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Abstract

Generative approaches to language have long recognized the natural link between
theories of knowledge representation and theories of knowledge acquisition. The basic
idea is that the knowledge representations provided by Universal Grammar enable chil-
dren to acquire language as reliably as they do because these representations highlight
the relevant aspects of the available linguistic data. So, one reasonable evaluation of
any theory of representation is how useful it is for acquisition. This means that when
we have multiple theories for how knowledge is represented, we can try to evaluate
these theoretical options by seeing how children might use them during acquisition.
Computational models of the acquisition process are an effective tool for determining
this, since they allow us to incorporate the assumptions of a representation into a cog-
nitively plausible learning scenario and see what happens. We can then identify which
representations work for acquisition, and what those representations need to work.
This in turn allows us to refine both our theories of how knowledge is represented and
how those representations are used by children during acquisition. I discuss two case
studies of this approach for representations in metrical stress and syntax, and consider
what we learn from this computational acquisition evaluation in each domain.



1 Introduction

A core premise of generative linguistic theorizing is that the knowledge representations pro-
vided by Universal Grammar (UG) are what makes acquisition happen so fast and so well.
This is based on the natural dependence between theories of representation and theories of
acquisition (Chomsky 1969; Pinker 1979; Chomsky 1986; Osherson et al. 1986; Chomsky and
Lasnik 1995; Dresher 1999; Crain and Pietroski 2002; Heinz 2014). The basic idea is that
children armed with the linguistic variables of the knowledge representation should have a
huge advantage when it comes to learning their language-specific grammars. This is because
UG defines the hypothesis space of possible grammars in terms of the relevant linguistic
variables (e.g., parameters, constraints, or rules). So, children already know what part of
the encoded input matters – it’s the part that corresponds to those linguistic variables. This
provides a convenient initial filter on children’s input: their acquisitional intake (Lidz and
Gagliardi 2015) is constrained by the linguistic variables in the knowledge representation. If
some piece of the input doesn’t relate to a linguistic variable in the representation, it can
be filtered out. This highlights the acquisition implications for theories of representation:
knowledge representations impact the way children view their linguistic data.

Given this, one reasonable way to evaluate different theories of knowledge representation
is to see how useful they are for acquisition. Given a particular representation, is the child’s
hypothesis space helpfully constrained? Given that the linguistic variables of the hypothesis
space impact a child’s acquisitional intake, is that acquisitional intake sufficient for acquisi-
tion to happen successfully? The problem, of course, is that acquisition is complicated, so
evaluating how useful a representation is for acquisition isn’t easy. However, if we can find
a reasonable way to do it, there’s a lot to be gained for both theories of representation and
theories of the acquisition processes that accompany those representations.

First, we would have a new metric for evaluating representational theories that leverages
this link to acquisition. Second, because this evaluation requires us to be concrete about
how acquisition works for a particular representation, we become aware of the learning
assumptions each representation depends on. This lets us refine our theories of acquisition
for a given representation, and can also make empirical predictions about how acquisition
should unfold if one representation is being used vs. another.

Below I describe an implementation of this kind of evaluation via computational mod-
eling. The goals are to (a) simulate a learner who incorporates the linguistic variables of a
representation, (b) set that learner up in a cognitively plausible acquisition scenario, and (c)
see if acquisition succeeds. I discuss two case studies of this approach, evaluating represen-
tations in metrical stress and syntax.

The metrical stress study, based on Pearl et al. (2014, 2015), compares representations
on their ability to allow acquisition of the productive aspects of English metrical stress from
the kind of data English children typically encounter. This computational acquisition evalu-
ation identifies (i) learning assumptions that benefit children using different representations,
and (ii) English-like grammars within these representations that are easier to learn from En-
glish child-directed speech than the current English grammar definitions. These English-like
grammars are then empirically motivated alternative proposals for the grammar of English.

The syntax case study, based on Pearl and Sprouse (2013a,b, 2015), evaluates a theory of
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dependency representation on its ability to allow acquisition of syntactic islands in English
from the kind of data English children typically encounter. This evaluation identifies (i)
the level of specificity when representing dependencies that enables a child to learn syntac-
tic islands, and (ii) the learning assumptions required for success, only some of which are
necessarily part of UG.

More generally, both case studies (i) validate knowledge representations by showing how
acquisition can proceed using them, and (ii) provide computational modeling feedback about
the nature of the English-specific representations.

2 Case study: Metrical stress

2.1 English as a non-trivial test case

For English metrical stress, the target knowledge for our purposes is the ability to account for
word-level stress patterns (e.g., octopus pronounced óctopus, with the first syllable stressed
and the remaining syllables unstressed). The observable data English children encounter are
the stress contours associated with lexical items (e.g., if we indicate stressed syllables with
1 and unstressed syllables with 0, the stress contour of óctopus would be 100).

Theories of metrical stress representation specify the underlying structure that generates
the observable stress contour for words of a language. For example, the three theories I’ll
discuss below all posit an underlying structure that involves grouping syllables of a word
into larger units called metrical feet which then determine the placement of stress within the
word. Generative theorizing is based on the idea that there is a language-specific grammar
that compactly captures this underlying structure.

An important consideration for metrical stress grammars is that the complete grammar
of a language captures both the productive patterns of the language (which generalize to
novel words) as well as the non-productive patterns (which don’t). For English, an example
of a productive pattern is that syllable weight matters for stress placement; an example
of a non-productive pattern is whether a given suffix alters primary stress (e.g., −ity does
while −ness doesn’t: prodúctive becomes product́ıvity vs. prodúctiveness). The productive
patterns are what the generative grammars in metrical stress representations are typically
meant to capture. I’ll abbreviate “productive metrical stress knowledge representations”
below as prodKRs.

So, learning metrical stress is already tricky because there are non-productive patterns
that must be ignored by children trying to identify the productive grammar for the lan-
guage. English, however, is especially tricky in this regard. It isn’t necessarily obvious
which patterns are the productive ones. Core patterns of monomorphemic English words
include:

1. Stress must occur on at least one of the last three syllables (Hammond 1999).

2. Syllable weight impacts stress placement (Chomsky and Halle 1968; Halle and Ken-
stowicz 1991; Hammond 1999; Pater 2000), and heavy syllables (containing a tense
vowel like /i/ or closed by at least one consonant like /En/) often bear stress. This
property is typically referred to as quantity sensitivity.



3. The stress pattern of nouns is different from that of verbs and adjectives (Chomsky and
Halle 1968; Hayes 1982; Kelly 1988; Kelly and Bock 1988; Hammond 1999; Cassidy and
Kelly 2001). For instance, there are examples like cónduct/condúct and désert/desért,
where the syntactic category influences the stress pattern for the syllable sequence (i.e.,
the noun versions are stress-initial while the verb versions are stress-final).

For words containing more than one morpheme, Hammond (1999) notes that there is
a class of affixes “outside the domain of stress assignment” (e.g., -able, -ed, -ing, -s, -or,
-er, -ly, -able, -ment, -ness) that allow modifications to the patterns above. More generally,
there are known interactions with inflectional and derivational morphology (Chomsky and
Halle 1968; Kiparsky 1979; Hayes 1982, 1995). For example, in prétty/préttier/préttiest
and sensátion/sensátional/sensátionally, adding inflectional and derivational morphology
doesn’t shift the primary stress, despite adding syllables to the word.

