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Abstract

Past empirical studies have repeatedly found that plant age matters for aggregate employ-

ment dynamics. This paper develops a model of plant life cycle to capture this empirical

regularity. In the model, plants differ by vintage and by idiosyncratic productivity. The

idiosyncratic productivity is not directly observable, but can be learnt over time. This setup

gives rise to a learning effect and a creative destruction effect, under which labor flows from

plants with low idiosyncratic productivity to those with high idiosyncratic productivity and

from old vintages to new vintages. When calibrated to the U.S. manufacturing job flow se-

ries, our model of plant life cycle delivers the observed link between plant age and aggregate

employment dynamics.
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1 Introduction

With access to longitudinal business data bases becoming more available in the past 20

years, an assortment of studies have emerged exploring the micro foundations of aggregate

employment dynamics. It has been documented that economies across time and regions

are characterized by a large and pervasive process of job flows. Maybe surprisingly, the

majority of this process turns out to occur within-industry.1 In other words, labor is being

reallocated across heterogeneous businesses within the same industry, rather than across

different industries. Such findings have stimulated a series of theoretical work on models

with heterogeneous businesses, as they point out that the traditional representative-agent

paradigm does not hold in the real world.2

While many factors contribute to business heterogeneity, this paper proposes a model

that emphasizes business age. We are motivated by an age pattern that stands out in many

empirical studies: job-flow magnitude declines with business age, even after controlling for

other business characteristics.3 Moreover, business age matters for the cyclical dynamics of

various job-flow margins. According to Davis and Haltiwanger (1998), in the U.S. manufac-

turing sector, job creation and job destruction are approximately equally volatile for young

plants while, for old plants, job destruction appears more volatile than job creation.

In this paper we present a model to incorporate the age pattern of job flows, emphasizing

two dimensions in the productivity dynamics over a plant’s life cycle. Intuitively, old plants

are more experienced as they have survived long; but their technologies are usually outdated,

or their products often flag in popularity. By contrast, young plants, while embodied with

the leading technology, tend to be inexperienced. If more productive plants hire more labor,

then the productivity dynamics over a plant’s life cycle should generate multiple margins to

hire or fire labor, which, when interacted with the business cycle, give rise to an age pattern

in aggregate employment dynamics.

To capture the above story, we build a model that combines passive learning in the spirit

of Jovanovic (1982) with a vintage model by Aghion and Howitt (1992). In our model, plants
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differ in two productivity components: vintage and idiosyncratic productivity. The idiosyn-

cratic productivity is not directly observable, but can be learnt over time. Young plants

have newer vintages, but are unsure about their true idiosyncratic productivity. Old plants

perceive themselves to have high idiosyncratic productivity, but are with older vintages. Two

reallocation effects arise with this setup: a learning effect, under which a plant creates jobs

when it learns its true idiosyncratic productivity to be high or destroys jobs when it learns

that to be low, and a creative-destruction effect, under which entrants with new technology

create jobs to enter and incumbents destroy jobs as they become technologically outdated

over time and eventually exit the industry.

This model of plant life cycle can incorporate the observed age pattern of job flows.

Because marginal learning diminishes as plants grow old, the learning-driven reallocation

declines with plant age, so that job flows at young plants are of higher magnitude. Since

the creative-destruction driven job destruction are concentrated at old plants, the cyclical

dynamics in job destruction dominate those in job creation. We calibrate our model to

the job flow series from the U.S. manufacturing sector. Simulation of the calibrated model

delivers, at least qualitatively, the observed age pattern in the magnitude and in the cyclical

dynamics of job flows.

The age pattern of cyclical job flows has been explored by Campbell and Fisher (2004),

who model adjustment cost proportional to the number of jobs created or destroyed. In

their model, a plant currently adjusting employment is more likely to do so again in the

immediate future. Since plants have to create jobs to enter, young plants adjust employment

more frequently. However, their baseline model fails to deliver the high variance ratio of job

destruction over job creation for old plants (p.349). Our model emphasizes the interaction

of the learning effect with the creative destruction effect. The learning effect causes the

job-flow magnitude to decline with plant age, and the creative destruction effect drives job

destruction to be more responsive at old plants. However, our calibration exercises suggest

that, to deliver the observed high variance ratio of job destruction over job creation for
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old plants, our model requires a creative destruction effect probably stronger than what

the existent empirical evidence suggests. We discuss possible ways to improve the model’s

quantitative performance.

The paper proceeds as follows. Section 2 summarizes the age pattern in employment

dynamics with data from the U.S. manufacturing sector. Section 3 presents the model.

Section 4 analyzes the dynamics in the learning and creative destruction effects at the steady-

state equilibrium. Section 5 calibrates the model to the data, and discusses results from the

simulation exercises. We conclude in Section 6.

2 Plant Age and Employment Dynamics

Our data source is the gross job flow series for the US manufacturing sector compiled by

Davis et. al. (1996). Job flows are separated into two components: job creation as the

number of jobs created at expanding and newly born plants, and job destruction as the

number of jobs lost at declining and closing plants. The age dynamics of job creation and

destruction are displayed in Table 1 and Figure 1. The sample covers quarterly job creation

and destruction for plants of three different age categories from the second quarter of 1972

to the fourth quarter of 1998. Following Davis et al. (1996), we define young plants as those

younger than 10 years; accordingly, old plants are those that have stayed in operation for 10

years or more.

Table 1A shows that the magnitude of job flows declines with plant age. From 1972 to

1998, quarterly job creation rate averages 7.63% and job destruction rate averages 6.50% for

young manufacturing plants; the corresponding statistics are 4.40% and 5.03% for old plants.

