
The Scarring Effect of Recessions: Appendix

1 Proof of Proposition 1

According to the condition of competitive pricing and the definition of a steady state,

D = PtAt ·
½

auP
a=0

£
θuf (θu, a) (1 + γ)−a

¤
+

agP
a=0

£
θgf (θg, a) (1 + γ)−a

¤¾
(A1)

with D as the time-invariant demand, f (θe, a) the time-invariant number of firms with

(θe, a), and ag, au the time-invariant exit ages for good and unsure firms. It suggests that

PtAt must also be time-invariant. We let PtAt = PA.

Proof. f (0) represents the time-invariant entry size at the steady state. Let V (θe, a) be

the time-invariant expected value of staying of a firm with belief θe and age a. The exit

condition for good firms, V (θg, ag) = 0, suggests:

θgPA (1 + γ)−ag − 1 = 0. (A2)

With f (θe, a) given by all-or-nothing learning, (A1) and (A2) together with the steady-state

structure as shown in Figure 2, imply

f(0)
(1 + γ)ag

θg

⎡⎢⎢⎣ (θu − ϕθg)
auP
a=0

³
1−p
1+γ

´a
+ ϕθg

agP
a=0

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
⎤⎥⎥⎦ = D. (A3)

The free entry condition, V (θu, 0) = c0 + c1f (0), suggests

auX
a=0

βa
∙

PAθu
(1 + γ)a

− 1
¸
λ (θu, a) +

agX
a=0

βa
∙

PAθg
(1 + γ)a

− 1
¸
λ (θg, a) = V (θu, 0) = c0 + c1f(0).

(A4)

λ (θu, a) and λ (θg, a) are the probabilities of staying in operation at age a as an unsure firm

and a good firm, and are given by the all-or-nothing learning.
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The exit condition for unsure firms, V (θu, au) = 0, gives:

θuPA (1 + γ)−au − 1 + βpϕ

agX
a=au+1

βa−au−1
£
θgPA (1 + γ)−a − 1

¤
= 0 (A5)

Combining (A2) and (A5) givesµ
θu
θg
+

pϕβ

1 + γ − β

¶
(1 + γ)ag−au = 1 +

pϕβ

1− β
− pϕβγ

(1− β) (1 + γ − β)
βag−au. (A6)

(A6) solves ag − au. To establish the existence and the uniqueness of the solution, let

F (ag − au) represents the left-hand side, and G (ag − au) be the right-hand side of (A6). It

can be shown that G0 > 0 but G00 < 0, F 0 > 0 and F 00 > 0; moreover,

F (0) < G (0) as long as
θu
θg

< 1

Since θu < θg holds by definition, F and G must cross once at a positive value of ag− au, as

shown in the following figure

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

Hence, (15) determines a unique value for ag − au. With au = ag − (ag − au) and A(2),

(A3) and (A4) jointly determine f(0) and ag when c1 = 0.

Notice that with entry cost independent of entry size, c1 = 0. (A6), (A3) and (A4)

become recursive. (A6) determines ag − au. With au = ag − (ag − au), (A4) determines

ag. Then (A3) determines f(0). Since D is only present in (A3), variations in D would be

exclusively accommodated by variations in f(0).
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2 Proof of Proposition 2

combining (A3 ) with (A4) and replacing au by ag − (ag − au) gives

(1 + γ)ag

θg

⎡⎢⎢⎣ (θu − ϕθg)
auP
a=1

³
1−p
1+γ

´a
+ ϕθg

agP
a=1

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
⎤⎥⎥⎦×

c−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(1 + γ)ag

θg

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

auP
a=1

βa

⎡⎣ (1− p)a
³

θu
(1+γ)a

− 1
´
+

ϕ (1− (1− p)a)
³

θg
(1+γ)a

− 1
´ ⎤⎦+

ϕ
³
1− (1− p)au+1

´ agP
a=au+1

βa
³

θg
(1+γ)a

− 1
´
+

θu − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= D

The left-hand monotonically increases in ag. Hence,
d(ag)
dD
≥ 0. With ag − au independent of

D as suggested by (A6), d(au)
dD

= d(ag−(ag−au))
dD

≥ 0.
Proof. Similarly, with ag − au independent of D,

d(jdss)
dD

= d(jdss)
dau

dau
dD
≤ 0.

