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Abstract 

This paper explores the link between short-run cycles and long-run growth by 

examining the cyclicality of R&D. Existing theories propose that R&D is concentrated 

when output is low; but aggregate data repeatedly show that R&D appears pro-

cyclical. We estimate the relationship between R&D and output at the disaggregated 

industry level, using an annual panel of 20 U.S. manufacturing industries from 1958 to 

1998. The results indicate that R&D is in fact pro-cyclical; but interestingly, estimates 

using demand-shift instruments suggest that it responds asymmetrically to demand 

shocks. We propose that liquidity constraint is a key driving force for the observed 

pro-cyclicality of R&D.  
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1. Introduction 
 
Lucas (1987) argues that business cycles do not matter as much as growth to economic 

welfare. However, macroeconomists have long recognized that cycles and growth are a 

unified phenomenon. For example, an opportunity-cost hypothesis has been developed by 

Aghion and Saint-Paul (1998) on the causal relationship from short-run cycles to long-run 

growth. According to this hypothesis, activities that improve long-run growth are concentrated 

during downturns when the opportunity cost of R&D in terms of foregone output is low, so 

that recessions have a positive impact on long-run growth by boosting growth-enhancing 

activities.1 This view traces back to Joseph Schumpeter (1939), and has been emphasized by 

other authors, including Davis and Haltiwanger (1990) and Hall (1991). 

While some productivity-improving activities (such as reorganization and reallocation) 

are observed to be concentrated during recessions, aggregate data has repeatedly shown that 

one of the major sources of long-run growth – research and development – appears pro-

cyclical. For example, Fatas (2000), Barlevy (2004), Comin and Gertler (2006), and Walde 

and Woitek (2004) show that growth in aggregate R&D expenditures tracks GDP growth for 

the U.S. and for G7 countries. Motivated by such evidence, researchers have come to devise 

theoretical models to reconcile the opportunity-cost hypothesis with pro-cyclical R&D 

(Barlevy, 2007).  

This paper revisits the empirical evidence on the cyclicality of R&D, and hence on the 

opportunity-cost hypothesis. In particular, it explores the cyclical properties of R&D activities 

                                                 
1 The key assumption of the opportunity-cost hypothesis is that productivity-improving activities compete with 
production for resources so that firms concentrate such activities during periods when the returns to production 
are low. In contrast, Aghion and Saint-Paul (1998) also propose that, if productivity-improving activities require 
produced goods instead of factor inputs, then they should be pro-cyclical. However, as Griliches (1990) points 
out, the major input into R&D is labor, not produced goods.  
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at the industry level, rather than in the aggregate.  This provides far more observations on the 

relationship between output and R&D, and avoids potential aggregation bias. We are 

motivated by the fact that industry cycles are not perfectly synchronized with aggregate 

fluctuations. Some industries lead while others lag the aggregate cycle significantly. If an 

industry’s downturns happen to coincide with aggregate booms, then its R&D would appear 

pro-cyclical over the aggregate cycle dominated by other industries’ activities. Therefore, pro-

cyclical aggregate R&D may arise from an aggregation bias, rather than reflecting how 

producers balance production and innovation inter-temporally.  

To reduce potential aggregation bias, we examine the cyclicality of R&D employing 

an annual panel of 20 U.S. manufacturing industries from 1958 to 1998. Our findings are as 

follows. On the one hand, R&D is in fact pro-cyclical at the industry level; industrial R&D 

commoves positively and significantly with industrial output. However, the disaggregate pro-

cyclicality turns out much milder than that suggested by aggregate data. More importantly, the 

disaggregated results lead to several other findings on what causes R&D to be pro-cyclical 

and on the consequences of this pro-cyclicality.  

In particular, when demand-shift instruments are used to isolate the impact of demand 

shocks from other supply shocks that can impact R&D directly, the estimated responses turn 

out asymmetric: a demand shock that reduces output reduces R&D, while a demand shock that 

raises output again reduces R&D. In other words, short-run demand fluctuations, regardless of 

their impact on output, cause R&D to decline. These results are consistent with the 

opportunity-cost hypothesis with liquidity constraints. A positive demand shock for output 

raises the opportunity cost of R&D so that R&D declines, but a negative demand shock for 

output, while lowering R&D’s opportunity cost, drives down the industry’s representative 
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firm’s net-worth, which tightens liquidity constraints and hinders R&D. The asymmetric 

responses of R&D to demand shocks suggest that there is a potential positive impact of short-

run downturns on long-run growth, but such a potential impact may be hindered by frictions 

such as liquidity constraint. We propose liquidity constraint is a key factor in explaining the 

pro-cyclicality of R&D, and further explore the impact of liquidity constraint on the 

cyclicality of R&D with data from industrial balance sheets.  

The rest of this paper is organized as follows. Section 2 describes the data, and 

compares volatilities in R&D and output at the industry level with those at the aggregate level. 

Section 3 estimates industrial R&D’s cyclicality over industry-specific cycles.  The 

asymmetric response of R&D to demand shocks is examined in Section 4.  Section 5 explores 

the liquidity-constraint hypothesis with data from industrial balance sheets. Section 6 

concludes. 

2. Data 

Two data sources are combined to examine the correlation between R&D and output at the 

disaggregated industry level. Data on R&D by industry is taken from the National Science 

Foundation (NSF), compiled from the Industrial Survey of R&D (ISRD) conducted jointly by 

the NSF and Bureau of the Census. The NSF publishes R&D expenditures for 20 

manufacturing industries from 1958 to 1998 at the two-digit and the combination of three-

digit level of the1987 Standard Industry Classification (SIC) system.2 The NSF publishes both 

company-financed and federal-financed R&D; only data on the company-financed R&D are 

used for the purpose of this paper. Some industry-year observations are suppressed to avoid 

                                                 
2 Starting from the 1999, industries are defined according to the North American Industry Classification System 
(NAICS). 
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disclosure of individual firms’ operations. However, in all but three of these observations, 

either company-financed R&D or total R&D (including federal financed) is suppressed, but 

not both.  Following Shea (1998), the growth of total R&D is used to interpolate gaps in the 

series of company-financed R&D. Nonetheless, the interpolated values are concentrated in six 

industries, and the results remain robust to leaving these industries out of the analysis.3  All 

the R&D series are converted into 2000 dollars using the GDP deflator (Barlevy, 2007). 

Alternative deflators from the R&D Satellite account published by the Bureau of Economic 

Analysis generate similar results. All details are available upon request. 

Data on output are taken from the NBER manufacturing productivity (MP) database, 

which publishes data on production for 469 four-digit manufacturing industries from 1958 to 

1996, and recently extended to 2002. The results are robust to leaving the extended part of the 

data out of the analysis. The MP database is compiled from the Annual Survey of 

Manufacturers (ASM) conducted by the Census. In the ASM, the Census tracks the identities 

of manufacturers using the Standard Statistical Establishment List, which is also used by the 

NSF as the sample frame for the ISRD. This suggests a good match between the MP data and 

the R&D data. Thus, we aggregate the MP data to industries at the two-digit/three-and-a-half-

digit level as defined in the R&D series. Output is measured as real value added, as the 

deflated value added using shipment-value-weighted price deflator.4 Combining the R&D data 

and the MP data gives us an annual panel of R&D and output by 20 manufacturing industries 

covering 1958 through 1998. 