Table 1A further decomposes job creation into those contributed by plant births (Cb) and

by continuing operating plants that are expanding (Cc); job destruction is divided into those

contributed by plant deaths (Dd) and by continuing operating plants that are contracting

(Dc). Not surprisingly, Cb is much higher at young plants, as Cb by old plants mainly arises
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from a few plants that resume operation after temporary closing. Interestingly, Dd, Cc,

and Dc are all higher at young plants: for example, young plants’ Dd averages 1.27%, about

three times of Dd at old plants. In summary, during early years of operation, plants not only

face higher chances of closing, as implied by Dd, but also experience much more turnover

even if they manage to survive, as suggested by Cc and Dc.

Table 1B shows that plant age matters for the cyclical dynamics of job flows. For young

plants, job creation and job destruction are equally volatile, as the ratio of the variance of job

destruction over that of job creation equals 1.01. For old plants, however, job destruction is

much more volatile than job creation with a variance ratio of 4.18. This age pattern persists

even after excluding plant births and deaths: this ratio for continuing operating plants equals

3.36 for old plants but only 1.47 for young plants. In summary, Table 1B suggests that a

plant features similar volatility in job destruction and job creation during early years of

operation; however, as it grows older, the volatility in job destruction dominates that in job

creation.

The link between plant age and employment dynamics summarized in Table 1 has been

documented by many other authors. For example, Evans (1987) finds that firm growth

decreases with firm age. Dunne et. al. (1989) report that employment growth rates and

failure rates both decline with plant age. Similar patterns are documented by Aw et. al.

(2001) for Taiwanese firms and by Roberts (1996) for Colombian firms. The asymmetry

in the volatilities of job destruction versus job creation is discussed in Foote (1998). The

influence of plant age on the cyclical dynamics of job flows is also reported by Faberman

(2007) with the 1992-2000 data of Business Employment Dynamics.

3 A Model of Learning and Creative Destruction

To incorporate the age pattern of employment dynamics documented in Section 2, we present

a model of plant life cycle. Consider an industry where labor and capital are combined in
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fixed proportions to produce a single output. Each production unit is called a plant. Each

plant consists of:

1. a group of machines that embody some vintage;

2. an unobservable idiosyncratic productivity;

3. a group of employees.

Let A to be the leading technology. An exogenous technological progress drives A to

grow over time at rate γ > 0. When entering the market, a new plant adopts the leading

technology at the moment, which becomes its vintage and remains constant throughout its

life cycle. A(a) is the leading technology a periods ago, and is also the vintage of a plant of

age a:

A(a) = A(1 + γ)−a. (1)

At the time of entry, a plant is endowed with idiosyncratic productivity θ. Many factors

can contribute to θ: it can be the talent of the manager as in Lucas (1978), the location of

the store, the organizational structure of the production process, or the plant’s fitness to the

embodied technology. The key assumption regarding θ is that its value, although fixed at

the time of entry, is not directly observable.

Production takes place through a group of workers. Let n to be the number of employees.

The output of a plant with vintage A(a) and n employees in period t equals

A(a)xtn
α
t , (2)

where 0 < α < 1. xt = θ + εt: the true idiosyncratic productivity θ covered by a random

noise εt. The noise εt is an i.i.d. draw from a fixed distribution that masks the influence of

θ on output. A plant knows its vintage and can directly observe output. Thus, it can infer

the value of x. A plant uses its information on current and past x’s to learn about θ.
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3.1 “All-Or-Nothing” Learning

Plants are price takers and profit maximizers. They attempt to resolve the uncertainty

about θ. The random component ε represents transitory factors that are independent of the

idiosyncratic productivity θ. Assuming mean zero for ε, E(x) = E(θ) +E(ε) = E(θ).

Given the knowledge of the distribution of ε, a sequence of observations on x allows a

plant to learn about its θ. Although a continuum of potential values for θ is more realistic,

for simplicity it is assumed that there are only two values: θg for a good plant and θb for

a bad plant. Furthermore, ε is assumed to be distributed uniformly on [−ω, ω]. Therefore,

a good plant will have x each period as a random draw from a uniform distribution over

[θg − ω, θg + ω], while the x of a bad plant is drawn from an uniform distribution over

[θb − ω, θb + w]. Finally, θg, θb and ω satisfy 0 < θb − ω < θg − ω < θb + ω < θg + ω.

Pries (2004) shows that the above assumptions give rise to an “all-or-nothing” learning

process. With an observation of x within (θb + ω, θg + ω], the plant learns with certainty

that it is a good plant; conversely, an observation of x within [θb − ω, θg − ω) indicates that

it is a bad plant. However, an x within [θg − ω, θb + ω] does not reveal anything, since

the probability of falling in this range as a good plant and that as a bad plant both equal

2ω+θb−θg
2ω

.

This all-or-nothing learning process simplifies the model considerably. Three values of θe

corresponds to three types of plants: those who know they are good with θe = θg, those who

know they are bad with θe = θb, and those who remain unsure about their true idiosyncratic

productivity with θe = θu (the prior mean of θ). We call the third type “unsure plants”.