3 Proof of Proposition 3

Proof.

lssg =

agP
a=0

[f (θg, a) + ϕf (θu, a)]

agP
a=0

[f (θg, a) + f (θu, a)]

=
ϕ(au + 1) + ϕ

h
1− (1− p)au+1

i
(ag − au)

auP
a=0

[ϕ+ (1− ϕ) (1− p)a] + ϕ
h
1− (1− p)au+1

i
(ag − au)

= 1−

auP
a=0

(1− ϕ) (1− p)a

auP
a=0

[ϕ+ (1− ϕ) (1− p)a] + ϕ
h
1− (1− p)au+1

i
(ag − au)

= 1− (1− ϕ)
pϕ(au+1)

1−(1−p)au+1 + (1− ϕ) + pϕ (ag − au)
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(15) implies that ag − au is independent of D, so that

d (lg)

d (D)
=

d (rg)

d (au)

d (au)

d (D)

Proposition 3 has established that d(au)
d(D)
≥ 0. Therefore, d(lg)

d(D)
≥ 0 if and only if d(lg)

d(au)
≥ 0.

With au+1
1−(1−p)au+1 = x, d(lg)

d(au)
= d(lg)

d(x)
d(x)
d(au)

. Since d(lg)
d(x)

> 0, d(lg)
d(au)

≥ 0 if and only if d(x)
d(au)

≥ 0.
Hence, we need to prove that d(x)

d(au)
≥ 0.

1− (1− p)au+1 is plotted in the following graph as a function of au + 1. Since

d
³
1− (1− p)au+1

´
d (au + 1)

= − (1− p)au+1 ln (1− p) > 0

but
d2
³
1− (1− p)au+1

´
d (au + 1)

2 = − (1− p)au+1 (ln (1− p))2 < 0,

the curve is concave.

au

1 1− −( )p au

θ

au

1 1− −( )p au

au

1 1− −( )p au

θ

au

1 1− −( )p au

Clearly, it indicates that x = au+1
1−(1−p)au+1 = cot (θ) .The concavity of the curve suggests

that as au increases, the angle of θ shrinks and cot (θ) increases. Therefore, x increases in

au.

4 Calibrating High Demand, Low Demand, and the

Entry Cost

The algorithm includes the following steps:

1. Loop around three conditions to find agh. It generates an average firm age of around

58 quarters, a mean entry rate of around 3.11%, and a mean exit rate of around 3.44%.
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2. Let the exit margin to shift from agh to younger age quarter by quarter, until it

generates the observed peak in exit rate. We then use the observed trough in entry

rate to find the proportional drop in entry size at this moment. This is when low

demand hits the high-demand equilibrium.

3. Use the size of the shift and the proportional drop in entry size to calculate the output

at this moment normalized by the high-demand entry size, which, combined with (A2)

from Appendix 1, gives us Dl
fh
.

4. Assume that demand stays low. Let the exit margin to move to older age quarter by

quarter; meanwhile, calculate the exit rate arising from the learning margin. Stops

when it reaches the observed minimum exit rate. Move the exit margin back by one

quarter — this is where agl positions.

5. Calculate Dl
fl
using (A3), which, together with Dl

fh
from Step 3, determines fh

fl
.

6. Use (A2) and (A4) to find the entry values: V h and V l. Calculate c0 by equating
fh
fl

to V h−c0
V l−c0 .

7. Calculate fh and fl using V h = c0 + c1fh and V l = c0 + c1fl.

8. With fh and fl, we calculate Dh and Dl using (A3).

5 Approximating Value Functions with the Krusell-

Smith Approach

The key computational task is to map F , the firm distribution across ages and idiosyncratic

productivity, given demand level D, into a set of value functions V (θe, a;F,D). To make

the state space tractable, we define a variable X such that:

X (F ) =
X
a

X
θe

(1 + γ)−aθef (θe, a) . (A7)

Combining (A7) with (8) and (9) in the article gives

P (F,D)A =
D

X (F 0)
.