                                                 
3 The six industries with concentrated interpolated R&D values are: Paper (SIC 26), Other Equipment (SIC 361, 
364,369), Drugs (SIC 283), Other Chemicals (SIC 284, 285), Textiles (SIC 22, 23), and Lumber and Wood (SIC 
24, 25).  
4 According to Bartelsman and Gray (1996), value added is adjusted for inventory changes while value of 
shipment is not. For our purpose of examining the correlation between R&D and production, value added is a 
more appropriate measure of output as it includes both sold and unsold goods. Nonetheless, the results remain 
similar when output is measured as deflated value of shipments. Details are available upon request. 
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We begin our empirical analysis by performing panel unit-root tests following Levin et 

al. (2002). All tests employ industry-specific intercepts, industry-specific time trends, and two 

lags. Critical values are taken from Levin et al. (2002). Results remain robust to leaving out 

the industry fixed effects or/and the time trend as well as to changing lag lengths. The results 

suggest that both the series of real R&D expenditure and real value added contain a unit root 

in log levels; but they are stationary in log-first differences and are not co-integrated. These 

results lead us to conduct all our estimations in log first differences (growth rates). 

To facilitate our empirical investigation at the disaggregated industry level, we 

compare industry-level volatility of R&D and output with that at the aggregate level. During 

our sample period of 1958-1998, the annual real GDP growth in the U.S. averages 3% with a 

standard deviation of 2.2%; the annual growth in aggregate company-financed real R&D 

expenditures averages 5% with a standard deviation of 3.5%. Table 1 summarizes the sample 

means and the sample standard deviations of industry-level R&D growth and output growth.  

Two messages can be taken away from Table 1. First, R&D and output are much more 

volatile at the disaggregated industry level: the standard deviations of industrial R&D growth 

average 11.94%, and those of industrial output growth average 8.89%, both about four times 

as of those in the aggregate data. Second, variations in R&D and output differ greatly across 

industries. The standard deviation of R&D growth ranges from 25.12% for Lumber (SIC 24 

and 25), to 5.18% for Other Instruments (SIC 384-387); that of output growth ranges from 

16.18% for Petroleum (SIC 29) to 3.61% for Drugs (SIC 283).  

Additionally, the disaggregated industry cycles are not fully synchronized with the 

aggregate cycles: the time-series correlations of industrial output growth with real GDP 

growth range from -0.0289 for Food (SIC 20, 21) to 0.8588 for Other Equipments (SIC 361-
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364, 369).  The vast differences in industries’ time-series correlations with aggregate 

fluctuations, together with Table 1, suggest that fluctuations in disaggregated R&D and output 

do not simply reflect those shown at the aggregate level. The differences in industry-level 

volatilities may arise from industry-specific shocks that are of different magnitudes, or 

different industry responses to common aggregate shocks. Thus, the annul industry panel is 

used to revisit the opportunity-cost hypothesis that R&D and output commove negatively, so 

that R&D is concentrated during periods of low production. 

3. The Cyclicality of Disaggregated R&D 
 
The following relationship between the growth in R&D expenditures (R) and the growth in 

output (Y) is estimated: 

 (1)  ititit DtfYLBR εγλα   )()( 92 ++++= , 

where i indicates industry, t indicates year, B(L) is the lag polynomial operator, ε  is the error 

term. f(t) is a quadratic time trend: ( )2,)( tttf = . We allow the slope of the time trend to differ 

before 1980 and afterward, as our R&D series display a jump in trend around 1980 for most of 

the sample industries. More specifically, 80
2

80
1 )()()( post

it
pre

it DtfDtftf λλλ += , where 80pre
itD  is 

a pre-1980 dummy, 80pre
itD is a post-1980 dummy, and 1λ and 2λ are one-by-two vectors that 

capture the quadratic trend slopes before 1980 and afterward. 5 Starting from 1992, the NSF 

lowered significantly the size criterion in the ISRD. A post-1992 dummy, denoted as 92D , is 

included in (1) to capture any potential influence of this change in the process of data 
                                                 
5 In all the regressions conducted in this paper, the estimated 2λ stays statistically significant at 1% level. By 
contrast, imposing a common quadratic time trend throughout the sample period produces insignificant estimate 
on the trend and generate higher standard errors for other estimates. There are two possible explanations for the 
rise in R&D trend around 1980: it is likely related to a drop in aggregate volatility referred to as the Great 
Moderation; it is also likely related to a burst in innovation in 1980s encouraged by a rise in patent examiners at 
the U.S. Patent and Trademark Office.(McConnell and Perez-Quiros, 2000; Griliches, 1990) 
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collection. Taking off the post-1992 dummy produces quantitatively similar results but higher 

standard errors.  

When (1) is estimated using OLS, the estimates of B(L) represent the partial 

correlation between R&D growth and current or lagged output growth.6 While these partial 

correlations, in principle, may vary across industries, the common-slope coefficients on 

current and lagged output are imposed when estimating (1) to obtain sufficient degrees of 

freedom due to the short time-series length of annual data. Experimentations with different 

specifications of the model suggest that our results are robust to taking off the quadratic time 

trend, imposing common slopes of the quadratic time trend, allowing industry-specific time 

trend, including industry fixed effects, including lagged growth in R&D, replacing the time 

trend with year dummies, or letting the post-1992 dummy to interact with the output 

coefficient. 7 The maximum output lag length is set at two years, both because the cumulative 

impact of output often peaks in two years, and because the estimated coefficient on output 

growth lagged more than two years is usually statistically insignificant.  

3.1 Procyclical Industrial R&D 
 

Table 2 summarizes results from OLS regressions of (1) with lag lengths of zero, one 

year, and two years. Standard errors accounting for within-industry heteroskedasticity and 

within-industry arbitrary serial correlation are reported in parentheses. The results confirm, 

from the disaggregated industry-level data, that R&D is not concentrated when production is 

low. The estimated relationship between R&D and contemporaneous output, as Column 1 

                                                 
6 While the causality may run from R&D to output, empirical literature has documented that R&D impacts output 
by long time lags and only 20% of the R&D output, measured by patents, can actually contribute to later 
commercialized products (Alexopoulos, 2006; Basu et. al. 2006).  
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shows, is positive and significant at the 10% level. In particular, a 10% increase in output is 

associated with a contemporaneous increase of 1.35% in R&D. According to Column 2 and 

Column 3, with lagged effects considered, a 10% increase in output is associated with a 

contemporaneous increase in R&D of 1.22%, a cumulative increase of 2.13% in one year, and 

a cumulative increase of 2.98% in two years. Out of the six estimates, three are significant at 

10% level, two are significant at 5% level, and one is significant at 1% level. 

Apparently, these results do not support the opportunity-cost hypothesis that R&D 

activities are concentrated when production is low. They are consistent with findings by Fatas 

(2000), Barlevy (2004, 2007), Comin and Gertler (2005), and Walde and Woitek (2004), who 

find that aggregate R&D appears pro-cyclical for both the U.S. and for G7 countries. 

