

where \(\delta^i \) scalar, \(i \in 1990, 1991, \ldots, 2012 \).
Measuring Time-Varying Sensitivity to News

Time-varying sensitivity version:

$$\Delta y_t = \alpha_i + \delta^i \beta X_t + \varepsilon_t$$

where δ^i scalar, $i \in 1990, 1991, \ldots, 2012$.

- Assumption: relative responses β constant over time
- Estimate δ^i, β by nonlinear least squares
- Normalize δ^i so that average δ^i from 1990–2000 is 1
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th></th>
<th>3-month</th>
<th>2-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Util.</td>
<td>0.72 (1.52)</td>
<td>1.48 (2.89)</td>
<td>0.83 (2.48)</td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76 (2.90)</td>
<td>1.37 (3.72)</td>
<td>0.88 (2.50)</td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40 (1.91)</td>
<td>1.91 (5.01)</td>
<td>1.27 (3.82)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.93 (3.17)</td>
<td>1.44 (2.41)</td>
<td>0.98 (1.70)</td>
</tr>
<tr>
<td>Initial Claims</td>
<td>−0.30 (−1.81)</td>
<td>−1.10 (−5.35)</td>
<td>−0.98 (−5.08)</td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24 (3.23)</td>
<td>2.74 (7.09)</td>
<td>2.02 (5.97)</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84 (2.63)</td>
<td>0.66 (1.99)</td>
<td>0.52 (1.96)</td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06 (7.67)</td>
<td>4.84 (9.55)</td>
<td>2.96 (6.73)</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84 (3.77)</td>
<td>1.87 (4.91)</td>
<td>1.60 (4.18)</td>
</tr>
<tr>
<td>Unemployment</td>
<td>−1.23 (−3.51)</td>
<td>−1.26 (−2.77)</td>
<td>−0.35 (−0.88)</td>
</tr>
</tbody>
</table>

Observations | 2747 | 2747 | 2747

R^2 | 0.08 | 0.17 | 0.10

$H_0: \beta = 0$, p-value | $< 10^{-16}$ | $< 10^{-16}$ | $< 10^{-16}$
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th>Category</th>
<th>3-month</th>
<th>2-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Util.</td>
<td>0.72</td>
<td>1.48</td>
<td>0.83</td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76</td>
<td>1.37</td>
<td>0.88</td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40</td>
<td>1.91</td>
<td>1.27</td>
</tr>
<tr>
<td>GDP</td>
<td>0.93</td>
<td>1.44</td>
<td>0.98</td>
</tr>
<tr>
<td>Initial Claims</td>
<td>−0.30</td>
<td>−1.10</td>
<td>−0.98</td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24</td>
<td>2.74</td>
<td>2.02</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84</td>
<td>0.66</td>
<td>0.52</td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06</td>
<td>4.84</td>
<td>2.96</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84</td>
<td>1.87</td>
<td>1.60</td>
</tr>
<tr>
<td>Unemployment</td>
<td>−1.23</td>
<td>−1.26</td>
<td>−0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Observations</th>
<th>2747</th>
<th>2747</th>
<th>2747</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>.08</td>
<td>.17</td>
<td>.10</td>
</tr>
<tr>
<td>$H_0 : \beta = 0$, p-value</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
</tr>
<tr>
<td>$H_0 : \beta$ constant, p-value</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th>Treasury yield maturity</th>
<th>3-month</th>
<th>2-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Util.</td>
<td>0.72 (1.52)</td>
<td>1.48 (2.89)</td>
<td>0.83 (2.48)</td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76 (2.90)</td>
<td>1.37 (3.72)</td>
<td>0.88 (2.50)</td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40 (1.91)</td>
<td>1.91 (5.01)</td>
<td>1.27 (3.82)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.93 (3.17)</td>
<td>1.44 (2.41)</td>
<td>0.98 (1.70)</td>
</tr>
<tr>
<td>Initial Claims</td>
<td>-0.30 (-1.81)</td>
<td>-1.10 (-5.35)</td>
<td>-0.98 (-5.08)</td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24 (3.23)</td>
<td>2.74 (7.09)</td>
<td>2.02 (5.97)</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84 (2.63)</td>
<td>0.66 (1.99)</td>
<td>0.52 (1.96)</td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06 (7.67)</td>
<td>4.84 (9.55)</td>
<td>2.96 (6.73)</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84 (3.77)</td>
<td>1.87 (4.91)</td>
<td>1.60 (4.18)</td>
</tr>
<tr>
<td>Unemployment</td>
<td>-1.23 (-3.51)</td>
<td>-1.26 (-2.77)</td>
<td>-0.35 (-0.88)</td>
</tr>
</tbody>
</table>