In terms of representation, the goal of prodKR theories has been to define an English
productive grammar that compactly captures as much of this variation as possible, leaving
non-productive aspects to be encoded some other way. For acquisition, this means that
the child equipped with knowledge of the prodKR should be able to learn the productive
aspects of English stress even with the non-productive aspects present in the input. This
likely requires children to identify and filter out the non-productive aspects.

2.2 Empirical grounding: Trajectory and input

To empirically ground the acquisition evaluation, we need to know something about when
children develop knowledge of the productive aspects of English metrical stress. Experi-
mental data suggest that acquisition happens in stages. At age two, English children use
a metrical template that operates over syllables (Echols 1993) and which has the leftmost
syllable stressed (Gerken 1994, 1996). This is useful for capturing the stress pattern of words
like cáptain, húngry, f́ıftieth, láter, ópening, zébra, ángel, grátefully, and fábulous, which are
found in the child-directed speech corpus I describe below. By age three, children have recog-
nized that the metrical system is quantity sensitive, though they don’t recognize the full set
of factors that determines how syllable weight impacts stress placement (Kehoe 1998). By
age four or five, there is suggestive evidence that English children have identified the target
English productive grammar: (i) Arciuli et al. (2010) find that children as young as five
override orthographic cues to alternative stress patterns that violate the English productive
grammar, and (ii) Pettinato and Verhoeven (2008) find that children as young as four are
at ceiling for repeating nonsense words that obey the English productive grammar but not
for words that violate it.

These experimental findings provide helpful guideposts for a computational acquisition
evaluation. In particular, in terms of the data children are learning from, we probably want
to restrict our analyses to child-directed speech encountered before the age of four or five.
If we’re also interested in the earliest stages of English stress acquisition, we may want to
restrict our analyses to data encountered before the age of two.

Given this, the data used for the acquisition analyses below comes from the Brent corpus
(Brent and Siskind 2001), which is part of the American English subsection of the CHILDES
database (MacWhinney 2000). This corpus contains speech directed at children between the
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ages of six and twelve months (4780 multisyllabic word types, 99968 multisyllabic word to-
kens). Because all the stress representations we consider operate over syllables, the 4780
multisyllabic word types were syllabified using CELEX 2 (Baayen et al. 1995), the CALL-
HOME English Lexicon (Kingsbury et al. 1997), and the MRC Psycholinguistic Database
(Wilson 1988). Target stress patterns for these word types were estimated using the CALL-
HOME English Lexicon (Kingsbury et al. 1997).1 For words not in these resources (typically
nonsense words like fussies or child-register words like fishies), native speaker intuitions and
comparisons to similar sounding words were used when possible.

2.3 Representation overview

As I mentioned above, the three metrical stress representation theories have several points of
agreement when it comes to deciding whether a given syllable in a word is stressed. All three
assume a word is divided into syllables and those syllables are classified according to their
syllable rimes only (e.g., strong (/stôAN/) is equivalent to /tôAN/, /ôAN/, and /AN/, which
all have a rime consisting of a Vowel followed by a Consonant: VC). Grammars then form
metrical feet made up of one or more syllables, indicated with parentheses in (1). Stress is
determined by the metrical feet, with at most a single syllable within a metrical foot being
stressed. A grammar defined by a prodKR will be associated with an underlying metrical
structure, as shown in (1), whose observable form is the stress contour for the word.

(1) Sample metrical structure for octopus (/Akt@pUs/)
stress 1 0 0
metrical feet (VC V) VC
syllable rimes VC V VC
syllables Ak t@ pUs

Below I’ll briefly highlight the relevant aspects of the three prodKR theories being com-
pared, though interested readers should refer to Pearl et al. (2014, 2015) for a more complete
description of each. These representational theories differ in several respects, including how
they classify syllables, how metrical feet are constructed, and how stress interacts with metri-
cal feet. Perhaps more fundamentally, they represent two different types of prodKR theories:
a parametric type whose grammar variables are defined by parameters with values that must
be set and a constraint-ranking type whose grammar variables are defined by violable con-
straints that must be ranked with respect to each other. Parametric representations generate
the underlying structure from the grammar while constraint-ranking representations use the
grammar to select an underlying structure from the available options.

2.3.1 The HV parametric representation

The first parametric prodKR is adapted from Halle and Vergnaud (1987) (HV), and its
learnability has been previously investigated by Pearl (2007, 2009, 2011). The HV represen-
tation involves five main parameters with three sub-parameters, yielding 156 grammars in

1 The syllabified and stressed annotations for the word types are available at http://www.socsci.uci.edu/
∼lpearl/CoLaLab/ uci-brent-syl-structure-Jul2014.xlsx .

http://www.socsci.uci.edu/~lpearl/CoLaLab/uci-brent-syl-structure-Jul2014.xlsx
http://www.socsci.uci.edu/~lpearl/CoLaLab/uci-brent-syl-structure-Jul2014.xlsx


the hypothesis space. They affect how syllables are classified (quantity sensitivity), how met-
rical feet are constructed (foot directionality, extrametricality, boundedness), and how stress
interacts with metrical feet (foot headedness). A grammar is then a set of these parameter
and sub-parameter values.

The English productive grammar proposed for the HV representation differentiates syl-
lables into Heavy and Light, treating syllables that end in VC (e.g., /En/) as Heavy. The
rightmost syllable of a word is extrametrical (indicated with 〈...〉 in (2)), and so not contained
in a metrical foot. Metrical feet are built from the right edge of the word, a metrical foot
spans two syllables when it can, and the leftmost syllable within a foot is stressed. Sample
analyses using the English HV grammar are shown for octopus and today in (2). The gener-
ated stress contour matches the observed stress contour for óctopus (100=100) but not for
todáy (106=01).

(2) English HV grammar analyses for octopus (/Akt@pUs/) and today (/t@de/):

stress 1 0 0 1 0

analysis (H́ L) 〈H〉 (Ĺ) 〈H〉
syllables Ak t@ pUs t@ de

2.3.2 The Hayes parametric representation

The second parametric system is adapted from Hayes (1995) (Hayes), and includes eight pa-
rameters that concern the basic distinction between stressed and unstressed syllables. These
eight parameters yield 768 grammars in the hypothesis space. They affect how syllables are
classified (syllable weight), how metrical feet are constructed (extrametricality, foot direc-
tionality, foot inventory, parsing locality, stress analysis direction), and how stress interacts
with metrical feet (degenerate feet, word layer end rule).

All Hayes productive grammars differentiate syllables into Heavy and Light, and the pro-
posed English grammar treats VC syllables as Heavy. It also views the rightmost consonant
as extrametrical. Metrical feet are built from the right edge before word-level stress is as-
signed and as adjacently as possible. Each foot is two moras in size (Light syllable = one
mora, Heavy syllable = two moras), and degenerate feet that deviate from the specified foot
size are not allowed. Within a foot, the leftmost syllable is stressed. Sample analyses using
the English grammar are shown for octopus and today in (3). The generated stress contour
matches the observed stress contour for todáy (01=01) but not for óctopus (1106=100).

(3) English Hayes grammar analyses for octopus (/Akt@pUs/) and today (/t@de/):
stress 1 1 0 0 1

analysis (H́) (Ĺ L) L (H́)
syllables Ak t@ pU〈s〉 t@ de

2.3.3 The OT constraint-ranking representation

Optimality Theory (OT) (Tesar and Smolensky 2000; Prince and Smolensky 2002) charac-
terizes linguistic knowledge as a universal set of constraints whose interaction determines the
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form of observable linguistic data. A grammar is a ranking of these constraints. In general,
violating higher-ranked constraints is worse than violating lower-ranked constraints.