However, Table 2 shows that the estimated pro-cyclicality of R&D at the industry level is 

much milder than that at the aggregate level. For example, Barlevy (2007) estimates the 

partial correlation between real GDP growth and aggregate R&D growth to be 0.69. In Table 

2, the estimated partial correlation between industrial output growth and industrial R&D 

growth is 0.1351, only one fifth of the estimate by Barlevy (2007).  

3.2. Can Liquidity Constraints Help the Opportunity-cost Hypothesis? 
 

One explanation of why R&D is not concentrated when production is low focuses on 

the credit-market imperfections (Barlevy, 2007; Aghion et al., 2005). These authors argue 

that, due to the scarcity of credit during economic downturns, tighter liquidity constraints 

make it difficult to finance new or ongoing R&D activities.  

Barlevy (2004) tests the liquidity-constraint hypothesis by examining the cyclicality of 

R&D performed by companies whose constraints are less likely to bind. However, it is never 

clear what the appropriate wealth levels are for liquidity constraints not to bind. Therefore, 



 10

here we explore an alternative testable implication of liquidity constraints. That is, they 

prevent R&D from increasing but not from decreasing. If the output level reflects the 

industry’s representative firms’ net worth, so that lower output implies tighter liquidity 

constraints, then the opportunity-cost hypothesis should only fail in one direction. When 

output declines, tighter liquidity constraints prevent R&D from increasing, so that R&D tracks 

the decline in output; but when output increases, R&D moves in opposite direction as the 

opportunity-cost hypothesis suggests. Put differently, under the opportunity-cost hypothesis 

with liquidity constraints, the response of R&D to output should be asymmetric.8   

Accordingly, the following equation (2) is estimated allowing the coefficients on an 

increase in output and a decrease in output to differ, where H
itD equals one if industry i’s 

output at time t is higher than its output at time t-1 (which is the case for 45% of the sample) 

and equals zero otherwise; L
it

H
it DD −= 1 . 

(2), it
L
itit

H
ititit DtfDYDYR εγλββα +++++= 92

21 )( . 

The results, presented in last two columns of Table 2, again fail to support the 

opportunity-cost hypothesis. The estimated coefficient on a decrease in output is positive and 

significant at the 5% level. The estimated coefficient on an increase in output, although 

statistically insignificant, remains positive. One may interpret these results as that pro-cyclical 

R&D mainly comes from tracking declines in output, in part consistent with the liquidity-

constraint hypothesis. Nevertheless, 1β  and 2β  are both positive and are quantitatively very 

                                                 
8 Note that it is likely that the liquidity constraints are binding regardless of firms’ output levels. In that case, 
liquidity constraints are still binding even when output rises but it allows the firm to choose a R&D level closer 
to their desired level. However, it is then entirely the liquidity constraints that drive the cyclical property of R&D 
and the opportunity-cost hypothesis has no explanatory power at all. Here we try to find any evidence consistent 
with the opportunity-cost hypothesis with the help of liquidity constraints. 
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close (around 0.13). Therefore, the opportunity-cost hypothesis fails the data again, even with 

the help of the liquidity constraints.  

4. Demand-shift Instruments 
 
A more careful examination of the opportunity-cost hypothesis suggests that there can be 

another reason that it appears inconsistent with data. This hypothesis looks at the cyclicality of 

R&D through the cyclicality of output as R&D’s opportunity cost. In other words, it only 

captures the response of R&D to demand shocks that have no direct impact on R&D and 

affect R&D only indirectly through their impact on production (Saint-Paul, 1993). In reality, 

there may be supply shocks that affect R&D directly, so that the observed cyclical properties 

of R&D are driven by a mix of demand and supply shocks. Therefore, in principle, 

appropriate demand-shift instruments can isolate the output and R&D responses to demand 

shocks, to see whether such shocks generate results that are consistent with the opportunity-

cost hypothesis.  

4.1 Aggregate-demand instruments 
 

While finding good instruments that are both perfectly exogenous and substantially 

relevant to industrial output is difficult in practice, some studies (Ramey,1991; Shea, 1993) 

use aggregate output as demand-shift instruments for disaggregate industries. We implement 

this approach, to capture how industrial R&D and output respond to aggregate shocks, and as 

the first step to apply the IV approach. We estimate (1) and (2) again, using two measures for 

aggregate output – real GDP and the Industrial Production Index – to instrument for industrial 

output. The two-stage least square estimations treat output as endogenous and employ current 

value and at least one lead of the aggregate-demand instruments for each output term. We 
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employ the instrument lead because un-observable shocks to final demand may be first 

reflected as intermediate output before they are reflected in measured final output (Shea, 

1993a, Syverson, 2004). We do not employ instrument lags and set the maximum instrument 

lead length at one year, because experimentations of various specifications show that the first-

stage estimated coefficients on instrument lags and on instrument leads of two years or more 

are usually statistically insignificant. Nonetheless, changing the maximum instrument lead 

length or including additional instrument lags produces quantitatively similar results but 

higher second-stage standard errors. The IV estimates of the coefficients on output in (1) and 

(2) reflect the response of R&D to output changes attributable to aggregate demand shocks 

approximated as aggregate output.  

The results are summarized in Table 3. Panel A of Table 3 presents the results with 

real GDP growth as the demand-shift instrument. The IV estimates of (1), summarized in the 

first three columns, are consistent with the OLS estimates: R&D responds positively to 

demand-driven changes in output. However, the estimates of (2), summarized in the fourth 

column, show that such positive responses mainly comes that R&D and output decline 

together in response to a negative demand shock that causes output to decline. More 

specifically, in response to a demand shock that causes output to decline by 10%, R&D also 

declines by 6.83%, significant at the 5% level. But, in response to a demand shock that raises 

output by 10%, R&D declines again by 8.66%, significant at 10% level. Panel B of Table 3 

shows that using industrial production index as demand-shift instrument returns similar 

results. The F-tests suggest that, for both instruments, one can reject 21 ββ = .  

4.2 Input-output Instruments 
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The IV estimations employing aggregate-demand instruments detect asymmetric 

response of R&D to demand shocks that OLS cannot uncover.  However, aggregate output 

cannot be ideal demand-shift instruments. A good instrument is supposed to be relevant to 

output growth, but exogenous to R&D growth. Aggregate output is relevant yet not 

exogenous, especially if a large part of aggregate output fluctuations reflects common supply 

shocks that impact industrial R&D directly, or if industry supply shocks have aggregate 

impacts through inter-industry linkages.  

An alternative input-output approach is proposed by Shea (1993a, 1993b) that selects 

demand-shift instrument by examining inter-industry factor demand linkages (Syverson, 2004; 

Eslava et. al., 2004).  According to Shea (1993b), the output of a down-stream industry A is 

considered a good instrument for an up-stream industry B if two conditions are satisfied: 1) A 

demands a large proportion of B’s output, so that A’s output is relevant to B, and 2) B, 

together with other closely related industries, comprise a small share of A’s cost. For example, 

the output of Health Care is considered a good instrument for Drugs if Health Care covers a 

large share of the demand for Drugs output, while Drugs, together with other industries of 

chemicals, take small share of Health Care cost. 