Observations | 2747 | 2747 | 2747

R^2 | 0.08 | 0.17 | 0.10

$H_0 : \beta = 0$, p-value | $< 10^{-16}$ | $< 10^{-16}$ | $< 10^{-16}$

$H_0 : \beta$ constant, p-value | 1.00 | 1.00 | 1.00

$H_0 : \delta$ constant, p-value | $< 10^{-16}$ | $< 10^{-10}$ | 0.016
To study time-varying δ in finer detail, run daily rolling regressions:

Use $\hat{\beta}$ from (*) to define "generic surprise" regressor $\hat{\beta}X_t$

Estimate:

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t$$

(*)
Rolling Regressions

\[\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \]

\((*) \)

To study time-varying \(\delta \) in finer detail, run daily rolling regressions:

- Use \(\hat{\beta} \) from (\((*) \)) to define “generic surprise” regressor \(\hat{\beta} X_t \)
- Estimate:

\[\Delta y_t = \alpha^\tau + \delta^\tau \hat{\beta} X_t + \varepsilon_t \]

where sample is 1-year rolling window centered around date \(\tau \)
- When \(\tau = \) midpoint of year \(i \), then \(\delta^\tau \) agrees with \(\delta^i \)
Rolling Regressions

\[\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \]
\[(*) \]

To study time-varying \(\delta \) in finer detail, run daily rolling regressions:

- Use \(\hat{\beta} \) from \((*) \) to define “generic surprise” regressor \(\hat{\beta} X_t \)
- Estimate:
 \[\Delta y_t = \alpha^\tau + \delta^\tau \hat{\beta} X_t + \varepsilon_t \]
 where sample is 1-year rolling window centered around date \(\tau \)
- When \(\tau = \) midpoint of year \(i \), then \(\delta^\tau \) agrees with \(\delta^i \)

Account for 2-stage sampling uncertainty in rolling regressions:
- Use standard errors for \(\delta^i \) in \((*) \) as benchmarks
- Interpolate between them using estimates for \(\delta^\tau \)
Time-Varying Sensitivity δ^τ, 3-month Treasury

(a) 3-Month Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^τ, 6-month Treasury
Time-Varying Sensitivity δ^τ, 1-year Treasury

(c) 1-Year Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^τ, 2-year Treasury
Time-Varying Sensitivity δ^τ, 5-year Treasury

(e) 5-Year Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^{τ}, 10-year Treasury

(f) 10-Year Treasury Yield Sensitivity to News
Private-Sector Expectations of Funds Rate “Liftoff”

Blue Chip Consensus expectation, time until first funds rate increase:

FOMC issues "mid-2013" guidance
Private-Sector Expectations of Funds Rate “Liftoff”

Probability of funds rate < 50bp in 5 quarters, from options:
Implications for the Fiscal Multiplier

- **(A)** Liftoff expected sooner
- **(B)** Liftoff expected later

This paper: 2008–10 look like scenario A
Implications for the Fiscal Multiplier

A) liftoff in 4 qtrs. \implies multiplier same as normal (CER 2011)
B) liftoff in 8 qtrs. or more \implies large multiplier (CER 2011)
Implications for the Fiscal Multiplier

A) liftoff in 4 qtrs. \Rightarrow multiplier same as normal (CER 2011)
B) liftoff in 8 qtrs. or more \Rightarrow large multiplier (CER 2011)
This paper: 2008–10 look like scenario A
Conclusions

What we do:

- Test whether the ZLB is a significant constraint on interest rates.
- Measure the degree to which interest rates are constrained.

What we find:

- 1- and 2-year Treasury yields were surprisingly responsive to news throughout much of 2008–11.

What we conclude:

- Effectiveness of monetary and fiscal policy likely close to normal throughout much of 2008–11.
- Zero lower bound a more severe constraint since mid-2011.