Let ϕ to be the unconditional probability of θ = θg, and p to be the probability of

true idiosyncratic productivity being revealed every period. According to the all-or-nothing

learning process, p = θg−θb
2ω
. This setup generates the following plant life cycle: a flow of new

plants enter the market as unsure; thereafter, every period they stay unsure with probability

1 − p, learn that they are good with probability pϕ, and learn that they are bad with

probability p(1 − ϕ). The evolution of θe from the time of entry is a Markov process with
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values (θg, θu, θb), an initial probability distribution
µ
0, 1, 0

¶
,and a transition matrix

⎛⎜⎜⎜⎜⎝
1 0 0

pϕ, 1− p, p(1− ϕ)

0 0 1

⎞⎟⎟⎟⎟⎠ . (3)

If plants were to live forever, eventually all uncertainty would be resolved, as the limiting

probability distribution as a goes to∞ is
µ

ϕ, 0, (1− ϕ)

¶
. Because there is a continuum

of plants, it is assumed that the law of large numbers applies, so that both ϕ and p are not

only the probabilities but also the fraction of good plants and the fraction of plants who

learn their true idiosyncratic productivity each period. Hence, ignoring plant exit for now,

the fractions of three plant groups in a cohort of age a is

µ
ϕ [1− (1− p)a] , (1− p)a, (1− ϕ) [1− (1− p)a]

¶
. (4)

Figure 2 presents the evolution of plant distribution across three values of θe within a

birth cohort. The horizontal axis depicts the cohort age over time. The densities of plants

that are certain about their idiosyncratic productivity, whether good or bad, grow as a cohort

ages. Moreover, the two “learning curves” (depicting the evolution of the densities of good

plants and bad plants) are concave. This feature is the decreasing property of marginal

learning with age in Jovanovic (1982), which, in my model, is reflected as that the marginal

number of learners decreases with cohort age. The convenient feature of the all-or-nothing

learning process is that, on the one hand, any single plant learns suddenly, which allows us

to easily keep track of the cross-section distribution while, on the other hand, any cohort

learns gradually as a group.
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3.2 Plant Decisions and Industry Equilibrium

We consider a recursive competitive (partial) equilibrium definition, which includes as a key

component the law of motion of the aggregate state of the industry. The aggregate state

is (F,D). F denotes the distribution of plants across vintages and expected idiosyncratic

productivity. D is an exogenous demand parameter; it captures the aggregate condition and

is fully observable. The law of motion for D, denoted HD, is exogenous. The law of motion

for F , denoted HF , is endogenous and defined as F 0 = HF (F,D). The element in F that

measures the number of plants with belief θe and age a is f (θe, a). HF captures the influence

of entry, exit, and learning based on the following sequence of events:

At the beginning of a period, plants make entry or exit decision after observing the

aggregate state; if deciding to enter or stay in operation, a plant adjusts its employment and

produces; the equilibrium price is realized; plants observe their revenue and update their

beliefs; another period begins.

3.2.1 The Employment Decision

A plant adjusts its employment to solve a static profit maximization problem. The wage

rate is normalized as 1; θe is a plant’s current belief of its true idiosyncratic productivity;

P represents the equilibrium output price; Ψ denotes a fixed operation cost each period. A

plant’s optimal employment is

n(θe, a) = argmax
n≥0

E [PA(a)xnα − n−Ψ] (5)

=

∙
α

PAθe

(1 + γ)a

¸ 1
1−α

,

where θe can take on three values θg, θb, or θu. (5) suggests that plant-level employment

depends positively on θe and P but negatively on a. Thus, a plant hires more employees if

the output price is higher, the expected idiosyncratic productivity is higher, or its vintage

is newer. Put differently, a plant creates jobs if the output price rises, or if it learns its true
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idiosyncratic productivity to be good; it destroys jobs as its vintage becomes older.

The corresponding output of a plant with θe and a is

q(θe, a) = (αP )
α

1−α

µ
Aθe

(1 + γ)a

¶ 1
1−α

. (6)

And the corresponding profit is,

π(θe, a) = (α
α

1−α − α
1

1−α )

∙
PAθe

(1 + γ)a

¸ 1
1−α

−Ψ. (7)

3.2.2 The Exit Decision

A plant exits if and only if its expected value of staying is below zero. Let V (θe, a;F,D) to

be the expected value of staying in operation for one more period and optimizing afterward

for a plant with age a and belief θe when the aggregate state is (F,D). V satisfies:

V (θe, a;F,D) = π(θe, a;F,D) + βE{max[0, V (θe0 , a+ 1;F 0,D0)]|θe, F,D} (8)

subject to: F 0 = HF (F,D),D
0 = HD(D)

and the all-or-nothing learning that determines the evolution of θe.

To further simplify the model, it is assumed that the parameter values are such that

V (θb, a;F,D) < 0 for any a, F and D, so that the expected value of staying for plants with

θe = θb is always negative. Therefore, plants that know their true idiosyncratic productivity

to be bad always exit.

According to (4), π(θe, a;F,D) decreases in a. It follows that, V (θe, a;F,D) also de-

creases in a holding other parameters constant. Therefore, there exists a maximum plant

age a(θe;F,D) for each pair of θe and (F,D), so that plants with θe and a > a(θe;F,D)

choose to exit.
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3.2.3 The Entry Size

New plants are free to enter as long as they bear an entry cost c. c is modeled as a linear

function of the entry size. According to the sequence of events, entry and exit updates F to

F 0 after plants observe F . Let f (θu, 0)
0 to be the element of F 0 that measures the number

of new entrants as plants with θe = θu and a = 0:

c = c0 + c1f (θu, 0)
0 , c > 0, c1 ≥ 0. (9)

We let the entry cost to depend positively on the entry size to capture the idea that, for the

industry as a whole, fast entry is costly and adjustment cannot take place instantaneously.

This can arise from a limited amount of land available to build production sites or an upward-

sloping supply curve for the industry’s specific capital (Goolsbee, 1998). Entrants drive up

the price of land or other capital goods, so that entry becomes more costly as more plants

enter.

With this setup, new plants keep entering as long as the expected value of entry is above

the entry cost. As entry size rises, the entry cost is driven up until it reaches the expected

value of entry:

V (θu, 0;F,D) = c0 + c1f (θu, 0)
0 . (10)

At this point, entry stops.

