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Abstract

We propose cyclical persistence as an important factor in�uencing the timing of

innovation. Schumpeter (1939) argues innovation should be concentrated during re-

cessions when its marginal opportunity cost as forgone output is low. We propose the

timing of innovation should be a¤ected additionally by innovation�s marginal expected

return. A simple theory is presented, showing higher persistence raises the cyclical re-

sponse in innovation�s marginal expected return, makes the dominance of innovation�s

marginal opportunity cost more di¢ cult, and therefore drives R&D pro-cyclical. We

carry the theory to an industry panel of R&D and output. Our estimation results sug-

gest persistence helps to account for the observed cross-industry di¤erences in R&D�s

cyclicality.

�The author thanks Wayne Gray and Randy Becker for their kindly providing the extended NBER manu-
facturing productivity databases, and Stephanie Yang for research assistance. Gary Richardson, Dan Bogart,
Guillaume Rocheteau, Peter Rupert, and seminar participants at the Atlanta Fed, USC, the Brookings In-
stitutions, and the 2010 Midwest Macro Meeting provided helpful discussions. The errors are mine.
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1 Introduction

Short-run cycles and long-run growth have long been recognized as a uni�ed phenomenon.

For example, Ramey and Ramey (1995) document a negative relationship between volatility

and growth across 92 countries, suggesting studying the two separately can be missing an im-

portant linkage. While this linkage can arise through various channels, recently many authors

have explored the innovation channel by examining R&D (Bloom, 2007). On this matter, an

opportunity cost (hereafter OC) view has been proposed in the spirit of Schumpeter (1939):

innovation should be concentrated during recessions when their marginal opportunity cost

in terms of forgone output is low (e.g., Aghion and Saint-Paul, 1998). Unfortunately, data

shows R&D is procyclical both at the aggregate level and at the industry level (e.g., Fatas,

2000; Ouyang, 2010). This has motivated some researchers to question the validity of Schum-

peterian timing of innovation, and some others to argue Schumpeterian timing of R&D is

distorted by factors such as liquidity constraint (Barlevy, 2007; Francois and Lloyd-Ellis,

2009; Aghion et al., 2005; Ouyang, 2010).

This paper proposes cyclical persistence as an additional factor in�uencing the timing of

innovation. We argue the original Schumpeterian theory highlights variations in innovation�s

marginal opportunity cost, but variations in marginal expected return to innovation should

also matter. We incorporate into a simple two-period model the following idea: the timing of

innovation depends on the cyclicality of two elements �its marginal opportunity cost and its

marginal expected return; during recessions, innovation�s marginal opportunity cost and its

marginal expected return both decline, so that whether innovation rises depends on whose

cyclicality dominates.

We thus highlight cyclical persistence as an additional factor determining the timing of

innovation. In particular, higher persistence implies a larger component of present shocks

will be carried into the future, so that the expected future return to present innovation

becomes more responsive to present shocks. Our model predicts higher persistence makes it

more di¢ cult for cyclical responses in innovation�s marginal opportunity cost to dominate, so
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that R&D is more likely to appear pro-cyclical. Carrying the theory to an industry panel of

output and R&D suggests cyclical persistence, measured in various ways, contributes to the

cross-industry di¤erences in R&D�s cyclicality. Moreover, we �nd the impact of persistence

and liquidity constraint are both present.

This paper belongs to the literature that studies the link between short-run cycles and

long-run growth through the innovation channel. Previous authors have noticed the im-

portance of cyclical persistence. Aghion and Saint-Paul (1998) establish the Schumpeterian

timing of innovation does not hold if demand shocks are permanent. Saint-Paul (1993) �nds

the negative impact of positive demand shocks on productivity appears stronger for countries

where �uctuations are more transitory. Both of these �ndings are consistent with our argu-

ment. Fatas (2000) proposes pro-cyclical innovation may cause persistence, and documents

a positive cross-country relationship between growth rates and persistence. Fatas (2000)�s

evidence does not contradict ours, as the causality can indeed go both ways to generate that

relationship. Neither Saint-Paul (1993) nor Fatas (2000) empirically identify the channels

through which persistence matters: Saint-Paul (1993) fails to �nd signi�cant response of

R&D to demand shocks; Fatas (2000) examines production data only. By contrast, we study

speci�cally the channel of innovation, and �nd signi�cant impact of cyclical persistence on

R&D�s cyclicality. Moreover, our results stay robust to controlling for the impact of R&D

intensity on persistence, to employing the instrumental-variable estimation approach, and

to controlling for the presence of liquidity constraints.

The rest of the paper is organized as follows. Section 2 presents the theory. Section 3

carries the theory to data. Section 4 concludes.

2 The Model

The economy is populated by over-lapping generations of entrepreneurs who live for two

periods. There are L entrepreneurs in each generation. Each period, young entrepreneurs
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produce and innovate; old entrepreneurs adopt the productivity gain from the last-period

innovation, produce, and die. Productivity gain is transferred between generations at no

cost. Each entrepreneur is endowed with a �xed amount of labor normalized as one. Let

E to be the production labor and R to be the innovation labor: E + R = 1 for young

entrepreneurs; and E = 1 for old entrepreneurs.

2.1 Production and Innovation

Output produced by an young entrepreneur, denoted Yy, is determined by A, an endogenous

productivity copied from old generation at no cost, and production labor E :

Yy = A"E
�; 0 < � < 1: (1)

" is a cyclical shock that follows a Markov process with support
�
"l; "h

�
� R+, where 0 <

"l < 1, "h > 1. " has an unconditional mean normalized to one and a conditional mean

Et ("t+1j"t) = "�t , where �1 < � < 1 captures the persistence. The key assumption on " is it

directly impacts production only, and indirectly a¤ects innovation by in�uencing innovation�s

opportunity cost.1 Higher " raises output as well as the marginal product of labor, so that

the marginal forgone output as the opportunity cost of innovation also rises.

The endogenous productivity A has the following structure:

A = m;  > 1 (2)

m is an integer that denotes the technology generation. Entrepreneurs can advance to higher-

generation technology by engaging in innovation. In particular, R units of innovation labor

generates a probability of �R of discovering technology generation m+ 1, which raises A to

1Ouyang (2010) proposes technology shocks can have direct impact on innovation. For example, in
response to the arrival of new technology, �rms increase R&D spending at the purpose of developing new
technology into further productivity gain. In this paper, we analyze the impact of production shocks on
innovation only following theories studying the Schumpeterian timing of innovation (Barlevy, 2007; Aghion,
et al., 2005).

4



A. � is a parameter smaller than one that captures the productivity of innovation labor.

Following Barlevy (2007), we assume � stays constant over time, based on Griliches (1990)�s

documentation of acyclical productivity in the innovation sector.

Once higher generation of technology is discovered with successful innovation, it requires

an additional cost Ac with c > 0, to adopt new technology into period-two production.

This adoption cost occurs at the end of period one or at the beginning of period two. The

adoption cost is normalized by A, as more advanced technology can be costlier to adopt. Let

Yo to be the output of an old entrepreneur who copied A form his predecessor, invested R

into innovation when he was young, and now puts all his labor into production. His output

is Yo = A" if innovation and adoption are both successful, and is Yo = A" otherwise. It is

assumed that, for any R 2 (0; 1] and " 2
�
"l; "h

�
, (�1)"

�

1+r
> c, so that an old entrepreneur

always chooses to adopt the new generation of technology.