A is the leading technology; F 0 is the updated firm distribution after entry and exit; X 0

corresponds to F 0; P (F,D) is the equilibrium price in a period with initial aggregate state
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(F,D). Since F 0 = H(F,D), the above equation can be re-written as

P (F,D)A =
D

X (H (F,D))

Given these definitions, the single-period profitability of a firm of idiosyncratic productivity

θe and age a, given aggregate state (F,D), equals

π (a, θ;F,D) =
D

X (H (F,D))
(1 + γ)−a(θ + ε)− 1. (A8)

Thus, the aggregate state (F,D) and its law of motion help firms to predict future

profitability by suggesting sequences of X’s from today onward under different paths of

demand realizations. The question then is: what is the firm’s critical level of knowledge of F

that allows it to predict the sequence of X 0s over time? Although firms would ideally have

full information about F , this is not computationally feasible. Therefore we need to find an

information set Ω that delivers a good approximation of firms’ equilibrium behavior, yet is

small enough to reduce the computational difficulty.

I look for an Ω through the following procedure. In step 1, we choose a candidate Ω.

In step 2, we postulate perceived laws of motion for all members of Ω, denoted HΩ, such

that Ω0 = HΩ (Ω,D). In step 3, given HΩ, we calculate firms’ value functions on a grid of

points in the state space of Ω applying value function iteration, and obtain the corresponding

industry-level decision rules — entry sizes and exit ages across aggregate states. In step 4,

given such decision rules and an initial firm distribution. We simulate the behavior of a

continuum of firms along a random path of demand realizations, and derive the implied

aggregate behavior – a time series of Ω. In step 5, we use the stationary region of the

simulated series to estimate the implied laws of motion and compare them with the perceived

HΩ; if different, we update HΩ, return to step 3 and continue until convergence. In step 6,

once HΩ converges, we evaluate the fit of HΩ in terms of tracking the aggregate behavior. If

the fit is satisfactory, we stop; if not, we return to step 1, make firms more knowledgeable

by expanding Ω, and repeat the procedure.

I start with Ω = {X} – firms observe X instead of F . We further assume that firms

perceive the sequence of future coming X 0s as depending on nothing more than the current

observed X and the state of demand. The perceived law of motion for X is denoted Hx

so that X 0 = Hx (X,D). We then apply the procedure described above and simulate the

behavior of a continuum of firms over 5000 periods. The results are presented in Table 1.

The estimated Hx is log-linear. The fit of Hx is quite good, as suggested by the high

R2, the low standard forecast error, and the low maximum forecast error. The good fit
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when Ω = {X} implies that firms perceiving these simple laws of motion make only small
mistakes in forecasting future prices. To explore the extent to which the forecast error can

be explained by variables other than X, we implement the Den Haan and Marcet (1994) test

using instruments [1,X, μa, σa, γa, κa, ru], where μa, σa, γa, κa,ru are the mean, standard

deviation, skewness, and kurtosis of the age distribution of firms, and the fraction of unsure

firms, respectively. The test statistic is 0.7343, well below the critical value at the 1% level.

This suggests that given the estimated laws of motion, we do not find much additional

forecasting power contained in other variables.

Figure A1 displays the value of staying for heterogeneous firms as a function of a, θe,

D and X (logX). Figure A2 displays the corresponding optimal exit ages and entry sizes.

These tables and figures suggest that our solution using X to approximate the aggregate

state closely replicates optimal firm behavior at the equilibrium. These results were robust

when experimented with different parameterization of the model. Therefore, we use the

solution based on Ω = {X} to generate all the relevant series.
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Figure 1: Figure A1: Expected Value of Staying: aggregate state variables are D and logX (the log
of detrended output), firm-level state variables are firm age and expected idiosyncratic productivity
(good or unsure); the parameter choices underlying these figures are summarized in Table 1 in the
article.
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Figure 2: Figure A2: Industry-level Policy Functions: Entry Size and Exit Ages. Aggregate states
are D (booms or recessions) and logX (the log of detrended output).
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Ω {X}

HΩ
Hx(X,Dh): logX 0 = 0.7565 + 0.9118 logX
Hx (X,Dl) : logX 0 = 1.9672 + 0.7647 logX

R2
for Dh: 0.9994
for Dl: 0.8747

standard forecast error
for Dh: 0.0000029724%
for Dl: 0.000032543%

maximum forecast error
for Dh: 0.0000627%
for Dl: 0.0008125%

Den Haan &Marcet test sta-
tistic (χ27)

0.9536

Table 1: The Estimated Laws of Motion and Measures of Fit
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