3.2.4 The Industry Equilibrium

Let Q(F,D) to represent the equilibrium output, the recursive competitive industry equi-

librium constitutes a law of motion HF , a value function V , and a pricing function P such

that:

1. V satisfies (8);

2. F 0 = HF (F,D) is generated by appropriate summing up of plant entry, exit, and
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learning. Let f (θe, a)0 to denote the element of F 0 that measures the number of plants

with belief θe and age a, and f (θe, a) to be that of F , HF (F,D) is such that:

f (θu, a)
0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V (θu,0;F,D)−c0

c1
for a = 0

(1− p)f (θu, a− 1) for 1 ≤ a ≤ a(θu)

0 for a > a(θu)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (11)

f (θg, a)
0 =

⎧⎪⎨⎪⎩ f (θg, a− 1) + pϕf (θu, a− 1) for 1 ≤ a ≤ a(θg)

0 for a = 0 or a > a(θg)

⎫⎪⎬⎪⎭ ,

where a(θg) is the maximum a that satisfies V (θg, a;F,D) ≥ 0 and a(θu) is the maxi-

mum a that satisfies V (θu, a;F,D) ≥ 0.

3. Q(F,D) equals the sum of operating plants’ output.4

4. P (F,D) satisfies:

P (F,D) =
D

Q(F,D)
, (12)

The key component of this definition, HF , is characterized by three essential elements:

the entry size, good plants’ maximum age, and the unsure plants’ maximum age. These

three elements, together with the all-or-nothing learning, update F to F 0; F 0 determines the

equilibrium output and price by equilibrium conditions 3 and 4 and serves as the aggregate

state for the next period.

4 The Steady State

In the model described above, new plants embodied with the latest technology keep entering

the industry; the employment level of incumbents grow or shrink, depending on what they

learn and how fast the technology updates; those that learn their true idiosyncratic produc-

tivity to be bad or whose vintages become too old cease operation. Hence, plant entry, exit,

and learning generates a reallocation process in which labor flows from bad plants to good
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plants, and from old vintages to new vintages. This reallocation process is driven by two

forces: learning and creative destruction.

Before allowing for stochastic demand fluctuations, this section examines the link between

plant life cycle and aggregate employment dynamics at the steady-state equilibrium with

constant demand. The next section will turn to stochastic demand fluctuations and explore

whether the intuition from this section carries over.

4.1 The Steady State

We define a steady state as a recursive competitive equilibrium with time-invariant aggregate

states: D is and is perceived as time-invariant: D = HD(D); F is also time-invariant:

F = HF (F,D). SinceHF is generated by entry, exit and learning, a steady state must feature

time-invariant entry and exit for F = HF (F,D) to hold. Thus, it can be summarized by©
f ss (0, D) , assu (D) , a

ss
g (D)

ª
: f ss (0, D) is the steady-state entry size when demand equals

D, assg (D) is the maximum age for good plants, and assu (D) is the maximum age for unsure

plants. Proposition 1 establishes the existence of a unique steady-state equilibrium.

Proposition 1 With constant D, there exists a unique
©
f ss (0, D) , assu (D) , a

ss
g (D)

ª
that

satisfies conditions 1-4; moreover, the steady-state PA remains time-invariant: PA = PA
ss
(D).

See the appendix for proof. Proposition 1 suggests that, at a steady state, the plant

distribution across vintages and idiosyncratic productivity stays time-invariant, so does the

product of the price and the leading technology PA. Since A grows at γ, P must be declining

at the same rate for the steady-state PA to be constant. Put intuitively, continuous entry

and exit drives the leading technology A, as well as the industry output Q, to grow at γ.

With constant D, growing Q causes P to decline at the same rate.

Figure 3 displays the steady-state evolution of plant distribution within a representative

cohort, with the horizontal axis depicting the cohort age across time. Upon entry, the cohort

contains unsure plants only. As it ages, bad plants keep learning and exiting. At a certain
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age, all unsure plants exit with their vintage too old to survive by being unsure; but those

plants who have learnt their idiosyncratic productivity to be good stay. Afterward, the cohort

contains good plants only; its size remains constant. Eventually, all plants exit because their

vintage is too old even for good plants to survive.

Figure 3 can be interpreted differently. Note that, at a steady state, all cohorts enter

with the same size and experience the same dynamics afterward. Thus, at any time point,

different life stages of various birth cohorts overlap, giving rise to the steady-state plant

distribution across ages and idiosyncratic productivity as in Figure 3 with the horizontal

axis as cohort age across section. The entering cohort is of size f ss (0, D). Older cohorts are

of smaller sizes, because plants who learnt their idiosyncratic productivity were bad have

exited. No unsure plants are older than assu (D). No good plants are older than assg (D).

Cohorts older than assu (D) contain no unsure plants, and thus are of the same size.

4.2 The Plant Life Cycle

To assess how plant life cycle impacts aggregate employment dynamics, we begin with the

steady-state plant-level employment nssas a function of θe, a, and D. (5) can be written as:

nss (θe, a;D) =

∙
αθe

PA(D)

(1 + γ)a

¸ 1
1−α

. (13)

θe = θu or θg

a ≤ assu (D) if θ
e = θu;

a ≤ assg (D) if θ
e = θg

According to (13), three forces affect the plant-level employment. D affects nss through its

influence on PA. θe affects nss positively: a plant creates jobs when learning its idiosyncratic

productivity to be good and destroys jobs when learning that it to be bad. a affects nss

negatively: a plant destroys jobs as it ages, and exits completely once it reaches assg (D) or

assg (D). We call the impact of θ
e the learning effect and that of a the creative destruction
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effect.

Assuming θg
1+γ

> θu, Figure 4 plots the steady-state plant life cycle driven by the learning

and creative destruction effects. The horizontal axis depicts plant age across time. It presents

the employment dynamics of three representative plants, two of which happen to learn their

true idiosyncratic productivity at age 50. Plant one stays unsure and exits at 71 as the exit

age for unsure plants; plant two learns its true idiosyncratic productivity to be good at age

50, stays in operation afterward, and exits at age 150 as the exit age for good plants; plant

three learns that its idiosyncratic productivity to be bad at age 50, and exits immediately.