The adoption cost c is a key element of our model. c is assumed independent of production

shocks. One can think of c as re�ecting the cost of overhead labor whose wage stays relatively

rigid over the business cycle. As explained later, this assumption is critical to break up the

linear relationship in the conventional OC models between innovation�s marginal expected

return and the expected cyclical shocks. In spirit, c is very similar to the �xed operation

cost modeled by Barlevy (2007).2 This adoption cost is also present in the model by Aghion

et al. (2005) at the purpose of introducing liquidity constraints. They assume an imperfect

�nancial market to analyze how entrepreneurs�ability to �nance c varies over the business

cycle. Since our focus is cyclical persistence, we deviate from �nancial market frictions by

assuming a perfect �nancial market in which an old entrepreneur has no di¢ culty �nancing

Ac either through internal �nancing or external borrowing.

Under this setup, innovation raises future productivity, but requires sacri�ce of present

production. Young entrepreneurs choose R to balance this trade-o¤.

2In our model, entrepreneurs pays c only if innovation is successful. In the model by Barlevy (2007), the
operation cost c is paid by entrepreneurs with leading technology only. Therefore, in both models this cost
is paid with probability of �R. As a result, c enters the �rst-order conditions but remains independent of
cyclical shocks.
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2.2 Marginal Opportunity cost and Marginal Expected Return

Once innovation is successful, an old entrepreneur adopts higher generation of technology

by paying Ac before he produces in period two. Let r to indicate the interest rate. Suppose

price equals one and there is no in�ation. Let V to be the present discounted value of an

entrepreneur�s life-time pro�t. Throughout the rest of the paper, we normalize A as one.

Hence, a forward-looking young entrepreneur optimizes as follows:

Max
R

V (R; ") = "(1�R)� + (1� �R) "�

(1 + r)
+ �R

�
"�

(1 + r)
� c
�

(3)

Note c is not discounted by 1
1+r

because it occurs before period-two production takes place.

V is concave in R with VRR < 0, and VR(1; ") is negative. We further assume VR(0; ") =

�(�1)
1+r

"� � �c � �" > 0 for any " to ensure an interior solution. The �rst-order condition

with respect to R, VR(R; ") = 0, gives:

"�(1�R�)��1 = � ( � 1)
1 + r

"� � �c; (4)

The left-hand side of (4) captures the marginal opportunity cost of innovation as forgone

present output. The right-hand side is the marginal expected net return to innovation.

(4) suggests optimal R, denoted as R�, balances the trade-o¤ between present and future

return, equating the marginal opportunity cost to the marginal expected return. Because c

is independent of production shocks, the marginal opportunity cost of innovation is linear in

", but the marginal expected return to innovation is not linear in "�.

Di¤erentiating (4) with respect to R and " gives the response of R� to ":

dR�

d"
=

�(�1)
1+r

�"��1 � �(1�R�)��1

(1� �)�"(1�R�)��2 : (5)

Thus, the sign of dR�

d"
is determined by the magnitude of �(1 � R�)��1, as "�s impact on

the marginal opportunity cost, relative to that of �(�1)
1+r

�"��1, as "�s in�uence on the mar-
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ginal expected return. Higher " raises both, so that whether it encourages or discourages

innovation depends on which e¤ect dominates.

Proposition 1 A positive production shock that raises output reduces innovation if and only

if the cyclicality of innovation�s marginal opportunity cost dominates that of its marginal

expected return; in that case, innovation and production comove negatively over time.

In other words, dR
�

d"
< 0 if and only if �(�1)

1+r
�"��1 < �(1�R�)��1. In this case, higher "

raises production but reduces innovation, and innovation is counter-cyclical. This is the case

emphasized by the conventional OC theories. For example, Aghion and Saint-Paul (1998)

model the marginal expected return to be reaped over the entire future, including periods

with high pro�tability and those with low pro�tability, so that its cyclical response fails to

dominate that of innovation�s opportunity cost. Conversely, theories that propose factors

other than OC stress the dominance of cyclicality in innovation�s marginal expected return.

For example, Barlevy (2007) argues the return to R&D is short-run rather than long-run

due to dynamic externalities inherent to the R&D process, which ampli�es the cyclicality of

R&D�s marginal return and therefore drives R&D pro-cyclical.

The case captured by Aghion and Saint-Paul (1998) is equivalent to the case in model

when c = 0. With c = 0, combining (4) and (5) gives:

dR�

d"
=

�(1� �)
(1� �) "(1�R�) (6)

(6) is negative as long as � < 1. With c = 0, the marginal opportunity cost is linear

in " and the marginal expected return is linear in "�; therefore, the impact of " on the

former must dominate the latter as long as � < 1. Aghion and Saint-Paul (1998) establish

this is the case as long as there is a positive probability for present shocks not to persist.

Their argument arises from the modeling feature that the marginal opportunity cost and the

marginal expected return are both linear in (expected) cyclical shocks.

However, there is no reason to believe that marginal opportunity cost and the marginal
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expected return are both linear in (expected) cyclical shocks. Barlevy (2007) models a �xed

operation cost to break up such linearity. Caballero and Hammour (1994) provide an example

for the cyclicality of the marginal opportunity cost to dominate without such linearity. They

model the return to productivity growth embodied through entry, and its opportunity cost

realized by exit; cyclical response in entry is dampened by an entry cost increasing in entry

size, so that it fails to dominate the cyclical response in exit. In our model, such linearity is

broken up by the adoption cost c, so that the cyclicality of marginal opportunity cost may

dominate or may not.

2.3 Cyclical Persistence and Timing of Innovation

To examine the condition under which optimal innovation is counter-cyclical, (4) gives the

closed-form solution for R�:

R� = 1�
�
�

�

� 1
��1
�
( � 1)
(1 + r)

"��1 � c
"

� 1
��1

(7)

Di¤erentiating R� with respect to " shows that higher " reduces R� if and only if ( � 1) (1�

�)"� > c(1 + r). In this case, "�s in�uence on the marginal opportunity cost of innovation

equals �(�1)
1+r

"��1 � �c
"
, and that on the marginal return equals �(�1)

1+r
�"��1. The former

dominates the latter if and only if ( � 1) (1� �)"� > c(1+ r). Again, innovation is counter-

cyclical if and only if the cyclicality of the opportunity cost dominates, consistent with

Proposition 1.

Now we examine how cyclical persistence a¤ects the chance for this condition to hold.

Apparently, higher � reduces ( � 1) (1� �)"�, and thus makes ( � 1) (1� �)"� > c(1 + r)

less likely to hold, if and and only if ln (") (1� �) < 1. To see this from another angle, de�ne

x to capture the magnitude of "�s impact on innovation�s marginal opportunity cost relative
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to that on innovation�s marginal expected return:

x � �(1�R�)��1 � � ( � 1)
1 + r

�"��1 (1)

=
� ( � 1)
1 + r

(1� �) "��1 � �c
"

Again, dx
d�
< 0 if and only if ln (") (1� �) < 1. Note that � in�uences both "�s impact

on innovation�s marginal opportunity cost and "�s impact on innovation�s expected marginal

return. At the optimum, ��s in�uence on the former equals �(�1)
1+r

"��1 ln " and that on the

latter equals �(�1)
1+r

"��1 (1 + � ln "). Higher � raises the former less than the latter when

�(�1)
1+r

"��1 ln " < �(�1)
1+r

"��1 (1 + � ln "), which suggests ln (") (1� �) < 1.