Given n constraints, there are n! possible rankings. In the instantiation of OT briefly
reviewed below which is derived from Hammond (1999) and Pater (2000), there are nine met-
rical stress constraints, defining a hypothesis space of 9! = 362,880 grammars. These con-
straints affect how syllables are classified (WeightToStress-VV, WeightToStress-VC, NoSono-
rantNucleus), which metrical feet are preferred and where (NonFinality, Parse-σ, FootBi-
narity, AlignLeft, AlignRight), and how stress interacts with metrical feet (Trochaic). Ad-
ditionally, there is one inviolable principle called Rooting, which requires all words to have
some stress on them. Since a stressed syllable must be in a metrical foot, only candidate
analyses that have at least one metrical foot are available to children.

Notably, the OT “grammar” for a language is often a partial ordering of constraints, and
so corresponds to multiple grammars that are explicit rankings of all nine constraints.2 In
this vein, the English grammar derived from Hammond (1999) and Pater (2000) obeys ten
constraint ranking relationships, which correspond to 26 grammars that explicitly rank all
nine constraints. This partial ordering is shown in Figure 1, where each arrow represents a
constraint ordering that is true of the proposed English grammar.

Trochaic

WeightToStress-VV

NonFinality

WeightToStress-VC

FootBinarity

Parse-σ

AlignRight

NoSonorantNucleus

AlignLeft

Figure 1: Partial ordering of constraints defining the OT English grammar.

The tableau in Figure 2 is an evaluation of little (/lIRIl/) using a grammar satisfying the
English constraint rankings. For this word form, the optimal candidate for the grammar has
a stress contour that matches the observed stress contour of little (ĺıttle=10). In contrast,
the tableau in Figure 3 is an evaluation of kitty (/kIRi/), and shows that the same gram-
mar selects a candidate whose stress contour does not match the observed stress contour
(kittý=016=10=ḱıtty).

2In particular, OT theorists often reserve the term “grammar” for a mapping from underlying representations
to surface representations (e.g., underlying /lI RIl/ to surface /(ĺI) Rl

"
/). This can easily correspond to multiple

explicit rankings of the constraints available in the prodKR, as it does here for English. This contrasts
with how I use the term “grammar” here, where I mean a single combination of the variable values in the
prodKR – in particular, a single explicit ranking of the constraints. I will continue with this latter use
of grammar in order to be fair to the HV and Hayes prodKRs, whose grammars are also defined by the
distinct combinations of the variable values available (which are parameter values for those prodKRs).



Input:
Tro Wts-vv NonFin Wts-vc Align-R FtBin Parse-σ NoSonNuc Align-L

/lI RIl/

(ĺI RIl) ∗! ∗
(lI ŔIl) ∗! ∗
(ĺI) RIl ∗! ∗ ∗ ∗
lI (ŔIl) ∗! ∗ ∗ ∗

(ĺI)(ŔIl) ∗! ∗ ∗∗ ∗
(ĺI Rl

"
) ∗! ∗

(lI Ŕl
"
) ∗! ∗ ∗

+ (ĺI) Rl
"

∗ ∗ ∗ ∗
lI (Ŕl

"
) ∗! ∗ ∗ ∗ ∗

(ĺI)(Ŕl
"
) ∗! ∗ ∗∗ ∗ ∗

Figure 2: Evaluation of little using a grammar that satisfies the English constraint rankings.

Input:
Tro Wts-vv NonFin Wts-vc Align-R FtBin Parse-σ NoSonNuc Align-L

/kI Ri/

(ḱI Ri) ∗! ∗
(kI Ŕi) ∗! ∗
(ḱI) Ri ∗! ∗ ∗ ∗

+ kI (Ŕi) ∗ ∗ ∗
(ḱI)(Ŕi) ∗ ∗! ∗ ∗

Figure 3: Evaluation of kitty using a grammar that satisfies the English constraint rankings.

2.4 Computational acquisition evaluation: English

2.4.1 English non-productivity complications

Given this setup, the acquisition goal for English children is to identify the productive
grammar from the prodKR that accounts for the productive word-level stress patterns in
English data. However, remember that non-productive patterns abound in English and these
can mask the productive grammar’s expression.

One particular issue is that the non-productive patterns can lead to multiple stress con-
tours for a single syllabic word form: this is a word abstracted into syllable rimes
comprised of vowels and consonants, such as kitty abstracted into a short vowel syllable
followed by a long vowel syllable (V VV). Multiple word types may be instances of the same
syllabic word form (e.g., kitty, away, and uh oh as instances of V VV). Notably, the issue all
three representations have is at the syllabic word form level. This is because a productive
grammar in these representations can only generate/select a single stress contour per syllabic
word form. This means that the syllabic word form V VV is assigned a single stress contour
per grammar, whether the word itself it ḱıtty, awáy, or úh óh. Practically speaking, this
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means there is no way for any single grammar to account for all the observed stress contours
for English words. For example, a grammar the generates/selects the stress contour 10 for
the syllabic word form V VV will match the contour for ḱıtty but will, by necessity, mismatch
the contours for awáy and úh óh.

So, how often does a syllabic word form have multiple stress contours associated with
it in English child-directed speech? In the Brent corpus described in section 2.2, between
37% and 58% of the syllabic word forms (depending on the syllabic distinctions made by the
prodKR3) have multiple stress contours associated with them. This highlights why filtering
the input is likely helpful for identifying the productive grammar of English – some of these
multiple stress contour instances can potentially be ignored.

Total syllabic
word forms

Syllabic word forms with
multiple stress contours

HV 186 95 (51%)
Hayes 149 86 (58%)
OT 452 166 (37%)

Table 1: Syllabic word forms in the English child-directed speech sample with multiple stress
contours for each prodKR.

2.4.2 Learnability metrics

The basic question is something like “How easily does this representation allow children
to learn their specific language’s productive grammar, when given the data that children
from that language typically encounter?” Learnability analysis is one way of formalizing the
answer to this question, and the approach I present below is similar to those taken by Pearl
(2011) and Legate and Yang (2013). It assesses learnability (i) from child-directed speech
input (the data we think children typically encounter), and (ii) at the computational level
(in the sense of Marr 1982). A computational-level analysis focuses on the choices a rational
learner would make, given the hypothesis space defined by the prodKR. One of the benefits
of a computational-level analysis is that it can highlight if learnability issues exist simply
because of the interplay between the hypothesis space and children’s data, irrespective of
any cognitive processing limitations children may have.

But how do we define a rational learner? A rational learner is one that chooses what it
perceives to be the best grammar. So, what does “best” mean? Pearl et al. (2014, 2015)
suggest it’s the grammar that’s able to account for the most data in children’s acquisitional
intake.4 This relates to the utility of productive grammars: a productive grammar is useful

3The HV prodKR allows 3 syllabic distinctions, the Hayes prodKR allows 4, and the OT prodKR allows 8.
See Pearl et al. (2014, 2015) for a more detailed discussion of these distinctions.