Figure 4 shows that, before any plant learns, all three keep shrinking due to the creative

destruction effect. At age 50, plant two creates but plant three destroys jobs by exiting.

After age 50, plant two again destroys jobs over time, and exits completely at age 150.

4.3 The Cohort Life Cycle

The cohort life cycle is given by aggregating the plant life cycle to the cohort level using the

evolution of within-cohort plant distribution. Propositions 2 and 3 capture the dynamics of

the learning and creative destruction effects.

Proposition 2 The steady-state job creation and destruction of a cohort of age a driven by

the learning effect, jcssl (a) and jd
ss
l (a), both weakly decrease with cohort age.

The magnitudes of jcssl (a) and jd
ss
l (a) are determined by the fraction of plants who learn

and how many of the learning plants are good or bad. Combining (4) with (13) gives

jcssl (a) =

ϕp (1− p)a
∙³

θg
1+γ

´ 1
1−α − θ

1
1−α
u

¸
θ

1
1−α
g ϕ+ (1− p)a

µ
θ

1
1−α
u − θ

1
1−α
g ϕ

¶ for 0 < a ≤ assu (D) ; (14)

jdssl (a) =
θ

1
1−α
u p (1− p)a (1− ϕ)

θ
1

1−α
g ϕ+ (1− p)a

µ
θ

1
1−α
u − θ

1
1−α
g ϕ

¶ for 0 < a ≤ assu (D) ;

jcssl (a) = jdssl (a) = 0, otherwise
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Apparently, jcssl (a) and jdssl (a) both weakly decrease in a. This is due to the decreasing

property of marginal learning captured at the cohort level by the all-or-nothing learning

process. For a > assu (D), learning has stopped so that there are no learning-driven job

creation or destruction. For 0 < a ≤ assu (D), the fraction of learning plants per period

equals p(1−p)a
(1−ϕ)(1−p)a+ϕ , out of which ϕ proportion create jobs and 1 − ϕ destroy jobs. Since

p(1−p)a
(1−ϕ)(1−p)a+ϕ decreases in a, the learning-driven job creation and destruction also decrease

in cohort age.

Proposition 3 Under the creative destruction effect, the steady-state job destruction by

aging plants jdsscd (a), as plants who do not learn or have learnt already, weakly increases with

cohort age; moreover, jdsscd (a) rises in γ.

According to Proposition 1, the steady-state PA remains time-invariant. Therefore, (13)

suggests that nss declines as a grows as long as θe does not change. Put intuitively, plants

who have learnt their idiosyncratic productivity to be good and those who remain unsure

destroy jobs as they grow older; moreover, the higher γ is, the more jobs they destroy while

they age. Thus, jdsscd (a) is determined by the within-cohort fraction of aging plants and by

how fast the technology updates. Combining (4) and (13) gives

jdsscd (a) =
h
1− (1 + γ)−

1
1−α
i⎡⎢⎢⎣θ

1
1−α
g ϕ [1− (1− p)a] + θ

1
1−α
u (1− p)a+1

θ
1

1−α
g ϕ+ (1− p)a

µ
θ

1
1−α
u − θ

1
1−α
g ϕ

¶
⎤⎥⎥⎦ for 0 ≤ a < assu (D) ;

jdsscd (a) = 1− (1 + γ)−
1

1−α for assu (D) < a < assg (D) . (15)

Apparently, jdsscd (a) weakly increases in a and is bigger with higher γ. As a cohort ages,

the fraction of learning plants declines and that of aging plants rises. Hence, the creative-

destruction driven job destruction by aging plants rises with cohort age.

Two remarks should be made. First, in addition to job destruction by aging plants, the

creative destruction effect also drives job creation by entry as well as job destruction by exit

at assu (D) and a
ss
g (D). Since job creation by entry occurs before the plant life cycle starts, it
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does not contradict the intuition that the creative destruction effect strengthens with plant

age. But job destruction by exit at assu (D) and assg (D) adds to this intuition, as those exits

occur only at older ages. Put intuitively, the creative destruction effect drives more and

more plants to shrink as a cohort grow older, and eventually causes the entire cohort to exit.

Second, the learning effect and creative destruction effect interact. It is the decreas-

ing property of the marginal learning effect that causes the creative destruction effect to

strengthen. Moreover, according to (14), the magnitude of the learning-driven job creation

equals
∙³

θg
1+γ

´ 1
1−α − θ

1
1−α
u

¸
. Intuitively, a plant’s vintage grows one period older when it

learns; this is captured by θg
1+γ
. Therefore, the creative destruction effect dampens the

learning-driven job creation.

Figure 5 displays the life cycle of a representative cohort. It presents the employment

dynamics of an “average” plant, as the sum of a good plant employment weighted by within-

cohort fraction of good plants and an unsure plant’s employment weighted by within-cohort

fraction of unsure plants. When the “average” plant is very young, it keeps creating jobs

because the learning effect dominates the creative destruction effect. As it grows older, the

learning effect weakens and the creative destruction effect strengthens. Once the creative

destruction effect dominates, its employment begins to fall. Its employment jumps at assu (D)

due to the exit of all unsure plants. After assu (D), it keeps destroying jobs due to the creative

destruction effect, and exits at assg (D).

4.4 Aggregate Employment Dynamics

The aggregate employment dynamics is given by aggregating the cohort life cycle to the

industry level. It reflects the number of plants choosing to adjust employment and the

magnitude of their adjustment. Demand has significant influences on both dimensions.