Proposition 2 With ln (") (1� �) < 1, higher � reduces the magnitude of cyclical responses

in innovation�s marginal opportunity cost relative to that of the cyclical response of inno-

vation�s marginal return, so that it is less likely for innovation to respond negatively to

production shocks.

To see the value combinations of " and � for ln (") (1� �) < 1 to hold, Figure 1 plots,

in the top panel, the value of 1� ln (") (1� �) against ln " 2 [�1:5; 1:5] and � 2 [�1; 1].3 It

shows ln (") (1� �) > 1 occurs when � is very low and when " is very high. Panel 2 plots

this value range in a (ln "; �) space: they are located at the lower-right corner. In particular,

ln (") (1� �) < 1 may not hold only when ln " > 0:5 and � < 0:3333.

This section has presented a simple model, arguing persistence in�uences the timing of

innovation. Several remarks should be made. First, in the model production shock " is

assumed to be distributed continuously. But our analysis also applies to discrete production

shocks. A sketch of the version of the model with discrete shocks are presented in the

appendix.

Second, our results di¤er from Aghion and Saint-Paul (1998) in important ways. Aghion

3The value range of " is set according to the observed output growth in an industry panel that will be
examined in the next section.
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and Saint-Paul (1998) also consider the impact of persistence, arguing permanent recessions

should have no growth e¤ect.4 In their model, higher " has no impact on innovation with

� = 1 and reduces innovation with � < 1; but, as long as � < 1, the value of � no longer

matters. In our model, higher " raises innovation with � = 1 and reduces innovation with

� = 0; with 0 < � < 1, the impact of " on innovation may be positive or negative, and higher

� makes it likely to be positive. This is because, as argued earlier, marginal opportunity cost

and marginal return of innovation are both linear in (expected) cyclical shocks in the model

of Aghion and Saint-Paul (1998), but such linearity is broken up by c in our model.

Third, our result does not hold against the argument by Aghion et al. (2005) that

pro-cyclical R&D is driven by binding liquidity constraint. Persistence a¤ects the optimal

timing of innovation, while such timing can be hindered by binding liquidity constraints. As

a matter of fact, persistence and liquidity constraint can work together in reality, driving

R&D procyclical. The impact of persistence and liquidity constraint are both investigated

in Section 3.

3 Industry Evidence

Our theory predicts, for reasonable values of persistence and production shocks, higher

persistence makes innovation more likely to be concentrated when production is high instead

of when production is low. We carry this theoretical prediction to an industry panel of

production and R&D, examining whether cyclical persistence helps to explain the observed

variation in industry R&D�s cyclicality.

In our theory, Propositions 1 and 2 capture innovation�s response to production shocks.

However, in practice shocks are hard to measure directly. One approach is to identify shocks

employing a VAR estimation; but this approach relies heavily on the identi�cation assump-

tions (Shea, 1998). Therefore, we follow Barlevy (2007) and Ouyang (2010) to examine the

4Aghion and Saint-Paul (1998) present two versions of their model. The �rst assumes that innovation
competes with production for resources; the second assumes that innovation uses produced goods instead of
production resources. It is the �rst version that captures the conventional opportunity-cost view.

10



cyclicality of R&D as the comovement between R&D and output. The underlying assump-

tion is positive production shocks impact output positively, so that R&D�s comovement with

output qualitatively resembles R&D�s response to production shocks.5

3.1 Data

Our empirical investigation is based on a 1958-1998 industry panel of R&D and production

compiled by Ouyang (2010). R&D data is from the NSF, as 1958-1998 company-�nanced

R&D expenditures for 20 U.S. manufacturing industries at the two-digit and the combina-

tion of three-digit level based on the 1987 Standard Industry Classi�cation (SIC) system.6

Production data for these 20 R&D industries is aggregated from the NBER Manufacturing

Production (MP) database that provides 1958-2005 production data for manufacturing in-

dustries at the four-digit SIC level. Details on the sample design of the two data sets and

interpolations of the missing observations are discussed by Ouyang (2010). The R&D series

are converted into 2000 dollars using the GDP de�ator (Barlevy, 2007). Output is measured

as as real value added, as the de�ated value added using shipment-value-weighted price de-

�ator. Ouyang (2010) argues measuring output as de�ated value of shipments generates

similar results on the cyclicality of R&D.

We begin our empirical analysis by performing panel unit-root tests following Levin et al.

(2002). All tests employ industry-speci�c intercepts, industry-speci�c time trends, and two

lags. Critical values are taken from Levin et al. (2002). Results remain robust to leaving out

5One possibility is a higher production shock raises innovation so much that output declines in response
to a positive production shock. But it unlikely that innovation�s cyclical response is big enough to reverse
the direct impact of production shocks on production. According to our industry panel, measured R&D is
very small quantitatively: the annual real industry R&D spending averages 26:65 million in 2000 dollars,
only about 0:95% of the average real investment of 3436:72 million dollars. Su¢ ciently small R makes it
unlikely for the cyclical response of R to dominate that of output.

6The R&D-by-industry series is truncated by 1998 because, starting from 1999, R&D by industry is
published based on the North American Industry Classi�cation System (NAICS). The transformation be-
tween SIC and NAICS is not recommended by the NSF. To make the year-to-year comparison more con-
venient, the NSF transforms the 1997-1998 R&D-by-industry series under the SIC into those under the
NAICS. Unfortunately, the concordance behind the transformation remains con�dential. Moreover, it
is claimed that �the estimates for 1997 and 1998 (after transformation) are not necessarily representa-
tive of the NAICS categories of industries in those years. . . as it may involve a large number of errors.�
(http://www.nsf.gov/statistics/srs01410/).
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the industry �xed e¤ects or/and the time trend as well as to changing lag lengths. The results

suggest that both the series of real R&D expenditure and real value added contain a unit

root in log levels; but they are stationary in log-�rst di¤erences and are not co-integrated.

These results lead us to conduct all our estimations in log �rst di¤erences (growth rates).

3.2 The Base-line Cyclicality of Industry R&D

Table 1 lists the 20 sample manufacturing industries in Column 1 together with their SIC

codes in Column 2. Column 3 presents the time-series correlation coe¢ cients between R&D

growth and output growth for each industry. Out of the 20 coe¢ cients, six are negative and

14 are positive. Pooling industries together gives an average correlation coe¢ cient of 0:1047.

We run the following OLS regression, industry by industry, to estimate the cyclicality of

industry R&D:

4 lnRit = �i0 + �i14 lnYit + iXt + �it: (9)

4 lnRt indicates the R&D growth in year t; 4 lnYt is the output growth. The estimate on

�i1 re�ects how R&D growth co-moves with output growth for industry i. Xt is a set of

control variables, including a quadratic time trend allowed to di¤er before and after 1980

as well as a post-1992 dummy following Ouyang (2010): the time trend is allowed to di¤er

before and after 1980 to re�ect a burst in innovation starting from the early 1980s; the post-

1992 dummy is supposed to capture any potential impact of a change in the ISRD sample

design starting from 1992. The sample size of each regression is 40. The results stay robust

to including lagged output, as Ouyang (2010) reports the cumulative correlation of R&D

growth and output growth are quantitatively similar to the contemporaneous correlation.