Unfortunately, not all our sample industries possess input-output instruments that are 

relevant and exogenous. Demand for some industries, such as Industry Chemicals (SIC 281, 

282, and 286), is so diverse that none of their down-stream industries demand enough of their 

output to be truly relevant.  Some other industries, like Autos and Others (371, 373-75, 379), 

comprise significant cost shares of all of their demanders, so that none of the down-stream 

industries’ output can be really exogenous. Based on Shea (1990), we carefully examine the 

sources of demand and cost for each of our sample industries, and find that 10 of them possess 
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reasonably good input-output instruments. These 10 industries, together with their input-

output instruments and cost-demand relationships, are listed in Table 4; instruments data 

sources are described in notes to Table 4.9 The input-output instruments for these 10 industries 

are selected according to two criteria. First, the instrument industry demands, either directly or 

indirectly, at least 10% of the industry’s output. Second, the share of the industry’s output 

demanded by the instrument industry (demand share) is more than double of the share of the 

instrument industry’s production cost (cost share) comprised by the two-digit sector 

containing the industry. The first criterion ensures instrument relevance, while the second 

promotes exogeneity through a high ratio of instrument relevance (demand share) to 

endogeneity (cost share). The cost share of the entire two-digit sector is examined to 

incorporate the possibility that industry supply shocks are strongly correlated within sector. 

While input-output instruments are supposed to outperform aggregate-demand 

instruments in principle, they would be less useful if the comovement between our sample 

industries and their instrument industries is driven by common aggregate shocks rather than 

factor demand linkages. To reduce such bias, we construct idiosyncratic components of input-

output instruments by removing aggregate variations. More specifically, they are taken as the 

residual from projecting the input-output instruments on the growth in real GDP and the 

growth in industrial production index. 

                                                 
9 Empirical literature has argued that price changes in non-manufacturing sectors are poorly measured (Shea, 
1998). Therefore, we use growth in sector employment to approximate non-manufacturing output following Shea 
(1993a). We also experimented with measuring the non-manufacturing output as growth in chain-weighted 
quantity measures published by the BEA. However, the corresponding results indicate substantial decrease in the 
first-stage F-statistics and substantial increase in the second-stage standard errors. We also explored using data 
on Construction Put in Place published by the Census to measure total construction when employed as IV; 
unfortunately, the series of Construction Put in Place starts at 1964, which would significantly truncate our R&D 
panel. 
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Accordingly, (1) and (2) are estimated applying input-output instruments as well as 

their idiosyncratic components to the restricted sample of 10 industries listed in Table 4. The 

two-stage least-square estimations treat output as endogenous and employ current values of 

each output term as well as four leads of the input-output instruments. The IV estimates of the 

coefficients on output therefore reflect the response of R&D to output changes attributable to 

raw or idiosyncratic down-stream demand shocks. We set the lead length at four years, as the 

first-stage estimated coefficient on the instrument lead of four years is statistically significant 

at 1% level for output decreases. Changing the maximum lead length or including additional 

instrument lags produces similar estimates but higher second-stage standard errors.  

The results are summarized in Table 5. Panel A presents the results applying raw 

input-output instrument; Panel B presents those employing idiosyncratic input-output 

instrument. The IV estimates of (1), summarized in the first three columns are different from 

those in Table 3: R&D no longer responds positively to demand-driven changes in output. 

Some of the estimates are positive, some others are negative; but none are statistically 

significant. However, it is the estimates of (2), summarized in the fourth column, that remain 

robust: R&D responds asymmetrically to demand-driven output fluctuations. Panel A shows 

that, in response to a down-stream demand shock that reduces output by 10%, R&D declines 

by 4.77%; in response to a down-stream demand shock that raises output by 10%, R&D 

declines again by 11.85%. In Panel B when aggregate variations are removed from the 

instrument, the asymmetric responses of R&D to demand-driven output changes become 

stronger: in response to a 10% idiosyncratic demand-driven decrease in output, R&D declines 

by 6.66%; in response to a 10% idiosyncratic demand-driven increase in output, it declines by 

22.90%. All the estimates summarized in the fourth column, although from a much smaller 
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sample of only 10 industries, are significant at 10% level. The F-tests suggest that, for both 

instruments, one can reject 21 ββ = .10 

A cautionary note should be made. Table 4 suggests that, for six out of the 10 

industries, industrial output is instrumented by Total Construction output when applying the 

input-output IV approach. This implies a sample heavily weighted toward construction 

material industries, and raises the question how representative our results are. Nonetheless, it 

is difficult to argue theoretically why construction material industries should feature stronger 

R&D elasticity.  Moreover, our 10-industry sample also contains non-construction-related 

industries such as Paper (SIC 26), Drugs (SIC 283), and Rubber (SIC 37), instrumented 

correspondingly by Food, Health Care, and Transportation. We check the robustness of the 

results by estimating (2) with all the construction material industries excluded. The results 

show the same pattern: the asymmetry in R&D’s response appears the strongest with the 

idiosyncratic input-output industries, both by the bigger point estimates and by the smaller 

standard errors. Therefore, we interpret these results as that R&D responds more strongly to 

industry-specific demand shocks, and that removing aggregate variations helps to isolate the 

components of input-output instruments mostly likely to possess good exogeneity and 

relevance properties, therefore improve the IV performance.  

5. Liquidity Constraints 

The estimated asymmetric responses of R&D and output to demand shocks, summarized in 

Table 3 and Table 5, are consistent with the opportunity-cost hypothesis with liquidity 
                                                 
10 As a further robustness check, we estimate (2) in two-year growths of R&D and output, employing two-year 
growth in demand instruments, at the purpose of incorporating potential lag effects. The results indicate that, the 
asymmetric responses of R&D to demand shocks remain qualitatively robust, although standard errors tend to 
increase over the two-year horizon. Details are available upon request. 
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constraints. R&D declines in response to a positive demand shock due to higher opportunity 

cost. But, in response to a negative demand shock that causes output to decline, R&D falls 

with output due to decreases in firms’ net worth and therefore tighter liquidity constraints. 

This points to liquidity constraint as a key driving force for pro-cyclical R&D. 

While consistent with Aghion et. al. (2005, 2007), our results contradict Barlevy 

(2004), who argues liquidity constraint is not an important factor in explaining R&D’s 

cyclicality, based on his finding that R&D by less constrained firms appears even more 

procyclical.  To draw a more direct comparison with Barlevy (2004), this section studies the 

link between sample industries’ financial strength and their R&D’s cyclicality. In particular, 

we adopt Barlevy’s strategy of identifying industries that are less constrained financially, 

while continue our approach of examining industrial R&D’s cyclicality over their industry-

specific cycles.  

5.1. The Quarterly Financial Reports 

We investigate sample industries’ financial strength according to the Quarterly 

Financial Report (QFR) published by Bureau of the Census. The QFR presents the income 

statements and the balance sheets for major manufacturing industries at the two-digit and the 

combination of three-digit SIC levels. Unfortunately, industry groups defined by QFR and 

those in our sample do not fully coincide: the QFR cover 14 of our 20 sample industries. 