First, demand influences the magnitude of employment adjustment. According to (13),

D affects nss through PA. PA is canceled out in (14) and (15) by staying constant at the

steady state. However, with stochastic demand variations, PA would fluctuate over time. In
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that case, a increase in PA amplifies job creation but dampens job destruction; an increase

in PA does the opposite. In extreme cases, an increase in PA may dominate the creative

destruction effect, so that the aging plants create jobs even if their vintages grow older; or,

a decrease in PA may dominate the learning effect, so that the learning plants destroy jobs

even if they learn their idiosyncratic productivity to be good.

Second and more importantly, demand influences the number of plants that choose to

adjust employment. From a pure accounting point of view, the industry features four job-

flow margins: the entry margin, the learning margin, the aging margin, and the exit margin

at assu (D) and assg (D). Demand affects the number of plants at all these margins through

its influence on f ss (0,D), assu (D) and assg (D):

Proposition 4 At a steady-state equilibrium, f ss (0, D), assu (D) and assg (D) all weakly in-

crease in D.

See the appendix for proof. Proposition 4 suggests that, if we compare two steady-state

equilibria, one with a high demand and the other with a low demand, the low-demand steady

state features less entry and younger exit ages. Intuitively, lower demand reduces the number

of plants at the entry margin but raises that at the exit margin. Moreover, younger exit ages

imply shorter plant life cycle, less time for unsure plants to learn, and thus smaller number

of plants at the learning margin.

If this intuition carries over when demand fluctuates stochastically, then a drop in demand

would cause less entry, suggesting a drop in job creation by young plants, and more exit,

implying a rise in job destruction by old plants. Moreover, if demand varies stochastically,

birth cohorts would start with different sizes, so that, at any time point, the size of a cohort

of age a is affected by the demand level a periods ago. Therefore, past demand variations

determine current plant distribution and, consequently, the number of plants at the learning

and aging margins. The next section explores quantitatively our model’s implications on the

aggregate employment dynamics with stochastic demand.
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5 Quantitative Implications

This section applies numerical techniques to analyze a stochastic version of our model, in

which demand follows a two-state Markov process with values [Dh,Dl] and transition prob-

ability μ. Throughout this section, plants expect the current demand to persist for the next

period with probability μ, and to change with probability 1− μ.

We first calibrate our model to data presented in Section 2. Then we approximate value

functions and the laws of motion using the approach by Krusell and Smith (1998). With the

approximated laws of motion, we simulate the calibrated model with a random initial plant

distribution to examine whether our model can deliver the observed properties of aggregate

employment dynamics.

5.1 Baseline Calibration

Table 2 presents the parameter values in our baseline calibration. Some of the parameter

values are pre-chosen. We allow a period to represent one quarter and set the quarterly

discount factor β = 0.99. μ is chosen to equal 0.95 so that demand switches between a high

level and a low level with a constant probability 0.05 per quarter. Ψ is set to 1 as it matters

only as a scale for D. We set α, the elasticity of production with respect to labor input, to

0.66 as the share of return to labor.

Some other parameter values are chosen according to the existent empirical evidence. The

elasticity of entry cost with respect to entry size, c1, is chosen based on Goolsbee (1998), who

estimates that a 10% increase in demand for equipment raises equipment price by 7.284%

(page 143, Table VII). Accordingly, c1 = 0.7284. The relative productivity of good and bad

plants is chosen following Davis and Haltiwanger (1998), who assume a ratio of high-to-low

productivity of 2.4 based on between-plant productivity differentials reported by Bartelsman

and Doms (2000). We normalize productivity of bad plants as 1 and set productivity of good

plants to 2.4. The technological pace, γ, determines the strength of the creative destruction
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effect. The technology pace, γ, is set according to Basu et al (2001), who estimate a quarterly

technological pace of 0.0037 for durable manufacturing and a pace of 0.0027 for non-durable

manufacturing. We set γ = 0.003.

The strength of the learning effect is determined by the prior probability of being a

good plant (ϕ) and the quarterly pace of learning (p). Since the learning effect is strong

at young plants, ϕ and p are calibrated to the observed job creation and destruction rates

by young plants. Table 1 shows that, in the U.S. manufacturing sector, young plants’ mean

job creation rate equals 7.63% and their mean job destruction rate equals 6.50%. Let jc_y

to denote young plants’ job creation rate, jd_y their job destruction rate. Young plants

are defined as those younger than 40 quarters as in Table 1. This sets the following two

restrictions on ϕ and p: jc_y = 7.52% and jd_y = 6.56%. With other parameter values

given by Table 2, jc_y and jd_y are functions of ϕ and p only as PA(D) cancels out. Using

a search algorithm, we find p = 0.083 and ϕ = 0.017.

The remaining parameters are high demandDh, low demandDl, and the fixed component

of the entry cost c0. Proposition 4 suggests that demand variations cause exit ages to vary,

reflected in the data as fluctuations in job destruction. Thus, the values of Dh, Dl, and c0

are chosen to match the observed moments of job destruction. From 1972 to 1998, the U.S.

manufacturing job destruction rate fluctuates between 2.96% and 11.43% with a mean of

5.31%. This puts the following restrictions on our calibrated model.

First, its implied long-run job destruction rate must be around 5.31%. We let ag and

au to represent the maximum ages of good plants and unsure plants at the high-demand

steady state and ag
0 and au

0 represent the exit ages at the low-demand steady state. The

steady-state job destruction rate implied by either pair, has to be around 5.31%.

Second, we match the peak in job destruction that occurs at the onset of a recession.