Column 4 of Table 1 summarizes the OLS estimation results of (9); robust standard

errors are in parentheses. Seven out of the 20 estimates are negative, only one is statistically

signi�cant; 13 estimates are positive, �ve are statistically signi�cant. Pooling industries

together produces an estimate of 0:1351, signi�cant at the 10% level. These results are also
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robust to dropping the time trends and the post-1992 dummy or replacing them by year

dummies.

The conventional theory predicts R&D to be concentrated when output is low. The base-

line cyclicality of industry R&D summarized in Columns 3-4 of Table 1 provides little support

for such theory. Instead, it shows R&D is pro-cyclical on average and, most importantly, the

cyclicality of R&D di¤ers signi�cantly across industries. For example, the estimated output

coe¢ cients that are statistically signi�cant at the 10% level or above ranges from �0:1263

for Petroleum Re�ning that implies counter-cyclicality, to 0:6917 for Stones that suggests

strong pro-cyclicality.

3.3 Persistence Measures

We measure cyclical persistence using data on output growth, assuming persistence in pro-

duction shock " is re�ected as persistence in output over the production cycle driven by ".

In particular, we apply two persistence measures.

The �rst one follows Cochrane (1988) and Fatas (2000), measuring persistence as the

four-year output variance ratio. In particular, cyclical persistence for industry i, denoted as

�i, is measured as:

�i �
1

J

var (4 lnYit �4 lnYit�J)
var (4 lnYit �4 lnYit�1)

; (10)

where 4 lnYit is the output growth for industry i in year t, and var is the variance. We use

J = 4, while the results are robust to other J values. According to Cochrane (1988), (10)

is equivalent to a weighted sum of auto-correlations; it measures the extent to which annual

output �uctuations are trend reverting.

The second persistence measure estimates the AR(1) coe¢ cient on output growth, con-

trolling for the potential impact of innovation on persistence proposed by Fatas (2000). Fatas

(2000) argues the potential in�uence of procyclical innovation on cyclical persistence should

be positively correlated with the intensiveness of growth activities (page 156). Following
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his argument, we estimate �i for each industry, controlling for the intensiveness of growth

activities approximated as the mean level of industry R&D:

4 lnYit = �i4 lnYit�1 + � lnRi + �t. (11)

4 lnYit is the output growth of industry i in year t. lnRi is the time-series average of log

levels of real R&D spending. The estimate on �i based on (13) captures the 1958-1998

average annual AR(1) persistence in output growth for industry i, controlling for the R&D

level. We control for the intensiveness of growth activities using mean R&D level instead

of lagged R&D growth, because the latter reduces the sample size and because it is hard to

determine the appropriate lag length for past R&D to impact present production. The results

stay robust to replacing the mean R&D level by mean R&D growth or by a constant. Due

to the limited sample size of 40 observations for each industry, we estimate AR(1) coe¢ cient

only. Also, experimentation with di¤erent modeling speci�cations shows including output

growth lagged by two years or more in (11) worsens the estimation �t.

Table 1 lists the measured Cochrane persistence in Column 5 and the estimated AR(1)

persistence in Column 6. Both measures di¤er signi�cantly across industries: the Cochrane

persistence measure ranges from 0:1589 for Other Chemicals to 0:6236 for Scienti�c In-

struments; the AR(1) persistence ranges from �0:0586 for Autos and Others to 0:5053 for

Aerospace. The two measures are positively correlated with a correlation coe¢ cient of 0:6859.

The Cochrane measure averages 0:3121; the AR(1) measure averages 0:1858 and is signi�cant

at the 5% level.

As a comparison, Fatas (2000) applies the Cochrane measure of annual persistence to

120 countries and reports it ranges roughly between �0:5 and 2, stronger than our industry-

level measure. This should not be surprising, because inter-industry comovement can cause

aggregate output to display stronger persistence than industry output (Shea, 2002). Also

note the Cochrane measures are in general higher than the AR(1) measures. This should
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not be surprising either, as the Cochrane measure does not control for potential in�uence of

innovation on cyclical persistence (Fatas, 2000).

3.4 Preliminary cross-section evidence

We examine whether the cross-industry di¤erence in cyclical persistence contributes to that

in the baseline cyclicality of industry R&D. According to Proposition 2, higher persistence

makes R&D more likely to appear pro-cyclical as long as 1 + � ln " > 0.

Figure 1 shows ln (") (1� �) < 1 does not hold only when � is very low and when ln "

is very high. We �rst evaluate whether our sample industries fall into that value range.

According to Columns 5 and 6 of Table 1, both persistence measures stay within [�1; 1].

According to Figure 1, for � 2 [�1; 1], ln " needs to exceed 0:55 for 1 � ln (") (1� �) to

occasionally fall below zero.

Since " is not directly observable, we approximate ln " using output data. In our theory,

" has an unconditional mean of one, suggesting ln " �uctuates around zero. In our panel,

log output does not have a zero mean due to the existence of a growing trend. Thus, we use

output growth, as the di¤erence-detrended log output, to approximate the value range for

ln ". In our panel, annual industry output growth ranges from �0:55 to 0:48, suggesting ln "

�uctuates approximately within [�0:5; 0:5]. Therefore, we conclude ln (") (1� �) < 1 holds

so that Proposition 2 applies.

We proceed to examine whether R&D�s cyclicality relates to cyclical persistence cross-

section. Figure 2 plots, in the top two panels, the cyclicality of industry R&D as the

estimated �i1 based on (9) against the two persistence measures. Each dot indicates a

sample industry. In both panels, the two variables are positively correlated; the correlation

coe¢ cient equals 0:5234 for the Cochrane measure and 0:4433 for the AR(1) measure.

As a robustness check, the bottom two panels of Figure 2 repeat the plots, excluding

outlier industries �those with the highest or the lowest persistence as well as those with the

highest or the lowest estimate on �i1. In particular, Aerospace is excluded from both panels,
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as the industry with the highest persistence either based on the Cochrane measure or the

AR(1) measure and as the industry with the highest estimate on �i1; Scienti�c Instruments

is also taken out of both panels, as the industry with the lowest estimate on �i1; Autos and

Others is excluded from the left-bottom panel, as the industry with the lowest AR(1) mea-

sure; Drugs is taken out of the right-bottom panel, as the industry with the lowest Cochrane

measure. The bottom two panels of Figure 1 shows, without these outlier industries, the

positive correlation between the cyclicality of industry R&D and persistence becomes even

stronger. The correlation coe¢ cient equals 0:6152 in the left-bottom panel and 0:7035 for

the right-bottom panel.

Table 2 reinforces the impression from Figure 2. It summarizes the OLS results of re-

gressing c�1 on a constant and each of the persistence measures. The sample size is 20 for
the full sample and 17 for the sample excluding the outlier industries. The four estimated

coe¢ cients on persistence are all positive and signi�cant at the 10% level or above; excluding

the outlier industries generates bigger point estimates, implying a stronger positive relation-

ship. In summary, Figure 2 and Table 2 suggest industries with higher persistence display

stronger comovement between R&D and output.