These 14 financially identified industries are presented in Column 1 of Table 6. Column 4 of 

Table 6 shows that nine of them possess valid input-output instruments.  

Before identifying less constrained industries, it is important to examine whether our 

key results carry over to this financially identified subsample, because it constitutes only 70% 

of the full sample. Therefore, we re-estimate (1) and (2) for this 14-industry subsample. The 



 18

results are summarized in Panel A of Table 7 on the relationship between R&D and 

contemporaneous output.  The results with one-year and two-year lags are similar and 

available upon request. 

Apparently, the key result – the asymmetric response of R&D to demand shocks –

carries over. The estimated responses of R&D to demand-driven output increases are all 

negative and significant at 10%, and those to demand-driven output decreases are all positive, 

only one statistically insignificant. Moreover, as suggested by the point estimates, the 

asymmetry appears stronger with the raw input-output instrument, and is the strongest with 

the idiosyncratic input-output instrument. According to the F-tests, one can reject 21 ββ =  for 

all four IV estimations. In summary, Panel A of Table 7 suggests that R&D’s asymmetric 

response to demand shocks, consistent with the opportunity-cost hypothesis with liquidity 

constraint, is present for the 14-industry subsample, as it is for the 20-industry full sample. 

Following Barlevy (2004), we proceed to examine two financial indicators: liquid 

assets (cash and U.S. government securities), which mitigate an industry’s need to borrow 

externally, and net worth, which can be used as collateral for borrowing. The quarterly 

average of each indicator in 1960, 1970, 1980, 1990, and 2000 are calculated to assess the 

sample industries’ financial strength over the entire 1958-1998 sample period.11 Their values 

are presented in Columns 2-3 of Table 6, ranked by  net-worth value. As it turns out, Food 

(SIC 20, 21), Petroleum Refining (SIC 29), and Machinery (SIC 35) stand out as the top three 

by both indicators. They each report quarterly average value, in 2000 dollars, of liquid asset of 

                                                 
11 For 1980 and 1990, Lumber (23, 24) was included in the category of “other durable manufacturing”. 
Therefore, the listed values for Lumber in Table 6 are the quarterly average of 1960, 1970, and 2000 only. We 
experimented with interpolating the 1980 and 1990 missing values for Lumber using the average 10- year growth 
in liquid asset or net worth from 1960 to 2000; the results from interpreted values are very close to those reported 
in Table 6. 
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at least $10 billion, and that of net worth of at least $100 billion. Moreover, their values of 

liquid asset and net worth well surpass those of other industries. Food, financially the weakest 

among the three, reports 83% more liquid assets than Metal Products (SIC 34), the next 

highest by liquid assets, and 60% more net worth than Industry Chemicals (SIC 281-2, 286), 

the next highest by net worth. By contrast, the rest of the 11 industries stay much closer in the 

values of liquid asset and net worth. 

Therefore, we identify Food, Petroleum Refining, and Machinery as industries that are 

less likely to be financially constrained. Unfortunately, Column 4 of Table 6 shows that only 

one of them – Petroleum Refining – possesses valid input-output instrument. As a matter of 

fact, industries with valid input-output instruments tend to rank low in Table 6 according to 

their financial strength. This is not surprising: it is small industries that usually possess less 

liquid assets and display lower net worth; but it is also smaller industries that are easier to find 

valid input-output instruments that satisfy the exogeneity criterion, as they constitute smaller 

cost shares of the down-stream industries (Shea, 1993).  

5.2. The Cyclicality of R&D by Less Constrained Industries 

We examine the cyclicality of R&D for less constrained industries by estimating (1) 

and (2) for Food, Petroleum Refining, and Machinery. Two results are to be expected under 

the null of liquidity constraint. First, the asymmetric responses of R&D to demand shocks, 

which suggests the impact of liquidity constraint, should disappear. Second, their R&D should 

respond negatively to demand shocks according to the opportunity cost hypothesis. 

Panel B of Table 7 summarizes the results. Standard errors controlled for 

heteroskedasticity are reported in parentheses. Column 2 presents the results from estimating 

(1). The OLS estimates and the aggregate-demand IV estimates are positive, but statistically 
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insignificant. Interestingly, the IV estimates with the input-output instruments, which are 

supposed to outperform the aggregate-demand instruments, shows that R&D responds 

negatively to demand-driven output fluctuations. In particular, corresponding to a 10% 

demand-driven output change, R&D moves in opposite direction by 2.56% with raw input-

output instrument, significant at 10% level, and by 3.26% with idiosyncratic input-output 

instrument, significant at 5% level.  This contrasts sharply with the results in Panel A of Table 

7 from estimating (1) for the 14-industry subsample and with those in Tables 3 and 5 for the 

20-industry full sample. Columns 3-4 of Panel B summarize the results from estimating (2) for 

Food, Petroleum Refining, and Machinery: none is statistically significant. In Column 5 of 

Panel B, the F tests suggest that one cannot reject 21 ββ = for all four IV estimations. Hence, 

the asymmetric response of R&D to demand shocks seems not to hold well for the three 

industries that are less likely to be financially constrained.12  

5.3. Discussion 

We remain cautious in concluding from Table 7. For example, how should we interpret 

the statistically insignificant estimates summarized in Columns 3-4 of Panel B? Does R&D by 

the three less constrained industries no longer respond asymmetrically to demand shocks? Or 

is the sample not big enough to detect an existent asymmetry? Moreover, the results with 

input-output instruments are based on 40 observations only from Petroleum Refining, as the 

only less constrained industry with valid input-output instrument. But the aggregate-demand 

                                                 
12 We also examined two alternative financial indicators: the ratio of liquid assets over total assets and the ratio of 
net worth over total assets. The top three industries by the liquid-asset ratio are Food, Petroleum Refining, and 
Furrous Metals (SIC 331-2, 3398-99); and those by the net-worth ratio are Drugs (SIC 283), Petroleum Refining, 
and Machinery. Estimating their R&D’s responses to demand shocks produce results similar to those in Table 7. 
All results are available upon request. 
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IVs produce insignificant estimates for the three less constrained industries altogether. This 

raises the question how representative our results are. 

We thus take a more direct look at their R&D’s cyclicality, presenting in Figure 1 the 

time series of their R&D growth and output growth from 1958 to 1998. Figure 1 shows that 

R&D by Petroleum Refining is indeed counter-cyclical: it moves in opposite direction with 

output. However, R&D by Machinery appears procyclical: it commoves positively with output 

except for in the early 1980s; R&D by Food commoves with output positively sometimes and 

negatively some other times. The time-series correlations between R&D growth and output 

growth are -0.3144 for Petroleum Refining, 0.1627 for Machinery, and 0.0741 for Food. The 

differences in R&D’s cyclicality of Food, Petroleum Refining, and Machinery do not favor the 

liquidity-constraint hypothesis, because they have all been identified as financially less 

constrained industries.  