Our model suggests that the jump in the job destruction rate at the beginning of a recession

comes from the shift of exit margins to younger ages. We assume that when demand drops,

the exit margins shift from ag and au to ag
0 and au

0 immediately, and the job destruction
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rate at this moment must not exceed 11.43%.5

Third, we match the trough in job destruction that occurs at the onset of a boom. Our

model suggests that when demand goes up, the exit margins extend to older ages, so that for

several subsequent periods job destruction comes only from the learning margin, implying

a trough in the job destruction rate. To match the data, the job destruction rate at this

moment has to be around 3%.

Additionally, (ag, au) and (ag 0, au0) must satisfy the steady state conditions on the gap

between the exit ages of good and unsure plants. Using a search algorithm, we find that

these conditions are satisfied for the following combination of parameter values: ag = 78,

au = 64, ag 0 = 73, au0 = 59, and c0 = 0.158. By applying these ag, au, ag 0 and au
0 to the

steady state industry structure, we find Dh = 925.98 and Dl = 873.90.

5.2 Simulated Employment Dynamics

With all the parameter values assigned, we approximate the value functions. Our key compu-

tational task is to map F , the plant distribution across ages and idiosyncratic productivity,

given demand D, into a set of value functions V (θe, a;F,D). Unfortunately, the endogenous

state variable F is a high-dimensional object. It is known that the numerical solution of

dynamic programming problems becomes increasingly difficult as the size of the state space

increases. Our computational strategy follows Krusell and Smith (1998) by shrinking the

state space into a limited set of variables and showing that these variables’ laws of motion

can approximate the equilibrium behavior of plants in the simulated time series. Details

are presented in the appendix. Our simulation exercises suggest that the dynamic system

is globally stable: the industry structure eventually settles down with constant entry and

exit along any sample path with constant demand. With the corresponding decision rules

and an initial plant distribution, we then investigate the aggregate time series properties of

employment fluctuations in the calibrated model.
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5.2.1 From the baseline calibration

We start with a random plant distribution, simulate the model for 5000 periods according

to the approximated value functions, and discard the first 500 periods to investigate the

property of the stationary region of the simulated time series. Table 3 reports the statistics

of the simulated job flows under the baseline calibration.

Table 3 suggests that the calibrated model does deliver, at least qualitatively, the rela-

tionship between plant age and employment dynamics: the means of job flow rates decline

with plant age; and the relative volatilities of job destruction to creation rises with age; these

patterns remain evident after excluding plant birth and plant death.

However, two remarks should be made. Table 3 shows that the simulated magnitudes

of old plants’ job flows are significantly smaller than those in the data. For example, the

mean job creation for old plants is 4.40% in the data, but it is only 0.55% in our simulation.

Two factors contribute to this difference. First, the simulated Cb, job creation by plant

birth, is zero for old plants, because newborn plants cannot be old by definition. However,

in the data, old plants display a job creation rate of 0.12% by plant birth. This is because,

in reality, some old plants cease operation temporarily and reopen later. Such temporary

exit behavior is not captured by our model. Second, the all-or-nothing learning process,

while greatly simplifying our analysis, imposes very little learning to old plants as many old

cohorts contain no unsure plants. Due to such limited learning, old aging plants experience

much less job creation and destruction in our calibrated model.

Moreover, the difference between the variance ratio of job destruction over job creation

for old plants and that for young plants is rather small under our baseline calibration. For

example, this variance ratio rises from 1.01 for young plants to 3.75 for old plants in the

data, but from 1.20 to 1.85 only under our baseline calibration.
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5.2.2 From additional calibration

We further explore our model’s quantitative performance in matching the relative volatility

of job destruction and creation. In the baseline calibration, we set the quarterly technological

pace γ to 0.003 according to Basu et al (2001). An alternative estimate of γ is provided

by Caballero and Hammour (1994), who set γ to 0.007 by contributing all manufacturing

employment growth to the technological progress. To explore how the value of γ impacts

the simulation results, we re-calibrate our model assuming γ = 0.007, approximate the

corresponding laws of motion, and simulate the re-calibrated model. The new simulation

results are summarized in Table 4. Key results from the baseline calibration are included for

comparison.

Table 4 shows that, with γ = 0.007, our model needs a slower learning pace (p = 0.075)

and a higher prior probability of being good (ϕ = 0.030) to match the data. Moreover,

γ = 0.007 enlarges the difference in the destruction-to-creation variance ratio between young

and old plants: it equals 1.51 for young plants and 3.57 for old plants, compared to 1.20 and

1.85 in the baseline calibration.

This result can be explained as follows. A lower p implies that plants learn at slower

pace and that the learning effect is weak. A higher γ suggests that technology updates at

a faster pace and that the creative destruction effect is strong. The change in the relative

strength of the two effects causes the creative-destruction driven job destruction to respond

more but the learning-driven job creation to respond less to demand variations, so that

the destruction-to-creation variance ratio rises for young and old plants both in Table 4.

Moreover, γ = 0.007 shortens plant life cycle, so that fewer plants become old. This is

shown, in Table 4, as the drop in old plants’ employment share with γ = 0.007. With higher

γ but lower p and, additionally, fewer old plants, Table 4 implies that the relative volatility

of job destruction to job creation not only rises for old plants, but also rises by more than it

does for young plants.

However, 0.007 likely overestimates the technological pace in reality according to Basu

22



et al.(2001). Therefore, the results in Table 4 imply that our model requires a creative

destruction effect stronger than what data suggests to deliver the high variance ratio of

job destruction to creation for old plants. There are possible ways to improve our model’s

quantitative performance in this aspect. For example, a more general learning process can

be introduced, assuming ε, the noise that covers θ, to be distributed normally instead of

uniformly. In that case, any realized ε value would change the perceived probability of being

good, so that θe can take on any values between θb and θg. This would generate more than

two exit margins for old plants, and job destruction by old plants may respond more to

demand variations, even with a quarterly technological pace slower than 0.007.