However, such relationship does not serve as a strict test of our theory. Proposition 2

argues R�s response to " rises in �, not that R�s comovement coe¢ cient with Y rises in

�. Strictly speaking, our theory suggests higher � makes it more likely for R to co-move

positively with Y . To examine how cyclical persistence a¤ects the probability of industry

R&D�s being pro-cyclical, we estimate a linear probability model (LPM) and a probit model

:

P (proi = 1j�i) = �0 + �1�i + �i (12)

P (proi = 1j�i) = � (�0 + �1�i) :

proi equals one for the �ve industries whose c�1i are signi�cantly positive based on Table 1 �
16



Stones, Machinery, Electronics Equipment, Autos and Others, and Aerospace �and equals

zero otherwise. � is the standard normal distribution function. We estimate the LPM and

the probit model employing each of the persistence measures, with and without the outlier

industries.

Table 3 summarizes the estimation results of (12). Columns 2 and 3 report those of the

LPM; Columns 4 and 5 present those of the probit model. All eight estimated coe¢ cients on

the persistence are positive, one is signi�cant at the 10% level, one signi�cant at the 5% level,

and �ve are signi�cant at the 1% level. For example, according to the LPM estimates for

the full sample, industries with 10% higher AR(1) persistence measure are associated with

12:79% higher probability for their R&D to be pro-cyclical. The corresponding statistic with

the Cochrane persistence measure is 30:67%. Although these preliminary results are based

on a very small cross-section sample, they are consistent with our theoretical prediction

higher persistence causes R&D more likely to appear pro-cyclical.

3.5 Panel evidence

To test our theory with more observations and higher degrees of freedom, we run the following

panel regression:

4 lnRit = �i + �14 lnYit + �2�i4 lnYit + Xt + �it: (13)

Compared to (9), (13) replaces the constant with industry dummy �i, and adds an interac-

tion term �i4 lnYit. Xt is a vector of exogenous controls as in (9) including a quadratic time

trends allowed to di¤er before and after 1980 and a post-1992 dummy. Under this speci�ca-

tion, the estimate on �1 captures the average cyclicality of industry R&D, while that on �2

re�ects an additional impact of persistence. �2 > 0 under the null: higher �i makes R&D

more likely to be pro-cyclical.

Alternatively, (13) can be interpreted as follows: �i re�ects the extent to which present
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production will be carried into the future, so that �i4 lnYit captures the expected future

production. In other words, (15) estimates the correlation between present R&D and present

production, controlling for the expected future production. Our results are robust to replac-

ing the industry �xed e¤ect by the persistence measure �i or including lagged output. In

this paper we report estimates on the contemporaneous relationship between R&D growth

and output growth only. The estimated cumulative correlation in one year and two years

stay qualitatively similar, and are available upon request.

Table 4 summarizes the estimation results of (13). Panel 1 reports the results without

controlling for �i4 lnYit for comparison. Panel 2 reports those with �i as the Cochrane

measure; Panel 3 presents those with the AR(1) measure.

3.5.1 OLS estimation

Column 2 of Table 4 presents the OLS results of (13). In Panel 1 of Column 2, without con-

trolling for �i4 lnYit, industry R&D is pro-cyclical on average: 10% higher output growth is

associated with 1:01% higher R&D growth, signi�cant at the 5% level. In Panel 2 of Column

2, once �i4 lnYit is included with �i as the Cochrane measure, the estimated coe¢ cient on

4 lnYit becomes signi�cantly negative. In Panel 3 of Column 2, with �i as the AR(1) mea-

sure, the estimated coe¢ cient on 4 lnYit remains positive, but becomes small quantitatively

small and statistically insigni�cant. Most importantly, the OLS estimated coe¢ cients on

�i4 lnYit are positive and statistically signi�cant at the 1% level in both Panel 2 and Panel

3 of Column 2. This is consistent with our theory, implying R&D co-moves with output

more strongly for industries with higher persistence.

3.5.2 IV Estimation

Interestingly, Column 2 of Table 4 shows the OLS point estimate of the coe¢ cient on

�i4 lnYit with �i as the Cochrane measure is almost twice as big as that with the AR(1)

measure. This implies the Cochrane measure displays a stronger correlation with the mag-
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nitude of the pro-cyclicality of industry R&D. However, the estimate with the Cochrane

measure may be upper biased: according to Fatas (2000),the causality can run from R&D

to persistence. Such upper bias, although presumably smaller, can also be present for the

estimates with the AR(1) measure, as controlling for mean R&D level may not capture all

the impact of innovation on persistence.

To correct for such potential bias, we implement an instrumental-variable (IV) approach

with demand-shift instruments, treating both 4 lnYit and �i4 lnYit as endogenous. The

assumption is that demand in�uences production directly, and a¤ects R&D only indirectly

through its impact on 4 lnYit and �i4 lnYit. Demand�s in�uence on persistence can arise

from the persistence in demand itself or, alternatively, from persistence in output�s response

to demand �uctuations due to, for example, production adjustment cost that can vary by

industry.

While �nding good instruments that are both perfectly exogenous to industry R&D

and substantially relevant to industry output is di¢ cult in practice, we implement three

aggregate instruments that have frequently been applied in the literature. The �rst two

follow Ramey (1991), Shea (1993), and Ouyang (2010), using aggregate output as demand-

shift instruments for disaggregate industries. In particular, we apply the growths in real

GDP and in Industrial Production (IP) Index. The third instrument is taken from Basu,

Fernald, and Kimball (hereafter BFK) (2006) as a vector of monetary shocks, government

spending, and oil-price shocks.7

The two-stage least-square estimations treat 4 lnYit and �i4 lnYit as endogenous and

employ current value, one lag, and one lead of each instrumental variable. We employ the

instrument lag because aggregate shocks can have a lagged e¤ect on industry output. We

apply instrument lead because unobservable shocks to �nal demand may be �rst re�ected as

7The monetary shocks are measured as the quarterly VAR innovations to the 3-month Treasury bill rate,
government spending as the quarterly growth of real government spending, and the oil-price shocks as the
di¤erence between the log of the real re�ner acquisition price for crude oil and its maximum value in the
preceding four quarters. Following Basu et al. (2006), we take the sum of the quarterly shocks in the
preceding calendar year as our annual instruments. See Basu et al. (2006), Appendix I, for details.
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intermediate output before they are re�ected in measured �nal output, and because future

shocks can in�uence present output if they are fully or partially anticipated. Hence, the

IV estimates of the coe¢ cients on 4 lnYit and �i4 lnYit re�ect both the response of R&D

to output changes attributable to aggregate shocks, and how cyclical persistence a¤ects the

properties of such response.

Columns 3, 4 and 5 of Table 4 summarize the IV estimation results employing, corre-

spondingly, the real GDP growth, the IP growth, and the BFK shocks. Panel 1 shows,

without controlling for �i4 lnYit, all three IV estimates on the output coe¢ cient are pos-

itive, two signi�cant at the 10% level. This is consistent with Ouyang (2010) suggesting

R&D responds positively to demand-driven output �uctuations. However, once �i4 lnYit

is included as an additional endogenous term, all six IV estimates on the output coe¢ cient

turn negative; four are signi�cant at the 10% level or above. Most importantly, all six IV

estimates on the coe¢ cient of �i4 lnYit are positive and statistically signi�cant, and much

bigger in point estimates compared to the corresponding OLS estimates. Hence, the IV

estimation not only generates results consistent with the OLS results, but outperforms the

OLS results.