Here are some possible explanations. First, Table 6 suggests distinguished financial 

strength for Petroleum Refining: while ranked behind Machinery by liquid assets, it owns the 

highest net-worth value, 38.8% higher than that of Machinery. Thus, it is possible that net 

worth is the key factor in determining whether liquidity constraint binds, and Petroleum 

Refining is the only industry passing that non-binding criterion.  

Second, it is also possible that R&D by Machinery and Food do respond negatively to 

demand shocks, but appear pro-cyclical due to some supply shocks that drive output and R&D 

to commove positively. Those supply shocks, if sharing a common component across 

industries, would be reflected in aggregate fluctuations so that the aggregate-demand IVs 

cannot isolate R&D’s response to demand shocks. This can explain why the aggregate-

demand IVs produce insignificant estimates for the three industries together.  
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5.4. Comparison with Previous Studies 

Our results in Table 7, once again, contradict Barlevy (2004). There are potentially 

two reasons for this contradiction. First, Barlevy examines firm-level financial strength, while 

we study industrial balance sheets. Second, Barlevy investigates the cyclicality of total R&D 

by less constrained firms over the aggregate cycle, while we explore the cyclicality of R&D 

by less constrained industries over their industry-specific cycles. Since the industry-specific 

cycles are not perfectly synchronized with the aggregate cycle, it is possible that an industry’s 

R&D is counter-cyclical over its own cycle, but appears pro-cyclical over the aggregate cycle. 

To assess this possibility, we perform two OLS estimations of (1). Y is measured as real GDP 

growth in the first estimation to capture aggregate cycle, and as industrial output growth in the 

second estimation to indicate industry-specific cycle.  

The results are summarized in Table 8. R&D by Food displays no significant 

correlation with either its own output or with aggregate output. R&D by Petroleum Refining is 

counter-cyclical over its own cycle; such counter cyclicality of Petroleum R&D is weakened 

over the aggregate cycle, suggested both by lower absolute value of the point estimate and 

higher standard errors. For Machinery, R&D is pro-cyclical over its own cycle; the 

procyclicality of Machinery R&D is amplified over the aggregate cycle, with more than 100% 

increase in the point estimate. The bottom two rows present the results from the aggregated 

sample and the pooled sample: neither of the estimated coefficients on industrial output is 

statistically significant; however, those on aggregate output are both significant at 10% level 

as well as much bigger in point estimate. 

In summary, Table 8 suggests that the cyclicality of R&D over the industry-specific 

cycle does differ from that over the aggregate cycle. In particular, aggregate cycle tends to 
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amplify R&D’s procyclicality but weakens its counter-cyclicality. This can explain why our 

results differ from those by Barlevy (2004). 

7. Conclusion 
 
This paper investigates the opportunity-cost hypothesis regarding the cyclicality of R&D, 

using a panel of 20 U.S. manufacturing industries covering 1958 through 1998. The results 

confirm that R&D is pro-cyclical. They also provide insights on the causes and the 

consequences of pro-cyclical R&D. In particular, the IV estimations show that R&D declines 

always in response to demand fluctuations. We propose liquidity constraint is an important 

factor in explaining R&D’s cyclicality, and provide further evidence on the link between 

R&D’s cyclicality and industrial financial strength. 

It is important to point out that our results do not imply that R&D never increases, 

because they only capture R&D’s response to demand shocks. Since R&D still appears 

procyclical at the industry level, there must be some other shocks that cause R&D to rise with 

output. For example, the arrival of new ideas and new technology can boost productivity on 

the one hand, and raise the return to innovation on the other hand by helping a given level of 

R&D to generate more ideas and technologies, so that R&D and output increase together. 

Moreover, according to Griliches (1990), the bulk of R&D spending is spent on development; 

the arrival of new technology can drive firms to perform more R&D at the purpose of 

developing new technology into further productivity gains. Therefore, technology shocks are 

likely another important factor that causes procyclical R&D.  

Future empirical research should attempt to find direct evidence on the response of 

R&D to technology shocks. Future theoretical research should focus on devising models 
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exploring the combined impact of liquidity constraints, demand shocks, and technology 

shocks on the cyclicality of R&D.  
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Figure 1   
Panel 1: Petroleum Refining (SIC 29)
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Panel 2: Machinery (SIC 35)
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Figure 1 (Continued) 

Panel 3: Food (SIC 20, 21) 
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Notes: Time-series plots of growth in real R&D expenditure and growth in output by 
Petroleum Refining (SIC 29), Machinery (SIC 35), and Food (SIC 20, 21). Solid line 
denotes output series, dashed line denotes R&D series. See notes to Table 1 for 
variable definitions and data sources. 
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Table 1: Summary Statistics of Disaggregated Output and R&D (1958-1998) 
 

Industry  
Mean 
(R) 

SD 
(R) 

Mean 
(Y) 

SD 
(Y) 

Food (SIC 20, 21) 3.88% 7.54% 2.96% 3.72%
Textiles (SIC 22m23) 4.31% 10.91% 2.09% 4.90%
Lumber (SIC 24, 25) 4.62% 25.12% 2.36% 6.33%
Paper (SIC 26) 5.20% 12.10% 3.06% 5.34%
Industrial Chemicals (SIC 281-2, 286) 2.83% 6.93% 3.18% 9.56%
Drugs (SIC 283) 7.63% 4.82% 5.22% 3.61%
Other chemicals (SIC 284-5, 287-9) 3.99% 12.19% 3.59% 5.21%
Petroleum (SIC 29) 1.23% 8.97% 3.11% 16.18%
Rubber (SIC 30) 3.94% 10.50% 5.26% 7.78%
Stone (SIC 32) 1.59% 12.40% 1.99% 6.32%
Furrous Metals (SIC 331-32, 3398-99) 0.25% 14.06% 0.53% 12.96%
Non-ferrous metals (SIC 333-336) 1.35% 14.37% 2.25% 10.18%
Metal Prods. (SIC 34) 2.86% 10.94% 2.64% 6.59%
Machinery (SIC 35) 4.94% 13.06% 5.32% 9.60%
Eletronics Equip. (SIC 366-367) 7.05% 10.49% 11.02% 12.24%
Other Equip.(SIC 361-365, 369) 1.88% 12.77% 3.16% 7.39%

Autos and Others (SIC 371, 373-75, 379) 4.15% 6.82% 3.58% 12.88%
Aerospace (SIC 372,376) 2.95% 12.52% 1.33% 9.00%
Scientific Instrument (SIC 381,382) 6.25% 11.18% 4.33% 5.97%
Other Instrument. (SIC 384-387) 6.52% 5.18% 5.94% 5.36%
Cross-industry mean 3.87% 11.94% 3.64% 8.89%
Aggregate Economy 5.37% 3.42% 3.45% 2.12%

Notes: R is the growth in R&D expenditure deflated by the GDP deflator; Y is the growth 
in real value added. Mean(R), SD(R), Mean(Y), and SD(Y) are the sample means and 
sample standard deviations of R&D growth and output growth for 20 disaggregated 
manufacturing industries. Nominal R&D by industry series are taken from the NSF; real 
value added series are complied from the NBER MP databases. See text for more details. 
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Table 2: OLS  