4I note that this is in the same spirit as the classical principle of Empirical Risk Minimization (ERM) in
statistical learning theory (Vapnik 1992, 2013), where the learner picks a hypothesis that minimizes error
on the training data. In this case, it would mean children should pick a hypothesis that best accounts for
the data available, i.e., the data in their acquisitional intake. Interestingly, this can lead to a problem of
overfitting, where the learner attempts to match the data too closely and loses generalization capability.
This is very much a problem children face, as they want a grammar that correctly accounts for data they



because it allows the learner to compactly represent the productive aspects of the language
data. This means that language data captured by the productive grammar do not need
to be stored in detail. Instead, the productive aspects of these data can be generated by
the compact representation provided by the grammar. So, the more data accounted for by
the productive grammar, the more useful the grammar is because there are fewer data that
must be dealt with separately (e.g., stored explicitly). Because of this, from a language use
standpoint, the best productive grammar is naturally defined as the one that can account
for the most data. Once we define the data in children’s acquisitional intake, we can then
simply examine which grammar in the hypothesis space defined by the prodKR is able to
account for the most.

At an individual data point level, a grammar can either be compatible or incompatible
with the data point. For example, a metrical stress grammar is compatible with a data point
if it can generate/select the observed stress contour for that data point. The proportion of
data points a grammar is compatible with is its raw compatibility with that data set
(e.g., a grammar compatible with 70% of the data set has a raw compatibility of 0.70). When
comparing productive grammars within a prodKR, a higher raw compatibility is better since
this indicates the grammar is more useful at accounting for the available data.

However, for acquisition, what may matter more than raw compatibility is how a pro-
ductive grammar compares to other grammars defined by the prodKR. This is captured
by relative compatibility, which is how a grammar’s raw compatibility compares to
the raw compatibilities of other grammars in the hypothesis space. This can be defined as
the proportion of grammars in the hypothesis space that this grammar is better than, with
respect to raw compatibility. The best grammar will be better than all other grammars,
and so its relative compatibility approaches 1 as the number of grammars in the hypothesis
space increases. For example, if there are 768 grammars, the best grammar is better than
767, which gives a relative compatibility of 767/768 = 0.999. Importantly, no matter what
the raw compatibility of the best grammar is, it’s the one a rational learner would choose
because it’s the best of all the grammars defined by the prodKR.

While the previous two metrics focused on evaluating the learnability of specific grammars
within a prodKR, we can also evaluate the prodKR itself. In particular, we can calculate
a prodKR’s learnability potential, which is simply the raw compatibility of the best
grammar defined by the prodKR. For example, if the best grammar in a prodKR (with
relative compatibility closest to 1) has a raw compatibility of 0.70, then we can say that
prodKR has a learnability potential of 0.70. In effect, this metric indicates the utility of
the prodKR, as implemented by the best grammar it defines. The basic idea is that the
learnability potential measures how well the productive grammar variables defined by the
prodKR account for the data in children’s acquisitional intake. So, this is a more direct way
to compare prodKRs, irrespective of the English-specific grammars within them.

However, we might expect that the proposed English grammar in each prodKR be the
grammar that’s learned most easily from English children’s acquisitional intake. This can be
empirically tested using the relative compatibility metric. More specifically, if the proposed
English grammar is the one most easily learned within a prodKR, it should have the highest

have yet to encounter – i.e., that generalizes appropriately. Many thanks to an anonymous reviewer for
bringing my attention to this.
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raw compatibility with the English acquisitional intake, which will then lead to the relative
compatibility closest to 1. At the prodKR level, the English grammar’s raw compatibility
should be equivalent to the prodKR’s learnability potential because it would be the grammar
within the prodKR that’s best at accounting for the English acquisitional intake.

2.4.3 Evaluation for English

For each of the learnability analyses below, an algorithm was run that evaluated the com-
patibility of each grammar in a prodKR against the data in English children’s acquisitional
intake. From this, raw compatibility and relative compatibility scores could be calculated
for each grammar, as well as the learnability potential for each prodKR.

I’ll discuss two types of analyses. The first type represents the initial stages of acquisition,
when children are not yet aware there are non-productive aspects in English stress. So,
this kind of child (naively) assumes all the data are generated by the productive grammar.
The second analysis type assumes children have a mechanism for filtering out data they
recognize as non-productive.5 So, this kind of (more sophisticated) child recognizes that not
all data may be capturable by a productive grammar. Pearl et al. (2014, 2015) implemented
this mechanism using a proposal from Yang (2005) and Legate and Yang (2013) called the
Tolerance Principle that I’ll describe below. Table 2 shows the results of both these analyses.

The basic idea of the Tolerance Principle is that it’s a way to estimate how many excep-
tions a rule can tolerate before it’s no longer useful to represent the rule at all. In essence, if
there are too many exceptions, it’s better to simply deal with the exceptions on an individual
basis rather than bothering to learn a rule that’s often violated. Using processing considera-
tions and related mathematical formalizations, Yang (2005) proposed that, for N items, the
total exceptions a rule can tolerate is equivalent to N

ln N
. If there are more exceptions than

this, then the rule is not productive.
One way children might use this principle when learning metrical stress is to deal with

syllabic words forms that have multiple stress contours. When a syllabic word form like this
is encountered (e.g., V VV: ḱıtty, awáy, úh óh), one stress contour may be the productive
stress contour while the others can be viewed as exceptions (which can be safely ignored for
purposes of learning the productive grammar). At any point during acquisition, there are two
possible outcomes. One option is that one contour is the productive contour according to the
Tolerance Principle, and so the learner would attempt to account for only the data with that
stress contour (e.g., ḱıtty), ignoring the other data for that syllabic word form (e.g., awáy,
úh óh) when trying to learn the productive grammar. The other option is that no contour
is productive according to the Tolerance Principle, and so all the data for that syllabic word
form are ignored when trying to learn the grammar. The upshot is that a productive subset
of the available input is now the child’s acquisitional intake. In particular, Table 2 shows
what happens when children’s intake is limited to the productive subset (+prod filter), as
defined by the Tolerance Principle, and each of the learnability metrics is calculated over
that productive subset.

5This can be helpful for preventing overfitting, which happens when the learner attempts to account for data
that actually aren’t relevant for generalization. That is, these data are in the input, but they’re anomalies
in the sense that they aren’t generated by the productive system for the language. So, these data can lead
the child astray when identifying the correct productive system for the language.



Table 2: Learnability analyses for the three prodKRs: HV, Hayes, and OT. The three
metrics shown are learnability potential of the prodKR (prodKR:Pot), raw compatibility
of the (best) English grammar (Eng:Raw), and relative compatibility of the (best) English
grammar (Eng:Rel), which are computed over word types in English child-directed speech.
Results are shown for learners not using a productive filter (-prod filter) and learners using
a productive filter implemented via the Tolerance Principle (+prod filter).

prodKR:Pot Eng:Raw Eng:Rel

-prod filter
HV 0.67 0.59 0.67
Hayes 0.68 0.49 0.68
OT 0.65 0.57 0.82

+prod filter
HV 0.95 0.87 0.62
Hayes 0.93 0.70 0.68
OT 0.84 0.63 0.80

One of the first things we can observe from Table 2 is that this significantly impacts
the learnability potential of the three prodKRs, as might be expected when variation is
removed from the intake.6 For a learner without a productive filter, all three prodKRs have
a grammar that can account for around 2

3
of the acquisitional intake (0.65-0.68). While this

is pretty useful data coverage, there’s a big advantage to recognizing that some data are
unproductive. In particular, for a learner using a productive data filter like the Tolerance
Principle, the prodKRs have a grammar that can account for 84% (OT), 93% (Hayes), or
95% (HV) of the acquisitional intake. So, perhaps the parametric prodKRs (HV, Hayes)
have an advantage in terms of productive data coverage in English children’s input, though
all three prodKRs are doing a very good job of capturing these data.