While the IV estimation results again support the theory, aggregate output and the BFK

shocks cannot be ideal instruments. A good instrument is supposed to be relevant to indus-

try output but exogenous to industry R&D. All three instruments are relevant, suggested

by the Anderson-Rubin F statistic for the �rst-stage joint signi�cance of the output terms.

However, they may not be exogenous. Aggregate output may re�ect common technology

shocks that impact industry R&D directly. Monetary shocks can in�uence industries�ability

to �nance R&D. Government spending can a¤ect industrial R&D through a spill-over e¤ect

from publicly-�nanced R&D. Oil-price shocks may change the relative R&D cost. Unfortu-

nately, identifying instruments that are completely un-correlated with R&D while, at the

same time, su¢ ciently correlated with output is a di¢ cult, if not impossible. Table 4 reports

the Hansen J statistics as an over-identi�cation test: according to the P values, we can-
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not reject the null that the instruments are not correlated with the second-stage regression

residual for any of the IV regressions, implying a reasonable exogeneity of the instruments.

In summary, Table 4 suggests the following. While both OLS and IV regression results

show industry R&D is pro-cyclical on average, controlling for cyclical persistence turns all

the output coe¢ cients either statistically insigni�cant or signi�cantly negative. The OLS

results suggest R&D is more procyclical for industries with higher persistence; the IV results

imply R&D responds more positively and strongly to output �uctuations driven by aggregate

shocks for industries with higher persistence. Moreover, the IV estimates outperforms the

OLS estimates based on the point estimates. This is again consistent with the null, implying

cyclical persistence as a useful factor in�uencing industry R&D�s cyclicality.

3.6 Persistence and Liquidity Constraint

Liquidity constraint has been proposed as another notable explanation for pro-cyclical R&D

by Aghion et al. (2005) and Ouyang (2010). They argue binding liquidity constraint hinders

the optimal timing of innovation, causing R&D to lower during recessions. Cyclical persis-

tence and liquidity constraint do not contradict each other: the former impacts the optimal

timing, while the latter hinders the optimal timing. As a matter of fact, cyclical persistence

and liquidity constraint can drive R&D pro-cyclical by working together.

To examine whether the impact of liquidity constraint and cyclical persistence are both

present on R&D�s cyclicality, we adopt a methodology by Ouyang (2010). Ouyang (2010)

argues binding liquidity constraint prevents R&D from rising but not from declining. There-

fore, if the optimal timing of R&D is counter-cyclical, then the cyclical response of R&D

should be asymmetric: it moves in the same direction with output when output declines

due to binding constraint, and in the opposite direction when output rises due to lower

opportunity cost.8 But according to our theory: the optimal timing of R&D may not be

8Ouyang (2010) argues this does not imply that R&D never rises, as it captures R&D�s response to
demand shocks only while, in practice, there can be supply shocks that drive R&D and output to rise
together.
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counter-cyclical, especially when cyclical persistence is su¢ ciently high.

To investigate whether the impact of liquidity constraint and persistence are both present

in our panel, we test the following:

4 lnRit = �i+�h1Dh4 lnYit+�h2Dh�i4 lnYit+�l1Dl4 lnYit+�l2Dl�i4 lnYit+Xt+�it: (14)

Compared to (13), (14) allows �1 and �2 to di¤er for increases and decreases in output. D
h =

1 when 4 lnYit � 4 lnYit�1 and equals zero otherwise; Dl = 1 when 4 lnYit < 4 lnYit�1

and equals zero otherwise. �i is the industry dummy; Xt is a set of exogenous controls as in

(9) and (13).

Under the null of persistence and liquidity constraint, persistence in�uences R&D�s re-

sponse only when liquidity constraint does not bind: �h2 > 0 and �
l
2 = 0. In other words,

when output decreases, R&D declines with output due to binding liquidity constraint; when

output rises, R&D may increase or decrease, depending on persistence. The underlying as-

sumption is that liquidity constraint binds only when output declines. If liquidity constraint

binds always, then R&D would co-move with output always; in that case, �h2 = �l2 = 0.

Conversely, �h2 > 0 and �
l
2 > 0 if liquidity constraint never binds.

We perform both OLS and IV estimations of (16) employing real GDP growth, IP growth,

and BFK shocks as instruments. The results are summarized in Table 5. Panel 1 reports

those without �i4 lnYit: the OLS estimate on output increases is positive, but statistically

insigni�cant; the OLS estimate on output decreases is positive and statistically signi�cant at

the 10% level. All three IV estimates on output increases are negative and signi�cant at the

10% level or above; all three IV estimates on output decreases are positive and signi�cant

at the 10% level or above. These results suggest pro-cyclical industry R&D comes from that

R&D tracks output declines (OLS results) and R&D�s response to output �uctuations driven

by aggregate shocks are asymmetric (IV results), consistent with Ouyang (2010).

The OLS and IV estimation results of (16) withDh�i4 lnYit andDl�i4 lnYit are reported
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in Panels 2 and 3 of Table 5. The �rst two rows of each panel present the estimates on �h1 and

�h2 , the coe¢ cients corresponding to output increases. All estimates on �
h
1 remain negative

and six remain statistically signi�cant. More importantly, all eight estimates on �h2 , the

coe¢ cient of Dh�i4 lnYit, are positive, and six are signi�cant at the 10% level or above.

Also, the point estimates on �h1 is bigger in absolute values compare to the corresponding

estimates in Panel 1when the estimates on �h2 are statistically signi�cant. This implies, for

industries with higher persistence, R&D tends to decrease by less or even increase when

output rises. In other words, the impact of persistence on R&D�s response is present when

output rises, consistent with the null.

The third and fourth rows of Panels 2 and 3 report the estimates on �h1 and �
h
2 , the

coe¢ cients corresponding to output decreases. None of the estimates on �l2 is statistically

signi�cant, suggesting the in�uence of persistence is not present when output declines. As

a matter of fact, all 16 estimates on either �l1 and �
l
2 are statistically insigni�cant. This

suggests the speci�cation of including Dl�i4 lnYit is not favorable to estimate how R&D

responds to output decreases. While the results are not reported here, we experimented

with dropping Dl�i4 lnYit when estimating (16), and �nd the estimated �l1 remain positive

and statistically signi�cant as in Panel 1 of Table 5. We interpret this as R&D�s responses

to output decreases is driven by binding constraint rather than persistence.

In summary, the results in Table 5 are consistent with the null: the impact of persistence

and liquidity constraint on R&D�s cyclicality are both present, liquidity constraint drives

R&D and output to decline together, while higher persistence raises R&D�s response when

output rises and when liquidity constraint does not bind.