OLS 1:     ititit DtfYLBR εγλα ++++= 92)()(  
OLS 2: it

L
itit

H
ititit DtfDYDYR εγλββα +++++= 92

21 )(  

Notes: OLS estimates of the relationship between real R&D expenditure and output, using 
data on 20 manufacturing industries from 1958 to 1998. All estimations are conducted in 
growth rates. itR  represents R&D and itY represents output of industry i in year t;  f(t) is a 
quadratic time trend, and λ is allowed to differ before and after the 1980s; 92D is a post-1992 
dummy. OLS1 corresponds to estimations of (1) with lag length of zero, one year, and two 
years. OLS 2 corresponds to estimation of (2) with zero lag allowing coefficient on an 
increase in output and a decrease in output to vary. H

itD  equals one if industry i’s output 
growth in year t is higher than its output growth in year t-1 and equals zero otherwise; 

L
it

H
it DD −= 1 .  Standard errors controlled for within-industry heteroskedasticity and within-

industry arbitrary serial correlation are reported in parentheses. A (*) indicates significance at 
10%; a (**) indicates significance at 5%; and a (***) indicates significance at 1%.  
 
 
 
 
 
 
 
 
 
 
 

 

 OLS 1 OLS 2 
 Y Y Y HYD  LYD  
Contemp. 0.1351 

(0.0672)* 
0.1222 

(0.0623)* 
0.1299 

(0.0626)* 
0.1246 

(0.1035) 
0.1440 

(0.0652)** 
Cumulatively 
in one year 

- 0.2126 
(0.0810)** 

0.2031 
(0.0788)** 

- - 

Cumulatively 
in two years 

- - 0.2980 
(0.0804)*** 

- - 

No. of obs. 794 774 754 355 for 
HD =1 

439 for 
LD =1 

F-test 
21 ββ =  

- - - 0.04 
(p=0.8532) 

R-squared 0.0364 0.0394 0.0411 0.0364 
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Table 3: Aggregate-demand IVs  

IV 1:     ititit DtfYLBR εγλα ++++= 92)()(  
IV 2: it

L
itit

H
ititit DtfDYDYR εγλββα +++++= 92

21 )(  
 

 IV 1 IV 2 
No. of obs. 794 774 754 355 for 

HD =1 
439 for  

LD =1 
Panel A: Real GDP as IV 

 Y Y Y HYD  LYD  

Contemp. 0.1540 
(0.0804)* 

0.1516 
(0.0859)* 

0.1688 
(0.0878)* 

-0.8659 
(0.4433)* 

0.6831 
(0.2500)** 

Cumulatively 
in one year 

- 0.2425 
(0.1170)* 

0.2434 
(0.1165)* 

- - 

Cumulatively 
in two years 

- - 0.3108 
(0.1286)** 

- - 

F-test 21 ββ =  - - - 5.42 (p=0.0311) 

Panel B: Industrial Production as IV 
 Y Y Y Y HD  Y LD  
Contemp. 0.1172 

(0.0712)* 
0.1144 

(0.0767) 
0.1545 

(0.0840)* 
-0.7519 

(0.3715)* 
0.6221 

(0.2281)** 
Cumulatively 
in one year 

- 0.2058 
(0.0928)** 

0.2200 
(0.0937)** 

- - 

Cumulatively 
in two years 

- - 0.3246 
(0.1239)** 

- - 

F-test 21 ββ =     5.77 (p=0.0267) 

Notes: IV estimates of the relationship between real R&D expenditure and output, using data 
on 20 manufacturing industries from 1958 to 1998, real GDP series from the BEA, and 
Industrial Production Index from the Federal Reserve Board. The two-stage least-square 
estimations treat output as endogenous and using real GDP and industrial production to 
instrument for industrial output. IV 1 corresponds to estimations of (1) with lag length of zero, 
one year, and two years. IV 2 corresponds to estimation of (2) with zero lag but allowing 
coefficient on out increases and output decreases to differ. Each IV regressions employ the 
current value and at least one-year lead of the instrument for each output term. See notes to 
Table 2 for more modeling specifications. 
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Table 4: Industries and Their Input-Output Instruments 

Industry  Down-stream industry DS 
 

CS 

Lumber (SIC 24, 25) Total Construction 53.9% 
 

8.3% 
Paper (SIC 26) Food (SIC 20) 15.5% 4.1% 
Drugs (SIC 283) Health Care 23.7% 4.5% 
Other chemicals  
(SIC 284-5, 287-9) Agriculture 15.6% 7.7% 
Petroleum (SIC 29) Total Construction 12.94% 2.7% 

Rubber (SIC 30) 
Transportation  
(SIC 37) 21.1% 4.6% 

Stone (SIC 32) Total construction 41.9% 6.5% 
Furrous Metals  
(SIC 331-32, 3398-99) Total construction 24.84% 12.20% 
Non-ferrous metals 
(SIC 333-336) Total construction 24.85% 12.20% 
Other Equip. 
(SIC 361-364, 369) Total construction 15.06% 5.00% 

 
Notes: industries, the input-output instruments, and their cost-and-demand 
relationships. DS is an up-stream industry’s output share demanded by the 
corresponding down-stream industry, both directly and indirectly through other 
intermediate links; CS is a down-stream industry’s cost share originating from the two-
digit sector that contains the corresponding up-stream industry, both directly and 
indirectly through other intermediate links. Food (SIC 20, 21) and Transportation (SIC 
37) are measured as growth in real value added constructed from the MP databases. 
Health Care, Agriculture, Total Construction are measured as growth in sector 
employment published by the BEA. See text for more details. 
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Table 5: Input-output IVs  

IV 1:     ititit DtfYLBR εγλα ++++= 92)()(  
IV 2: it

L
itit

H
ititit DtfDYDYR εγλββα +++++= 92

21 )(  
 

 IV 1 IV 2 
No. of obs. 396 386 376 183 for 

HD =1 
213 for  

LD =1 
Panel A: input-output IV 

 Y Y Y HYD  LYD  

Contemp. -0.0122 
(0.1004) 

-0.0619 
(0.1196) 

0.0047 
(0.1089) 

-1.1847 
(0.6422)* 

0.4767 
(0.2428)* 

Cumulatively 
in one year 

- 0.0724 
(0.1357) 

0.0653 
(0.1267) 

- - 

Cumulatively 
in two years 

- - 0.2349 
(0.2629) 

- - 

F-test 21 ββ =  - - - 3.85 (p=0.0814) 

Panel B: idiosyncratic input-output IV 
 Y Y Y Y HD  Y LD  
Contemp. -0.1737 

(0.1193) 
-0.4181 
(0.3055) 

-0.6364 
(0.5425) 

-2.2899 
(1.0674)* 

0.6656 
(0.3544)* 

Cumulatively 
in one year 

- 0.0479 
(0.1487) 

0.0839 
(0.2231) 

- - 

Cumulatively 
in two years 

- - -0.3342 
(0.4892) 

- - 

F-test 
21 ββ =  

- - - 4.99 (p=0.0524) 