However, something interesting is going on when we look at the compatibility of the
proposed English grammars in each prodKR. In every single case, the compatibility of the
proposed English grammar (or the best one, in the case of OT) is below the learnability
potential of the prodKR (i.e., Eng:Raw is always less than prodKR:Pot in Table 2). This
means the proposed English grammars are not the grammars within the prodKRs able to
account for the most data in the acquisitional intake, whether filtered down to the productive
subset or not. How much are they not? That’s what the relative compatibility scores indicate.
For naive learners not using a productive data filter, 1

3
of the grammars in the HV and Hayes

prodKRs can account for more data (HV: 1- 0.67=0.33; Hayes: 1-0.68=0.32), which works
out to tens (HV: 51) or hundreds (Hayes: 249) of grammars in the hypothesis space. In the
OT prodKR, about 1

5
of the hypothesis space is better (1-0.82 = 0.18), which works out to

tens of thousands of grammars (OT: 66,407) being able to account for more data than the
best proposed English grammar.

This doesn’t change for children who use a productive data filter. While the overall

6Interestingly, just because variation is removed doesn’t mean the productive data are completely captured
by any single grammar. This can be seen by the learnability potential still being less than 1 in Table 2.
This is because “productive” according to the Tolerance Principle is simply about relative frequency and
doesn’t necessarily accord with the variables a prodKR uses to define its grammars. See Pearl et al. (2015)
for an explicit demonstration of this point.
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data coverage is higher for the proposed English grammars, the (best) English grammar
coverage is still less than the learnability potential of the prodKR. How bad is it? About the
same as before: tens of grammars (HV: 59), hundreds of grammars (Hayes: 246), or tens of
thousands of grammars (OT: 73,302) in the prodKR hypothesis space are able to account
for more English acquisitional intake data.

How do we interpret this? One idea is that there are additional filters English children
employ to winnow down the acquisitional intake still further, and the proposed English
grammars are best able to account for that further-filtered acquisitional intake. Pearl et al.
(2014, 2015) explored a few cognitively plausible filtering options of this kind, though they
were unable to find any that caused the proposed English grammars to improve their relative
compatibility.

Another idea is that we should consider alternatives for what the productive English
grammar actually is that English children acquire from their input. We can look to the
grammars within each prodKR that are more compatible than the currently proposed English
grammars and see how these high compatibility grammars differ. What values do the high
compatibility parametric grammars use? What constraint rankings do the high compatibility
constraint-ranking grammars use? Results are summarized in Table 3. Let’s consider each
prodKR in turn.

Table 3: Learnability analyses for the three prodKRs: HV, Hayes, and OT. The three
metrics shown are learnability potential of the prodKR (prodKR:Pot), raw compatibility of
the (best) alternative English grammar (Eng’:Raw), and relative compatibility of the (best)
alternative English grammar (Eng’:Rel), which are computed over word types in English
child-directed speech. Results are shown for learners not using a productive filter (-prod
filter) and learners using a productive filter implemented via the Tolerance Principle (+prod
filter).

prodKR:Pot Eng’:Raw Eng’:Rel

-prod filter
HV 0.67 0.64 0.94
Hayes 0.68 0.64 0.91
OT 0.65 0.65 0.99

+prod filter
HV 0.95 0.88 0.71
Hayes 0.93 0.93 0.96
OT 0.84 0.84 0.99

For the HV grammar, it turns out that many high compatibility grammars use a different
quantity sensitivity value (preferring syllables not to be differentiated by weight). This allows
these grammars to handle words like like béllybútton and sátisfied, which have unstressed
heavy syllables that aren’t at the edge of the word (ly in bellybutton, tis in satisfied). If
we simply swap this value in the current English grammar definition, we get a very similar
grammar – let’s call it English’. For a naive learner not using a productive filter, English’
is able to account for nearly as much data as the best grammar (Potential: 0.67, English’:
0.64), and is better than 94% of the productive grammars in the HV hypothesis space, as
indicated by the relative compatibility score (0.94). This is a significant improvement, and



makes it much easier for a child to select this grammar given the English child-directed
speech data – that is, this English’ grammar is more easily learnable from these data, given
the hypothesis space of grammars. However, a more sophisticated learner using a productive
data filter doesn’t fare so well with English’ – the data coverage difference is larger (Potential:
0.95, English’: 0.88), but more importantly, 29% of the productive grammars available can
account for more data (Relative: 1-0.71 = 0.29 = 45 grammars in the HV hypothesis space).
This suggests that the English’ alternative is only more easily learnable than the original
proposed English grammar in the earlier stages of acquisition when children think all data
are productive.

For the Hayes prodKR, it turns out that many high compatibility grammars use a different
metrical foot value than the current definition of the English grammar: they use syllabic
trochees rather than moraic trochees. This allows these grammars to account for bisyllabic
words with an unstressed heavy syllable at the edge, such as báby and ḱıtty, as well as
trisyllabic compound words with unstressed syllables in the middle and heavy syllables at
the edge, such as sléepyhéad. If we alter the current English grammar to use syllabic trochees,
this English’ alternative grammar is much easier for a naive learner to learn. It accounts for
nearly as much data as the best grammar available (Potential: 0.68, English’: 0.64) and is
better than 91% of the grammars in the Hayes hypothesis space. A learner using a productive
filter fares even better when trying to learn the English’ grammar: this grammar accounts
for effectively the same amount of data as the best grammar (Potential: 0.93, English’: 0.93)
and is better than 96% of the grammars in the Hayes hypothesis space. This suggests that
the English’ alternative is more easily learnable than the original proposed English grammar
in both earlier and later stages of English metrical stress acquisition.

For the OT prodKR, it turns out that all the highest compatibility grammars use a
constraint ranking that the current English grammar definition doesn’t: ranking NonFi-
nality higher than WeightToStress-VV. This means it’s more important to exclude the
rightmost foot from getting stress (NonFinality) than it is to stress long vowel syllables
(WeightToStress-VV). This allows these grammars to account for words like báby and ḱıtty,
which have an unstressed long vowel syllable as the rightmost syllable. If we swap this
ranking in the current English grammar definition to create English’, we find that learning
becomes much easier for both naive and more sophisticated learners. For both stages of
acquisition, English’ can account for effectively the same amount of data in the acquisitional
intake as the best grammar in the OT prodKR (without a productive filter: Potential =
0.65, English’ = 0.65; with a productive filter: Potential = 0.84, English’ = 0.84). This
leads to English’ being better than 99% of the grammars in the OT hypothesis space – much
more easily learnable! So, this update seems to be incredibly helpful from an acquisition
perspective, no matter what stage of acquisition the English child is in.

2.5 Metrical stress representations: Summary

So what have we learned? First, we have a concrete demonstration that all three prodKRs
are useful for English acquisition, in the sense that they can define grammars that account for
a large portion of English child-directed speech data. This is particularly true if children are
using a productive data filter – and in that case, we may even be able to rank some prodKRs
higher than others (HV and Hayes over OT) based on the amount of data that can be
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captured by the best grammar in the prodKR. More generally, for theories of metrical stress
acquisition, this highlights the usefulness of a mechanism for filtering out non-productive
English data.