4 Conclusion

We propose one additional factor in�uencing the optimal timing of innovation � cyclical

persistence. By analyzing a simple two-period model, we posit the cyclicality of innovation
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is determined by the cyclical responses of two factors: innovation�s marginal return and

its marginal opportunity cost. Higher persistence raises the cyclical response of innovation

marginal return, and drives R&D procyclical. We carry our theory to an industry panel of

output and R&D. We �nd cyclical persistence, measured in various ways, helps to account

for the observed cross-industry di¤erences in R&D�s cyclicality.

However, cyclical persistence cannot be the only in�uence on the cyclicality of innova-

tion. In addition to innovation�s opportunity cost originally proposed by Schumpeter (1939)

and liquidity constraint argued by Aghion et al. (2005)�several other in�uences have been

proposed by the recent literature. These include Fatas (2000) who models pro-cyclical la-

bor supply, Barlevy (2007) who stresses dynamic externalities inherent to the innovation

process, and Francois and Lloyd-Ellis (2009) who separates innovation into three stages in

which R&D rises during the implementation boom. All these factors are likely to in�uence

R&D�s cyclicality in reality. As a matter of fact, we �nd the impact of persistence and

liquidity constraint on R&D�s cyclicality are both present in our panel. Future research

should evaluate the quantitative in�uence of each of these factors on the cyclicality of R&D,

to shed light on how short-run cycles and long-run growth are linked together through the

innovation channel.
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Industry 1987 SIC Corr(Rt,Yt ) c�i1 Cochrane AR(1)
Food 20, 21 0:0741 0:0269 0:2044 0:0731
Textile 22,23 0:1514 0:3098 0:2795 0:1486
Lumber 24,25 0:0193 �0:1131 0:3007 0:1346
Paper 26 �0:0787 �0:1931 0:3225 �0:0457
Industry Chemicals 281,282, 286 �0:1069 �0:0633 0:3140 0:0761
Drugs 284 0:2243 0:3229 0:2871 0:1833
Other Chemicals 283, 285, 287, 289 �0:1501 �0:2984 0:1589 0:0667
Petroleum 29 �0:3144 �0:1263�� 0:2579 0:0330
Rubber 30 0:1866 0:2203 0:3188 0:1123
Stones 32 0:3208 0:6424�� 0:2758 0:1947
Furrous Metals 331, 332, 339 0:0327 0:0188 0:3711 0:0517
Non-Ferrous Metals 333, 334, 335, 336 �0:0690 �0:0049 0:2996 0:0142
Metal Products 34 0:1050 0:0142 0:2488 0:2256
Machinery 35 0:1627 0:5022�� 0:2910 0:4096��

Eletronics Equip. 366-367 0:4594 0:2122�� 0:3767 0:4866��

Other Equip. 361-365, 369 0:0672 0:0228 0:3753 0:0670
Autos and Others 371, 373-75, 379 0:4363 0:2274�� 0:2813 �0:0586
Aerospace 372, 376 0:3736 0:6917��� 0:2976 0:5053���

Scienti�c Instruments 381,382 �0:0537 �0:3243 0:6236 0:4185��

Other Instruments 384-387 0:3484 0:2010 0:3570 0:2664�

average 0:1047 0:1351� 0:3121 0:1858��

Table 1: The Cyclicality of R&D and The Cyclical Persistence of 20 Manufacturing Indus-
tries. corr(R, Y) is the time-series correlation between R&D growth and output growth;
�1 is the OLS estimate on output coe¢ cient of equation (9) in the text, regressing R&D
growth on a constant and output growth; Data on output is from the NBER Manufacturing
Productivity database; data on R&D by industry is from the NSF. Based on robust standard
errors, � indicates signi�cance at the 10% level; �� indicates signi�cance at the 5% level; ���

indicates signi�cance at the 1% level. See text for details.
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c�i1 = � + ��i + � i
AR(1) Measure Cochrane Measure

indep. var. Full sample No outliers Full sample No outliers

Persistence
0:7434�

(0:4244)
1:1003���

(0:3511)
1:6287��

(0:5782)
3:8002���

(0:9799)

Constant
�0:0105
(0:0670)

�0:0620
(0:0571)

�0:3938�
(0:1952)

�1:0464���
(0:2807)

# of obs. 20 17 20 17
R2 0:1965 0:3784 0:2729 0:4949

Table 2: Industry R&D�s cyclicality and cyclical persistence. The OLS results by regress-
ing the estimated R&D�s cyclicality, namely, the estimated output coe¢ cients in (9), on a
constant and persistence measure for the full sample and for the restricted sample excluding
the outlier industries. The outlier industries are those either with the highest or the lowest
measure on persistence or with the highest or the lowest estimates on R&D�s cyclicality. The
outlier industries excluded under the AR(1) measure are Aerospace, Scienti�c Instruments,
and Autos and Others; those excluded under the Cochrane measure are Aerospace, Scienti�c
Instruments, and Drugs. Robust standard errors are in parentheses. See text for details.
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LPM Probit

indep. var.
Full Sample
20 obs.

No Outliers
18 obs.

Full Sample
20 obs.

No Outliers
18 obs.

Estimated Persistence
1:2778�

(0:6527)
1:5936��

(0:6098)
3:7685
(2:3344)

7:1728���

(2:6720)

constant
0:0350
(0:1442)

�:0916
(0:0688)

�1:3953��
(0:6522)

�2:5893���
(0:7981)

Log-likelihood - - �9:1051 �4:7217
Pseudo R-squared 0:2374 0:3856 0:1904 0:4178

Cochrane Persistence
3:0667���

(0:6526)
5:7872���

(1:9150)
29:4962���

(11:2570)
29:4962���

(11:2901)

constant
�0:7070���
(0:6526)

�1:5329��
(0:5581)

�10:1907���
(3:8406)

�10:1907���
(3:8519)

Log-likelihood - - �5:3008 �5:3008
Pseudo R-squared 0:3958 0:3861 0:5287 0:4440

Table 3: LPM and Probit Estimations of the impact of cyclical persistence on industry
R&D�s being pro-cyclical for the full sample and for the sample excluding outlier industries
LPM refers to the Linear Probability Model. The LPM is estimated as ordinary least square
and the probit model is estimated using maximum likelihood. The dependent variable is a
dummy that equals one if the estimate on output growth in (9), as listed in the fourth column
of Table 1, is positive and signi�cant at 10% level or above. The Pseudo R-squared for the
LPM is just the usual R-squared for OLS; the Pseudo R-squared for probit is calcuated
according to Wooldrige (2002). Robust standard errors are in parentheses. � indicates
signi�cance at 10% level. �� indicates signi�cance at 5% level. ��� indicates signi�cance at
1% level. See text for details. See notes to Table 2 for outlier industries. See notes to Tables
1 for data sources.
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indep. var. OLS IV(i) IV(ii) IV(iii)
Panel 1: 4 lnRit= �i+�14 lnYit+Xt+�it:

4 lnYit
0:1016��

(0:0672)
0:1585�

(0:0817)
0:1356�

(0:0677)
0:0424
(0:0750)

Anderson-Rubin F-Stat
P-value

4:95
0:0263

2:43
0:0639

2:77
0:0409

3:33
0:0031

Hansen-J Stat.
P-value

-
4:787
0:3098

7:507
0:1114

7:059
0:4228

4 lnRit= �i+�14 lnYit+�2�i4 lnYit+Xt+�it:
Panel 2: �i as Cochrane measure

4 lnYit
�0:3527��
(0:1410)

