
Appendix
Proof. Proposition 1. According to steady-state demand condition,
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, where fss (θe, a;D) is the steady-state measure of plants with age a and the expected idiosyncratic pro-

ductivity θe. More specifically,

fss (θu, a;D) = fss (0,D) (1− p)
a (A2)

fss (θg, a;D) = fss (0,D)ϕ [1− (1− p)
a
]

By definition, a steady state features time-invariant distribution of plants across a and θe. This implies that

PA has to be time-invariant for (A1) to hold.

In addition to (A1), fss (0,D), assu (D) and assg (D) have to satisfy the following conditions. The exit

condition for a good plant is:
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The exit condition for an unsure plant is
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The free entry condition is:
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Furthermore, (A3) suggests:
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Plugging (A6) and (A2) into (A1) gives

D =
Ψ
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Plugging (A6) into (A4) gives
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Notice that D does not enter (A8), so that, as long as (A8) determines an unique value for assg (D)−assu (D),

(A7) and (A5) (with (A6) plugged in) would jointly determine assg (D) and f
ss(0,D) with assu (D) = assg (D)−¡

assg (D)− assu (D)
¢
. It turns out that, for (A8) to reveal a unique solution for assg (D)− assu (D), it requires

that θu < θg, which holds by definition. This proves Proposition 1.

Proof. Proposition 4. Plugging (13) into (12) gives
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which suggests
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Combining (A7) and (A10) gives
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where assu (D) = assg (D)−
¡
assg (D)− assu (D)

¢
with

¡
assg (D)− assu (D)

¢
determined by (A8) independently.

Apparently, the right-hand side of (A11) increases monotonically in assg (D). This implies that higher D

leads to higher assg (D) and assu (D). Moreover, the right-hand side of (A10) also increases monotonically

in assg (D), which suggests that, by causing higher a
ss
g (D), higher D will also give higher fss (0,D). This

proves Proposition 4.

0.1 Approximating Value Functions with Krusell & Smith (1998) Approach

The key computational task is to map F , the plant distribution across ages and idiosyncratic productivity,

given demand level D, into a set of value functions V (θe, a;F,D). To make the state space tractable, we

define a variable X such that:

X (F ) =
X
a

X
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f (θe, a) q(θe, a) (A12)

where f (θe, a), as a component of F , measures the mass of plants with expected idiosyncratic productivity

θe and age a. Apparently,
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D
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. (A13)

F 0 is the updated plant distribution after entry and exit and F 0 = H (F,D); P (F,D) is the equilibrium

price in a period with initial aggregate state (F,D). Plugging (A13) into (4) gives
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Thus, the aggregate state (F,D) and its law of motion help plants to predict future profitability by

suggesting sequences of X’s from today onward under different paths of demand realizations. The question

then is: what is the plant’s critical level of knowledge of F that allows it to predict the sequence of X 0s over

time? Although plants would ideally have full information about F , this is not computationally feasible.
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Ω {X}

HΩ
Hx(X,Dh): logX 0 = 0.0321 + 0.9837 logX
Hx (X,Dl) : logX 0 = 0.0568 + 0.9354 logX

R2
for Dh: 0.9999
for Dl: 0.9924

standard forecast error
for Dh: 5.4× 10−7%
for Dl : 7.7× 10−7%

maximum forecast error
for Dh: 3.24× 10−6%
for Dl: 4.38× 10−6%

Den Haan & Marcet test statistic
(χ27)

0.4336

Table 1: The Estimated Laws of Motion and Measures of Fit

Therefore we need to find an information set Ω that delivers a good approximation of plants’ equilibrium

behavior, yet is small enough to reduce the computational difficulty.

We look for an Ω through the following procedure. In step 1, we choose a candidate Ω. In step 2, we

postulate perceived laws of motion for all members of Ω, denoted HΩ, such that Ω0 = HΩ (Ω,D). In step

3, given HΩ, we calculate plants’ value functions on a grid of points in the state space of Ω applying value

function iteration, and obtain the corresponding industry-level decision rules — entry sizes and exit ages

across aggregate states. In step 4, given such decision rules and an initial plant distribution. We simulate

the behavior of a continuum of plants along a random path of demand realizations, and derive the implied

aggregate behavior – a time series of Ω. In step 5, we use the stationary region of the simulated series to

estimate the implied laws of motion and compare them with the perceived HΩ; if different, we update HΩ,

return to step 3 and continue until convergence. In step 6, once HΩ converges, we evaluate the fit of HΩ in

terms of tracking the aggregate behavior. If the fit is satisfactory, we stop; if not, we return to step 1, make

plants more knowledgeable by expanding Ω, and repeat the procedure.

We start with Ω = {X} – plants observe X instead of F . We further assume that plants perceive the

sequence of future coming X 0s as depending on nothing more than the current observed X and the state

of demand. The perceived law of motion for X is denoted Hx so that X 0 = Hx (X,D). We then apply

the procedure described above and simulate the behavior of a continuum of plants over 10000 periods. The

results are presented in Table 5.

As shown in Table 5, the estimated Hx is log-linear. The fit of Hx is quite good, as suggested by the

high R2, the low standard forecast error, and the low maximum forecast error. The good fit when Ω = {X}

implies that plants perceiving these simple laws of motion make only small mistakes in forecasting future

prices. To explore the extent to which the forecast error can be explained by variables other than X, we

implement the Den Haan and Marcet (1994) test using instruments [1,X, μa, σa, γa, κa, ru], where μa, σa,

γa, κa,ru are the mean, standard deviation, skewness, and kurtosis of the age distribution of plants, and
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Ω {X,σa}

HΩ

booms ( logX):
logX 0 = −1.0406 + 0.9954 logX + 0.1262σa
booms(σa):
σ0a = 0.2785− 0.0068 logX + 0.9754σa
recessions( logX):
logX 0 = −1.0371 + 0.9963 logX + 0.8988σa
recessions(σa):

σ0a = 0.2775− 0.0065 logX + 0.9751σa

R2

booms ( logX): 0.9999
recessions( logX): 0.99999
booms (σa): 0.9989
recessions(σa): 0.9990

standard forecast er-
ror

booms ( logX): 1.1× 10−8%
recessions( logX): 1.2× 10−8%
booms (σa): 6.4× 10−9%
recessions(σa):6.25× 10−9%

maximum forecast er-
ror

booms ( logX): 4.87× 10−8%
recessions( logX):5.05× 10−8%
booms (σa):1.48× 10−8%
recessions(σa):1.51× 10−8%

Den Haan & Marcet
test statistic

¡
χ27
¢ 0.4375

Table 2: The Estimated Laws of Motion with two moments and Measures of Fit

the fraction of unsure plants, respectively. The test statistic is 0.4336, well below the critical value at the

1% level. This suggests that given the estimated laws of motion, we do not find much additional forecasting

power contained in other variables. Nevertheless, we expand Ω further to include σa, the standard deviation

of the age distribution of firms. The results when Ω = {X,σa} are shown in Table 1.
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