Second, we also know something about the current English grammar definitions in each
prodKR – none of them are the grammars most easily learnable from the data English chil-
dren typically encounter. Instead, alternative grammars differing by a single parameter value
or constraint ranking are usually far easier to learn. I think we can consider these empiri-
cally motivated alternative proposals for the English grammar in each prodKR that should
be given more theoretical, experimental, and computational consideration. For example,
do we see evidence of these alternative English grammars in children? Do we see evidence
in adults? Are these grammars more compatible with the data an English adult typically
encounters? More generally, for theories of representation, we can use computational learn-
ability results like the ones we have here to identify promising alternative language-specific
representations.

So, to sum up, we’ve seen how to use this approach to evaluate metrical stress repre-
sentations by using them for acquisition. This allows us to refine our theories of both the
metrical stress knowledge representation and the acquisition process that accompanies that
representation.

3 Case study: Syntactic islands

3.1 About syntactic islands

Let’s turn now to syntactic islands. Pearl and Sprouse (2013a,b) chose to focus on them
because they’re central to acquisition theories that rely on Universal Grammar (UG). In
particular, knowledge of syntactic islands is often difficult to characterize without referring to
relatively abstract syntactic structure, which has led many syntacticians to propose relatively
complex, abstract constraints to capture island effects in adult grammars (e.g., Chomsky
1986). This has led many acquisition researchers to hypothesize domain-specific, innate
knowledge (i.e., UG knowledge) to explain how children learn about syntactic islands. So,
this is a non-trivial acquisition problem that has implications for long-standing debates about
the role of domain-specific, innate knowledge in language acquisition (e.g., Ambridge et al.
2014; Pearl 2014).

Now, what are syntactic islands? They have to do with long-distance dependencies, like
those in (4) between the wh-word and where it’s understood (indicated by ). One defining
characteristic of long-distance wh-dependencies is that they appear to be unconstrained by
length (Chomsky 1965; Ross 1967), as shown in (4b–4c).

(4) a. What does Jack think ?

b. What does Jack think that Lily said ?

c. What does Jack think that Lily said that Sarah heard ?

However, we know that if the gap position of a wh-dependency appears within certain
syntactic structures, such as those in square brackets in (5), the resulting utterance is un-
acceptable (Chomsky 1965; Ross 1967; Chomsky 1973; Huang 1982, among others). These



structures have been called syntactic islands (Ross 1967). So, the unacceptability of these
utterances can be explained by the long-distance dependency in the utterance crossing a
syntactic island, which isn’t allowed.

(5) Some examples of island-crossing dependencies, with island structures in brackets

a. * What did you make [the claim that Jack bought ]?

b. * What do you think [the joke about ] was hilarious?

c. * What do you wonder [whether Jack bought ]?

d. * What do you worry [if Jack buys ]?

3.2 The acquisition target

How do we tell if someone has knowledge of syntactic islands? One way is to see the effect of
that knowledge, via judgments about how acceptable different utterances are. Sprouse et al.
(2012) did this by collecting formal acceptability judgments about four different islands (like
the ones above in (5)): Complex NP, Subject, Whether, and Adjunct islands. For acquisition
modeling purposes, these acceptability judgments provide a concrete set of behaviors that a
modeled learner should aim to reproduce. That is, a successful learner will generate similar
acceptability judgments.

Sprouse et al. (2012)’s design used a factorial definition that controlled for two salient
properties of island-crossing dependencies: (1) the length of the dependency (matrix (Mat)
vs. embedded (Emb)), and (2) the presence of an island structure, whether or not the
dependency actually crosses it (non-island (Non) vs. island (Isl)). This led to stimuli like
those in (6)-(9), which have island structures bracketed.

(6) Complex NP islands

a. Who claimed that Lily forgot the necklace? Mat | Non

b. What did the teacher claim that Lily forgot ? Emb | Non

c. Who made [the claim that Lily forgot the necklace]? Mat | Isl
d. * What did the teacher make [the claim that Lily forgot ]? Emb | Isl

(7) Subject islands

a. Who thinks the necklace is expensive? Mat | Non

b. What does Jack think is expensive? Emb | Non

c. Who thinks [the necklace for Lily] is expensive? Mat | Isl
d. * Who does Jack think [the necklace for ] is expensive? Emb | Isl

(8) Whether islands

a. Who thinks that Jack stole the necklace? Mat | Non

b. What does the teacher think that Jack stole ? Emb | Non

c. Who wonders [whether Jack stole the necklace]? Mat | Isl
d. * What does the teacher wonder [whether Jack stole ]? Emb | Isl
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(9) Adjunct islands

a. Who thinks that Lily forgot the necklace? Mat | Non

b. What does the teacher think that Lily forgot ? Emb | Non

c. Who worries [if Lily forgot the necklace]? Mat | Isl
d. * What does the teacher worry [if Lily forgot ] ? Emb | Isl

A syntactic island is apparent when there’s a superadditive effect of the two factors. In
particular, it’s the additional unacceptability that arises beyond the dependency being an
embedded clause dependency and beyond the island structure being present in the utterance.
The presence of a syntactic island effect then becomes visually salient: If the acceptability
of the four stimuli types for each island (as indicated by their z-scores) is plotted on an
interaction plot, the presence of a syntactic island appears as two non-parallel lines. This
effect is also statistically significant.

In contrast, the lack of a syntactic island appears as two parallel lines and results in no
significant statistical interaction, because the unacceptability of the utterance is completely
explainable by the summed effects of it being an embedded clause dependency and having
an island structure in it. Sprouse et al. (2012) found superadditivity (i.e., non-parallel lines
and a statistically significant interaction) for all four islands investigated, as shown in Figure
4. So, this suggests that the knowledge that dependencies can’t cross these island structures
is part of adult knowledge of syntactic islands. This is then one kind of target behavior that
a successful learner should produce: a superadditive interaction when given the same stimuli
to judge.

3.3 Representations

3.3.1 Subjacency

In the Government and Binding framework of the 1980s, syntacticians proposed a constraint
called the Subjacency Condition. This basically says that dependencies can’t cross two or
more bounding nodes (Chomsky 1973; Huang 1982; Lasnik and Saito 1984, among others).
If a dependency crosses two or more bounding nodes, a syntactic island effect occurs. What
counts as a bounding node varies cross-linguistically, though bounding nodes are always
drawn from the set {NP, IP, CP}. So, when using this representation, children need to learn
which of these are bounding nodes in their language, though they already know (via UG)
about the restriction the Subjacency Condition imposes and the set of possible bounding
nodes.

3.3.2 Subjacency-ish

Pearl and Sprouse (2013a,b, 2015) investigated a representation that shares the intuition with
Subjacency that there’s a local structural anomaly when syntactic islands occur. However,
instead of characterizing this anomaly with bounding nodes, Pearl & Sprouse suggested that
it could be described as a low probability region with respect to the phrase structure nodes
that contain the dependency (which they called container nodes).
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Figure 4: Experimentally derived acceptability judgments for the four island types from
Sprouse et al. (2012).

A phrase structure node contains the dependency if the path from the gap to the wh-word
must pass through the phrase structure node. As an example, consider the utterance Who
did Jack think that the story about penguins amused?. Starting at the gap, the path must
move up through the embedded VP, the embedded IP, the CP, the main VP, and the main
IP before it finally reaches a phrase structure node that has the wh-word who as its child.
These are the container nodes for this dependency, shown in (10).