6 Conclusion

We propose a model of plant life cycle, inspired by the observed age pattern in aggregate

employment dynamics. Our model combines the learning effect with the creative destruction

effect. As plants grow older, job flows under the learning effect diminish, but those driven by

the creative destruction effect grow. When calibrated to the U.S. manufacturing data, our

model generates, at least qualitatively, the observed age pattern in aggregate employment

dynamics.

This model of plant life cycle provides a useful framework for future research in many

directions. For example, Ouyang (2009) applies this framework to examine the impact of

cyclical job flows on aggregate productivity, and argues that recessions bring a “scarring”

effect by killing off unsure firms who are truly good. Foote (1998) examines the variance

ratio of job destruction over job creation across different industries, and finds that this ratio

declines in the trend employment growth of the industry. Can the relative strength of learning

and creative destruction modeled in this paper explains the cross-industry differences in trend

employment growth documented by Foote (1998)? We leave the question for future research.
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Notes

1According to Davis and Haltiwanger (1998), about 87% of the excess reallocation takes

place within each of the four-digit Standard Industry Classification (SIC) industries in the

U.S. manufacturing sector. The dominance of the within-industry reallocation persists under

even narrower industry definitions such as four-digit industries by specific regions.

2See, for example, Caballero and Hammour (1994), Mortensen and Pissaridies (1994),

Gomes et al. (2001), and Barlevy (2002).

3This has been documented, for example, by Evans (1987), Dunne et al (1989), and Aw et

al (2001). Davis et al (1996) summarize the age pattern of job flows to be surprisingly robust

regardless of major differences among studies in measurement, country, sectoral coverage,

and data.

4Although industry-level output should equal the sum of realized plant-level output, it

can be shown that the expectation error and the random noise cancel out within each age

cohort so that the sum of expected plant output equals the sum of realized output.

5The simulation exercises suggest that, when a negative demand shock strikes, the exit

margins shift past ag 0 and au
0. The bigger shift implies a bigger jump in job destruction,

This is why we require the maximum job destruction to be below 11.43%.
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Figure 1: Gross job flows at young and old plants, 1972 — 1998. Dashed lines represent the
job creation series; solid lines represent the job destruction series.
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Figure 2: Dynamics of a birth Cohort by learning: the distance between the concave curve
and the bottom axis measures the density of plants with θe = θg; the distance between the
convex curve and the top axis measures the density of plants with θe = θb; and the distance
between the two curves measures the density of unsure plants (plants with θe = θu).
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Figure 4: Three representative plants at a steady state: solid line plots the employment
dynamics of an unsure plant that never learns and exit after 71 periods; dotted line plots
the employment dynamics of a plant that learns it is a bad plant after 50 periods and exit
immdediately; dashed line plots the employment dynamics of a plant that learns it is a good
plant after 50 periods and exit after 150 periods.
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Figure 5: Employment of an “average” plant: it equals the total employment of a cohort
divided by the number/measure of plants.
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A. Means
Plant type E(Cb) E(Cc) E(C) E(Dd) E(Dc) E(D)
all 0.39 4.60 4.99 0.61 4.70 5.31
young 1.65 5.98 7.63 1.27 5.23 6.50
old 0.12 4.27 4.40 0.45 4.58 5.03

B. Variance ratio of job destruction to job creation
plant type σ(D)2/σ(C)2 σ(Dc)2/σ(Cc)2

all 3.27 2.99
young 1.01 1.47
old 3.75 3.36

Table 1: Quarterly gross job flows by plant birth, plant death, and continuing operating
plants in the US manufacturing sector: 1972 to 1998. Young plants are plants younger than
40 quarters. Cb denotes job creation by plant birth, Dd is job destruction by plant death,
Cc and Dc are job creation and destruction by continuing operating plants. C and D are
gross job creation and destruction. C=Cc+Cb, D=Dd+Dc. All numbers are in percentage
points.
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Calibrated Parameters value
productivity of bad plants: θb 1
productivity of good plants: θg 2.4
quarterly technological pace: γ 0.003
quarterly discount factor: β 0.99

the elasticity of production w.r.t. labor: α 0.66
entry cost parameter: c0 0.158
entry cost parameter: c1 0.728

persistence rate of demand: μ 0.95
prior probability of being a good plant: ϕ 0.017

quarterly pace of learning: p 0.083
Operation cost per period: Ψ 1

High Demand: Dh 925.98
Low Demand: Dl 873.90

Table 2: Baseline Calibration
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A. Means
Plant type E(Cb) E(Cc) E(C) E(Dd) E(Dc) E(D)
all 3.07 1.59 4.66 2.40 2.83 5.22
young 5.06 2.26 7.32 3.00 2.21 5.21
old 0 0.55 0.55 1.45 3.25 4.65

B. Variance ratio of job destruction to job creation
plant type σ(D)2/σ(C)2 σ(Dc)2/σ(Cc)2

all 1.21 1.28
young 1.20 1.24
old 1.85 1.58

Table 3: Simulation statistics under the baseline calibration. See Table 1 for notations.
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A. Additional Calibration
p = 0.075, ϕ = 0.030, γ = 0.007

Plant type Mean(C) Mean(D) Emp.Share V ar(D)
V ar(C)

all 4.66 5.22 100 1.66
young 7.31 6.20 75.4 1.51
old 0.55 3.70 24.6 3.57

B. Baseline Calibration
p = 0.083, ϕ = 0.017, γ = 0.003

Plant type Mean(C) Mean(D) Emp.Share V ar(D)
V ar(C)

all 4.33 4.27 100 1.22
young 7.66 6.36 65.8 1.20
old 0.62 2.22 34.2 1.85

Table 4: Simulation Statistics under the Baseline Calibration and Additional Calibration.
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