�1:7298�
(1:0242)

�1:9916��
(0:9769)

�2:8164���
(1:0824)

�i4 lnYit
1:4823���

(0:4117)
6:0483�

(3:2784)
6:8955��

(3:1642)
9:2050���

(3:5061)
Anderson-Rubin F-Stat

P-value
4:17
0:0158

2:43
0:0639

2:77
0:0409

2:72
0:0040

Hansen-J Stat.
P-value

-
0:192
0:6608

0:257
0:6125

10:300
0:1722

Panel 3: �i as AR(1) measure

4 lnYit
0:0032
(0:0785)

�0:2361
(0:2365)

�0:2806
(0:2275)

�0:5141��
(0:2076)

�i4 lnYit
0:7680���

(0:2177)
2:9008�

(1:6232)
3:0280��

(1:5328)
3:8710���

(1:4269)
Anderson-Rubin F-Stat

P-value
7:40
0:0007

2:43
0:0639

2:77
0:0409

2:72
0:0040

Hansen-J Stat.
P-value

-
0:002
0:9607

0:788
0:3748

10:779
0:1486

Table 4: Panel estimation results of the cyclicality of R&D and cyclical persistence. The
sample size is 800. The two-stage least-square estimation threats the output terms as en-
dogenous and employs the current value, one lag, and one lead of each instrumental variable.
The results summarized under IV(1) are from estimation with the real GDP growth as the
instrument; those under IV(2) are from estimation with the IP growth as the instrument; and
those under IV(3) are from estimation with the monetary shocks, government spending, and
oil-price shocks by Basu et al. (2006). The Anderson-Rubin F-stat. for weak instruments
and the Hansen-J stat. for over identi�cation are computed based on Baum et al. (2007).
The Anderson-Rubin F-stat. for OLS is the F statistics that test the joint signi�cance of
the output terms. Robust standard errors clustered by industry are in parentheses. � indi-
cates signi�cance at the 10% level. �� indicates signi�cance at the 5% level. ��� indicates
signi�cance at the 1% level. See notes to Table 1 for data sources and cyclical persistence
measures. See text for more details.
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indep. var. OLS IV(i) IV(ii) IV(iii)
Panel 1: 4 lnRit = �i + �1Dh4 lnYit + �2Dl4 lnYit + Xt + �it:

Dh4 lnYit
0:1246
(0:1035)

�0:8710�
(0:4334)

�0:6449��
(0:3243)

�0:9425�
(0:5527)

Dl4 lnYit
0:1440�

(0:0652)
0:6777���

(0:2415)
0:5517���

(0:2012)
0:5305�

(0:2876)
Anderson-Rubin F-Stat

P-value
-

5:08
0:0094

7:02
0:0020

2:50
0:0584

Hansen-J Stat.
P-value

-
0:301
0:5832

1:129
0:2879

0:983
0:3215

4 lnRit= �i+�
h
1D

h4 lnYit+�
h
2D

h�i4 lnYit+�
l
3D

l4 lnYit+�
l
4D

l�i4 lnYit+Xt+�it:
Panel 2: �i as Cochrane measure

Dh4 lnYit
�0:5250
(0:3260)

�3:6135�
(1:9565)

�3:185��
(1:5025)

�4:0852��
(1:9350)

Dh�i4 lnYit
1:8804�

(0:9914)
11:8544�

(7:1870)
10:0848�

(5:6645)
11:9606�

(6:7061)

Dl4 lnYit
�0:3103
(0:2951)

1:4956
(2:5533)

0:6525
(2:1181)

�1:7375
(2:6448)

Dl�i4 lnYit
1:2767
(0:9662)

�4:4624
(8:7896)

�1:6054
(7:1980)

6:4107
(9:0564)

Anderson-Rubin F-Stat
P-value

-
2:65
0:0104

2:65
0:0104

2:72
0:0040

Hansen-J Stat.
P-value

-
3:527
0:3173

4:651
0:1992

4:577
0:4697

Panel 3: �i as AR(1) measure

Dh4 lnYit
�0:1389
(0:1067)

�0:8226��
(0:4181)

�0:6153�
(0:3436)

�1:0953��
(0:4894)

Dh�i4 lnYit
1:2493���

(0:3208)
4:5549
(3:1853)

2:5553
(2:1359)

4:8464�

(2:7753)

Dl4 lnYit
0:0912
(0:0791)

0:0777
(0:3634)

�0:14278
(0:3505)

�0:2006
(0:3381)

Dl�i4 lnYit
0:1761
0:4898

1:3742
(2:7565)

2:9967
(2:4076)

3:8306
(2:4505)

Anderson-Rubin F-Stat
P-value

-
2:97
0:0072

2:65
0:0104

2:72
0:0040

Hansen-J Stat.
P-value

-
3:753
0:1531

5:519
0:1375

4:364
0:4983

Table 5: Persistence and Liquidity Constraint. This table reports the estimation results
by allowing the coe¢ cients of the output terms to di¤er for output increases and output
decreases. The null is persistence has impact only when output rises. Robust standard
errors clustered by industry are in parentheses. � indicates signi�cance at the 10% level. ��

indicates signi�cance at the 5% level. ��� indicates signi�cance at the 1% level. See notes to
Table 1 for data sources and cyclical persistence measures. See notes to Table 4 for results
assuming common coe¢ cients on output increases and decreases. See text for more details.
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5 Appendix:

5.1 Discrete Production Shocks: Robustness Check

In our model, " takes continuous value, but it can take discrete values in a di¤erent set

up. For example, suppose that " follows a two-state Markov process with values "l and "h;

" persists with probability � and switches value with probability 1 � �: E ("t+1j"t = "i) =

"�i+� ("i � "�i), where i = h; l. Suppose that the standard assumptions hold and an interior

solution exists. The �rst-order condition with respect to R gives:

"i�(1�R�)��1 = � ( � 1)
1 + r

�
"�i + �

�
"i � "�i

��
� �c, i = h; l. (2)

Let Rh to be the optimal R� with "h, and Rl to that with "l. It can be shown that Rh < Rl

if and only if (�1)(1��)
(1+r)

�
"h + "l

�
> c.

To see whether Propositions 1 and 2 apply to this case, assume that " rises from "l to "h.

Then the change in the marginal expected return to innovation is �(�1)
1+r

(2�� 1)
�
"h � "l

�
;

and the change in the marginal opportunity cost of innovation before the entrepreneur chooses

a new R�, is
�
"h � "l

�
�(1 � Rl)��1, which equals

�
"h � "l

�n�(�1)
1+r

h
�+ (1� �) "h

"l

i
� �c

"l

o
.

With (�1)(1��)
(1+r)

�
"h + "l

�
> c, the latter dominates the former and R� must decline for (10)

to hold. This is consistent with Proposition 1.

In this case, x, the magnitude of the change in the marginal opportunity cost relative to

that in the marginal expected return, is:

x =
�
"h � "l

� �� ( � 1)
1 + r

(1� �)
�
1 +

"h

"l

�
� �c
"l

�
(3)

Apparently, dx
d�
< 0. Higher � reduces this relative magnitude, so that innovation is less

likely to decline in response to an increase in " from "l to "h. This is, again, consistent with

Proposition 2.
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