(10) Who did [IP Jack [V P think [CP that [IP the story about penguins [V P amused ]]]]]?

Children using the Subjacency-ish representation have to learn which are the low prob-
ability sequences of container nodes for their language, though they already know (possibly
through UG) how to recognize container nodes for their language.

3.3.3 Subjacency vs. Subjacency-ish

What separates these representations is the amount of language-specific knowledge built in
just for islands, as shown in Table 4. Subjacency requires children to know that dependen-
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cies are defined over bounding nodes, which are drawn from a circumscribed set of phrase
structure nodes. Children also have to know that dependencies crossing too many of these
bounding nodes are bad. As far as I know, none of these knowledge components were in-
tended to be useful beyond learning syntactic islands, so I think it’s reasonable to classify
them as “islands-only” knowledge.

This contrasts with the Subjacency-ish representation, which requires children to know
that dependencies are defined over container nodes, which are drawn from the set of phrase
structure nodes. While container nodes are going to be very helpful for learning syntactic
islands (as I’ll show below), there’s evidence that they’re also used when processing depen-
dencies more generally (Crain and Fodor 1985; Frazier and Flores D’Arcais 1989; Phillips
2006). So, container nodes aren’t obviously “islands-only” in quite the same way. The last
piece the Subjacency-ish representation requires is that low probability sequences be dis-
preferred, which is something useful for learning all kinds of things, linguistic or otherwise.
Given this, Pearl & Sprouse decided to test the Subjacency-ish representation to see if it
could accomplish the same acquisition task that the Subjacency representation was meant
to.

Table 4: Comparison of representations with respect to the amount of required prior knowl-
edge that’s specifically for learning syntactic islands.

Representation Required knowledge Islands only?

Subjacency
Dependencies defined over bounding nodes (BNs) X
BNs ∈ {NP, IP, CP} X
Crossing 2+ BNs is bad X

Subjacency-ish
Dependencies defined over container nodes (CNs) ?
CNs ∈ phrase structure nodes ?
Low probability CN sequences are dispreferred

3.4 Subjacency-ish evaluation

To evaluate the Subjacency-ish representation using acquisition modeling, we first need to
define the acquisition task. This means we need to know what the hypothesis space is, what
children’s acquisitional intake is, how the learning process works, how long the learning period
is, and what the target knowledge and behavior are. I’ve discussed the target knowledge and
its behavioral signature above in section 3.2, so now I’ll turn to the other key pieces.

3.4.1 Hypothesis space

The hypothesis space for a child using this representation can be defined over dependencies,
as characterized by the sequence of container nodes in those dependencies. Given this, the
child’s goal is to identify the set of container node sequences that are grammatical for the
language’s dependencies.



So how exactly are container nodes defined? A default hypothesis might be that container
nodes correspond to “basic-level” phrase structure nodes like VP and CP. Before going any
further, it’s useful to check if this definition will allow children to distinguish between the
grammatical and ungrammatical dependencies we have from Sprouse et al. (2012). Table 5
shows these stimuli characterized in terms of this kind of container node.

We can make a few observations. First, multiple stimuli are actually characterized by
the same container node sequence. For example, all the matrix, non-island (Mat | Non)
stimuli like Who claimed that Lily forgot the necklace?, Who thinks that the necklace
is expensive?, Who thinks that Jack stole the necklace?, and Who thinks that Lily
forgot the necklace? are matrix subject dependencies characterized by the container node
sequence IP.

Second, if we use only the basic-level phrase structure nodes as container nodes, there
are problems for the Whether and Adjunct stimuli. In particular, grammatical stimuli like
What does the teacher think that Jack stole ? are characterized by the same sequence
as ungrammatical stimuli like What does the teacher wonder whether Jack stole ? : IP-
VP-CP-IP-VP. This means that a child using this definition of container nodes could not
possibly generate different judgments for these stimuli. So, to reach the target knowledge –
and target behavior – where there is a difference between these dependencies, a child has to
have a different definition of container nodes. This highlights how considerations about the
target of acquisition can cause us to refine our proposals about a knowledge representation.

Pearl & Sprouse proposed that a child could make a minor adjustment to the container
node definition: for the CP phrase structure nodes only, container nodes would include sub-
categorization information about the lexical head. All other container nodes would remain
unsubcategorized. This allows the child to distinguish between the dependencies mentioned
before: What does the teacher think that Jack stole ? = IP-VP-CPthat-IP-VP, while
What does the teacher wonder whether Jack stole ? = IP-VP-CPwhether-IP-VP. Table
5 shows that this updated definition causes all grammatical dependencies to have different
container node representations than the ungrammatical dependencies. So, in principle, it is
now possible to have different judgments about them using this representation.

3.4.2 Acquisitional intake

Children’s acquisitional intake is based on the representation they’re using. Here, that means
that any wh-dependency in the input can be characterized by a container node sequence and
so that wh-dependency becomes relevant information about the wh-dependencies allowed in
the language. So, what wh-dependencies do we expect to find in English children’s input?

Pearl & Sprouse estimated this from American English child-directed speech from the
CHILDES database (MacWhinney 2000). In particular, they used a sample of 101,838 child-
directed utterances aggregated from several commonly used American English corpora: the
Adam and Eve corpora by Brown (1973), the Valian (1991) corpus, and the Suppes (1974)
corpus. Collectively, these utterances were directed at 24 children between the ages of 1;6
and 5;2.

It turns out that most (89.5%) of the wh-dependencies are of two types: matrix-object
dependencies like What did she see? (container node sequence: IP-VP = 76.7%) and matrix-
subject dependencies like Who saw it? (container node sequence: IP = 12.8%). The re-
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Table 5: Stimuli from Sprouse et al. (2012) characterized using different definitions of
container nodes (basic-level vs. subcategorized CP). Grammatical and ungrammatical de-
pendencies for each stimuli type are shown. Grammatical and ungrammatical stimuli char-
acterized by the same container node sequence are italicized and bolded .

Grammatical Ungrammatical
Basic-level

Complex NP
IP

IP-VP-NP-CP-IP-VP
IP-VP-CP-IP-VP

Subject
IP

IP-VP-CP-IP-NP-PP
IP-VP-CP-IP

Whether IP
IP-VP-CP-IP-VP

Adjunct IP-VP-CP-IP-VP
Subcategorized CP

Complex NP
IP

IP-VP-NP-CPthat-IP-VP
IP-VP-CPthat-IP-VP

Subject
IP

IP-VP-CPnull-IP-NP-PP
IP-VP-CPnull-IP

Whether
IP

IP-VP-CPthat-IP-VP
IP-VP-CPwhether-IP-VP

Adjunct
IP

IP-VP-CPthat-IP-VP
IP-VP-CPif -IP-VP

maining 10.5% of the wh-dependencies included 24 different dependency types. So, there are
quite a variety of wh-dependencies available in the acquisitional intake, though some appear
far more than others.

3.4.3 Learning process

When we talk about the learning process, what we really need for acquisition evaluation
purposes is a step-by-step procedure that children could use to update their internal knowl-
edge representations. Pearl & Sprouse proposed one that extracts local information about
every wh-dependency encountered, by breaking each dependency into a set of container node
trigrams (11c).7 So, each trigram represents a local chunk of the dependency.