 
Notes: IV estimates of the relationship between real R&D expenditure and output, using data 
on 10 manufacturing industries listed in Table 4 from 1958 to 1998. The two-stage least- 
square estimations treat output as endogenous and using raw and idiosyncratic input-output 
instruments to instrument for industrial output. Each regression employs current value and at 
least four instrument leads for each output term. All estimations are conducted in growth rates. 
See notes to Tables 2 and 3 for modeling specifications; see notes to Table 4 for sample 
industries and their input-output instruments; see text for more details. 
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Table 6: Industrial Financial Indicators and Input-output Instruments 

Industries ranked  
by liquid Assets 

Liquid Assets
(million$)  

Net Worth 
(million$) 

Input-output  
Instruments 

Petroleum (SIC 29) *14754.12 *183509.58 Total construction
Machinery (SIC 35) *16245.76 *132198.96 - 
Food  (SIC 20, 21) *11745.77 *101281.77 - 
Industry Chemicals  
(SIC 281-2, 286) 4386.66 63445.07 - 
Metal Products (SIC 34) 6419.81 48729.80 - 
Paper (SIC 26) 3330.01 48464.70 Food 
Drugs (SIC 283) 5833.92 42115.68 Health Care
Furrous Metals  
(SIC 331-2, 3398-99) 6113.51 40692.58 Total construction
Other Chemicals  
(SIC 284-5, 287-9) 5602.33 40025.26 Agriculture
Non-Ferrous Metals 
(SIC 333-336) 2684.52 33835.19 Total Construction
Aerospace (SIC 372, 376) 4790.98 33411.20 - 
Stones (SIC 32) 3611.92 31138.11 Total Construction
Rubber (SIC 30) 2482.09 24718.18 Transportation 
Lumber (SIC 24, 25) 2171.35 14796.71 Total Construction

Notes: industries covered by the Quarterly Financial Reports (QFR), their values of 
liquid assets and net worth in 2000 dollars, and their input-output instruments. The 
listed industries are presented in the order of their ranks in net worth. A “*” indicates 
that the industry is among the top three by the corresponding financial indicator. A “-” 
indicates that the industry does not possess valid input-output instrument. The liquid-
asset and net-worth values are the quarterly averages of 1960, 1970, 1980, 1990, and 
2000; those for Lumber (SIC 24, 25) are the average of 1960, 1970, and 2000 only. 
The QFR are provided by Bureau of the Census. See Table 4 for the selection of input-
output-instruments. See text for more details. 
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Table 7: Liquidity Constraints 

(1):     ititit DtfYR εγλβα ++++= 92)(  
(2): it

L
itit

H
ititit DtfDYDYR εγλββα +++++= 92

21 )(  
 

 (1) (2) Obs.#
 Y HYD  LYD  F-test  

21 ββ =  
 

Panel A: Financially Identified Industries (14 industries) 
OLS 0.0738 

(0.0750) 
0.0491 

(0.1422) 
0.0926 

(0.0734) 
0.08 

(p= 0.7877) 
558 

Real-GDP IV 0.0790 
(0.0865) 

-0.8514*
(0.4384) 

0.5172* 
(0.2522) 

4.25 
(p=0.0599) 

558 

Industrial-Production IV 0.0364 
(0.0753) 

-0.8491*
(0.4256) 

0.4758* 
(0.2440) 

4.19 
(p=0.0613) 

558 

Input-output IV -0.0221 
(0.1097) 

-1.3870*
(0.7190) 

0.5827 
(0.3302) 

3.85 
(p=0.0854) 

358 

Idiosyncratic  
input-output IV 

-0.1761 
(0.1404) 

-2.3334*
(1.1952) 

0.7422* 
(0.3917) 

4.39 
(p= 0.0694) 

358 

Panel B: Less Constrained Industries by Liquid Wealth and by Net Worth: 
Food (SIC 20, 21), Petroleum Refining (SIC 29), and Machinery (SIC 35) 

OLS 0.0016 
(0.0752) 

0.1423 
(0.1690) 

-0.1337 
(0.1011) 

1.49 
(p=0.2252) 

120 

Real-GDP IV 0.1509 
(0.1701) 

-1.9791 
(4.0448) 

1.3500 
(2.2676) 

0.28 
(p=0.5948) 

120 

Industrial-Production IV 0.1015 
(0.1442) 

-3.4904 
(8.2609) 

2.3566 
(5.3312) 

0.19 
(0.6662) 

120 

Input-output IV -0.2562* 
(0.1332) 

0.0668 
(0.3148) 

-0.5744 
(0.3738) 

1.31 
(p=0.2602) 

40 

Idiosyncratic  
input-output IV 

-0.3263**
(0.1581) 

-0.2779 
(0.3044) 

-0.3616*
(0.1882) 

0.05 
(p=0.8260) 

40 

Notes: OLS and IV estimates of the relationship between R&D and output from 1958 to 1998 
for the 14 financially identified industries and for the three industries less likely to be 
financially constrained according to Table 6.  The two-stage least-square estimations treat 
output as endogenous and employ real GDP, industrial production index, raw and 
idiosyncratic input-output instruments to instrument for industrial output. In Panel B, only 
Petroleum Refining (SIC 29) possesses valid input-output instrument. The standard errors 
reported in parentheses in Panel A are controlled for within-industry heteroskedasticity and 
within-industry arbitrary serial correlation; those in Panel B are controlled for 
heteroskedasticity only. See notes to Tables 2, 3, and 5 for modeling specifications. See Table 
6 for sample industries and their input-output instruments. See text for more details. 
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Table 8: Industry-specific Cycle v.s. Aggregate Cycle:  
Food, Petroleum Refining, and Machinery  

 
OLS 1:     ititit DtfYR εγλβα ++++= 92)(  

 
 Industry-specific cycle Aggregate Cycle No. of 

Obs. 
 Y=Industrial 

output growth
R-sq Y=Real GDP 

growth 
R-sq  

Food 
(SIC 20, 21) 

0.0269 
(0.3123) 

0.1563 -0.1210 
(0.6798) 

0.1573 40 

Petroleum Refining 
(SIC 29) 

-0.1263** 
(0.0525) 

0.4310 -0.0592 
(0.5341) 

0.3818 40 

Machinery 
(SIC 35) 

0.5022** 
(0.2036) 

0.2101 1.1158* 
(0.5795) 

0.1537 40 

Aggregated 
Sample 

0.5116 
(0.3058) 

0.2042 0.7889* 
(0.4665) 

0.1829 40 

Pooled Sample 0.0016 
(0.0752) 

0.1437 0.3540* 
(0.1979) 

0.0301 120 

Notes: OLS estimates of R&D’s cyclicality for Food, Petroleum Refining, and Machinery 
over their industry-specific cycles, indicated as industrial output growth, and over aggregate 
cycle, indicated as real GDP growth,. The third, fourth, and fifth rows present estimation 
results for each of the industries separately. The sixth row presents estimation results from the 
aggregated sample, employing total R&D and total output of the three industries. The seventh 
row presents results by pooling the three industries together. Standard errors controlled for 
heteroskedasticity are reported in parentheses. All estimations are conducted in growth rates. 
See notes to Table 2 for model specifications; see text for more details. 
 
 
 
 
 
 
 
 
 
 
 
 
 