(11) Who did Jack think that the story about penguins amused ?

a. Phrase structure nodes containing the wh-dependency:
Who did [IP Jack [V P think [CP that [IP the story about penguins [V P amused

]]]]?

b. Container node characterization of wh-dependency with CP subcategorization:
IP-VP-CPthat-IP-VP

7Note that trigram encodings typically represent the beginning and ending of sequences with special symbols
(start and end here), since this is relevant information.



c. Trigrams of container nodes ∈ TrigramsIP−V P−CPthat−IP−V P :
= start-IP-VP

IP-VP-CPthat

VP-CPthat-IP

CPthat-IP-VP

IP-VP-end

During learning, children track the frequency of the container node trigrams. This means
that a single dependency can provide information about more than one trigram – for example,
the dependency in (11) provides one instance of five different trigrams. After encountering
many wh-dependencies, the child has a collection of frequencies for each of the container
node trigrams observed. These can be normalized so the child has a sense, for any trigram,
how relatively frequent it is. Conveniently, that’s all the child needs to learn.

After this relative frequency information is internalized, children can then assign any wh-
dependency (even one they’ve never seen before) a probability, based on the probabilities
of the trigrams that comprise that dependency. If we allow probability to stand in for
grammaticality, this means a child can have a judgment about the grammaticality of any
wh-dependency, based on its probability.

To generate the probability of a wh-dependency from its container node trigrams, Pearl &
Sprouse proposed to simply use the smoothed product of its trigrams, as in (12). Smoothing
the trigram probabilities means assigning a very small amount of probability to trigrams
that have never been observed, just in case they’re actually okay but haven’t appeared in
the child’s intake for whatever reason. That is, the child doesn’t automatically rule out a
dependency containing a trigram she’s never encountered before – she just doesn’t like it
very much.

(12) p(Who did Jack think that the story about penguins amused ?)
=

∏
trigram∈TrigramsIP−V P−CPthat−IP−V P

p(trigram)

= p(start-IP-VP)*p(IP-VP-CPthat)*p(VP-CPthat-IP)*p(CPthat-IP-VP)*p(IP-VP-end)

So, to generate behavior we can compare against the acceptability judgments from
Sprouse et al. (2012), we have the modeled learner generate a probability for each of the
stimuli, based on the trigram probabilities that the learner’s internalized during the learning
process. If the modeled learner implicitly has the same knowledge about syntactic islands
as adults do, it should demonstrate the same superadditivity in its judgments.

3.4.4 Learning period

How long does our modeled learner get to learn? One way to think about this concretely
for acquisition modeling is how much data the learner encounters before the learning period
is over. Hart and Risley (1995) determined that American children in their samples were
exposed to approximately one million utterances between birth and three years old, and so
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Pearl & Sprouse leveraged that information. By positing that three years would be a rea-
sonable learning period for syntactic islands (say, between the ages of two and five), Pearl &
Sprouse assumed the modeled learner would encounter a million utterances during those three
years. Because wh-dependencies made up approximately 20% of the child-directed input ut-
terances in the CHILDES-based sample, this translates to the modeled learner encountering
200,000 wh-dependencies during the learning period that are distributed similarly to the
CHILDES-based sample (i.e. mostly IP-VP and IP, with others appearing infrequently).

3.4.5 Results

Acquisition success is measured by the ability of the modeled learner to judge the wh-
dependency stimuli from Sprouse et al. (2012) the same way adults did. So, after learning
from the container node trigrams in the acquisitional intake, the modeled learner can generate
a probability for each dependency. We can plot the log probability on the y-axis of an
interaction plot8 to indicate how grammatical the dependency is perceived to be, just as z-
scores were used in the adult judgment data. The main signature of syntactic islands is the
qualitative pattern of superadditivity.9 Specifically, if we see superadditivity in the modeled
learner’s generated judgments, the learner has demonstrated implicit knowledge of these four
syntactic islands. Figure 5 shows the modeled learner’s generated judgments for each of the
four island types after learning from child-directed speech data, with the log probability on
the y-axis.

As we can see from the interaction plots, the modeled learner does indeed display the
qualitative target behavior indicating implicit knowledge of these four syntactic islands. So,
a child using the Subjacency-ish representation would be able to learn about these islands.

3.5 Subjacency-ish representation: Summary

So what did we discover? First, the Subjacency-ish representation coupled with a learning
strategy that relies on container node (CN) trigram frequencies is useful for acquisition. This
provides validation for this representation: if dependencies are represented as CN sequences
like these, acquisition works well for these four islands. So, children could leverage CN tri-
grams to implicitly internalize a representation of syntactic islands. Moreover, by considering
the acquisition implications, we were able to refine the definition of CNs along the way to
include subcategorized CP nodes.

Second, these results also have something to contribute to the UG debate. Remember
from Table 4 that the Subjacency-ish representation required no components that were obvi-
ously dedicated solely to learning islands the way that some of the Subjacency components

8Note that all log probabilities are negative because raw probabilities are between 0 and 1, and so the log
probability is between negative infinity and 0 (e.g., log(0.000001) = -6 while log(1) = 0). This means the
numbers closer to zero are more positive and appear higher on the y axis – these represent structures judged
by the modeled learner as “more acceptable”. Numbers further from zero are more negative and appear
lower on the y axis – these represent structures judged “less acceptable”.

9Because we currently don’t have a precise theory for translating probabilities into acceptability judgments,
it doesn’t make as much sense to look for a quantitative match. This is because actual acceptability
judgments are based on many factors that are not included in this model, such as lexical item choice,
semantic probability, and processing difficulty (Schütze 1996; Cowart 1997; Keller 2000; Sprouse 2009).
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Figure 5: Modeled learner results, after learning from child-directed speech data.

were. In the same way, Subjacency-ish also requires fewer components that are necessarily
UG. More specifically, a UG component is both innate and language-specific. While defin-
ing wh-dependencies with container nodes is clearly language-specific, it’s an open question
whether container nodes are necessarily innate (though some part of them might well turn
out to be). Moreover, tracking trigram frequencies and dispreferring low-probability se-
quences is probably innate, but clearly not language-specific. So, the upshot is that the
Subjacency-ish representation offers an alternative for representing syntactic island knowl-
edge that has fewer necessarily UG components, and the potentially UG components are
likely more general-purpose rather than being useful only for syntactic islands.

Similar to our case study with English metrical stress, this acquisition modeling approach
has allowed us to evaluate a representation (here, of wh-dependencies) by using it for acqui-
sition. We’re then able to refine our theories about (1) what part of the representation must
be in UG, and (2) the acquisition strategy that accompanies the representation for syntactic
islands.
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4 Closing thoughts

What I’ve hoped to show you here is how we can use acquisition modeling to get at the larger
goal of informing theories of representation and theories of acquisition at the same time,
given the natural link between them. In the metrical stress case study, I identified learning
assumptions about using productive data filters that benefit children learning English and
which can differentially benefit proposed stress knowledge representations. I also identified
alternative English grammars within these representations that are similar to the current
definitions in many respects but which are likely easier to learn from the English data
children typically encounter. These serve as empirically motivated alternative proposals for
what the English grammar actually is for each representation. For the syntactic islands case
study, I provided empirical validation for a proposed syntactic island representation, which
then yielded alternative proposals for the contents of Universal Grammar. I also provided a
concrete demonstration of a learning strategy that could use that representation and succeed
when given cognitively plausible input data. So, I believe this acquisition modeling approach
can be a really useful tool for linking theories of representation with theories of acquisition.
I hope that we’ll keep using it to inspire, test, and adapt both kinds of theories.
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