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1 Introduction

A remarkable feat of children’s developing language abilities is their success
in acquiring complex syntactic patterns in their native language(s) at a young age.
Specifically, English-speaking children as young as four (De Villiers et al., 2008)
(and perhaps younger (Hirzel, 2022)) seem to interpret wh-dependencies in adult-
like ways. To investigate how children are able to acquire this knowledge from
their input, we start with a wh-dependency learning theory that has been formally
articulated and evaluated via computational cognitive modeling (Dickson et al.,
2022), and found to succeed at matching observed behavior that signals knowl-
edge of wh-dependencies. Here, we evaluate this theory’s ability to handle more
realistic learning scenarios that incorporate children’s memory limitations. We
find that modeled learners who implement the learning theory of Dickson et al.
(2022), while also contending with memory constraints, can still capture most of
the previously observed behavior.

We first briefly review the specific knowledge about wh-dependencies, known
as “syntactic islands”, that serves as the target of acquisition, along with the behav-
ioral data that signals knowledge of syntactic islands. We then discuss the learn-
ing theory of Dickson et al. (2022), which assumes children are trying to identify
linguistic representations that allow them to efficiently parse their surrounding
language data. We describe how we implement this theory in a computational
cognitive model (drawing on O’Donnell (2015)’s Fragment Grammar approach),
which articulates the modeled learner’s hypothesis space of possible linguistic
representations, the modeled learner’s data intake, and the modeled learner’s in-
ference computation. We then turn to how memory limitations are implemented
and incorporated into the modeled learners, specifically as a recency effect im-
pacting the modeled learner’s data intake. We review the realistic input sample
the memory-impacted learners learn from before presenting our results, which
highlight the learners’ success at generating target behavior patterns. We then dis-
cuss what differences we observe in the memory-impacted learners (as compared
to idealized learners with no memory limitations), the implications of our results
for the acquisition of wh-dependencies, and future work that can help us further
understand this acquisition process in children.

*Niels Dickson, University of California, Irvine, nielsd@uci.edu. Richard Futrell, Uni-
versity of California, Irvine, rfutrell@uci.edu. Lisa Pearl, University of California, Irvine,
lpearl@uci.edu.
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2 The target of acquisition

2.1 Target knowledge: Syntactic islands

Critical wh-dependency knowledge is which ones are and aren’t acceptable
in the language. Consider the wh-dependencies contained in the utterances in (1).

(1) a. Who does Jack think the necklace is for who?
b. ∗ Who does Jack think the necklace for who is expensive?

Sentence (1a) includes a dependency between the wh-word (“Who”) and a
position later in the utterance (the object of the preposition “for”). This depen-
dency is generally acceptable to English speakers, in contrast to the unacceptable
dependency contained in (1b) between the utterance-initial “What” and the object
of “for” in the subject of the embedded clause “is expensive”.

One way these unacceptable dependencies have been described is that they
cross structures called “syntactic islands” (Ross, 1967): the metaphor is that cer-
tain structures (e.g., the complex subject of the embedded clause “the necklace for

”) act as a barrier that a dependency can’t cross (i.e., an island that the dependent
element is stuck on). Thus, knowledge of the syntactic islands of the language is
a sophisticated type of syntactic knowledge about wh-dependencies that children
must acquire, and English-learning children seem to demonstrate some of this
knowledge by age four (De Villiers et al., 2008).

2.2 Target behavior

Past research has interpreted certain patterns of behavior in controlled experi-
ments as a signal that the participants have knowledge about syntactic islands (e.g.
De Villiers et al., 2008; Sprouse et al., 2012; Liu et al., 2022). More specifically,
participants generate these observable behavior patterns, using their internalized
knowledge of syntactic islands. So, these behavior patterns serve as an observ-
able target we can compare a modeled learner’s output against. In particular, if a
modeled learner can generate the target behavior patterns that humans generate,
we assume that the modeled learner must have an appropriate internal representa-
tion of syntactic islands. Here, we focus on three behavioral patterns that reflect
adult-like knowledge of syntactic islands (shown in Figure 1).

2.2.1 Superadditive judgments: The “island difference”

The first behavior pattern derives from acceptability judgments of selected
wh-dependency stimuli sets (e.g., those in (2)) that control for two factors: depen-
dency length (main vs. embedded) and presence of an island structure (non-island
vs. island) in the utterance (Sprouse et al., 2012).

(2) a. Who who thinks the necklace is expensive? MAIN | NON-ISLAND

b. What does Jack think what is expensive? EMBEDDED | NON-ISLAND
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Figure 1: Three behavioral patterns representing target knowledge of syn-
tactic islands. From left to right, the “Island Difference” pattern illustrating
the unacceptability of island-crossing wh-dependencies (Sprouse et al., 2012),
the impact of lexical information (main-verb) on wh-dependency acceptabil-
ity (Liu et al., 2022), and child interpretation preferences for potentially am-
biguous wh-dependencies (De Villiers et al., 2008).

c. Who who thinks the necklace for Lily is expensive? MAIN | ISLAND

d. ∗Who does Jack think the necklace for who is expensive? EMBEDDED |
ISLAND

The main feature of this pattern is a particularly low acceptability score for the
embedded island questions like (2d) (beyond what we might expect from the two
factors of length and presence of an island). The pattern can be summarized by
plotting the difference in acceptability between the island vs. non-island sen-
tences (acceptability of non-island embedded sentence minus the acceptability of
the island embedded; with this calculation repeated for the two main clause depen-
dencies). This is done in the left panel of Figure 1) where a positive slope in the
line from the main to the embedded difference score indicates a particularly low
embedded island acceptability score. We take this pattern to be a behavioral target
for acquisition, and so our modeled learners will aim to generate this behavior
when given wh-dependency stimuli sets like (2).

2.2.2 The impact of verb frequency

The second behavior pattern captures a sensitivity to lexical frequency in ac-
ceptability ratings of wh-dependencies. Liu et al. (2022) observed that the fre-
quency of the main verb impacts the judged acceptability of the wh-dependency,
as shown in the center panel of Figure 1.

In particular, participants judged the acceptability of utterances of the form
“What did Lily VERB that Jack bought?”, with different verbs appearing in the
VERB position, such as “say” and “whine.” For each of the stimuli, the authors es-
timated the frequency that the verb in the VERB position uses the syntactic frame
in the utterance (i.e., a sentential complement like “that Jack bought”). Liu et al.
(2022) found that this verb-frame frequency correlated with acceptability of the
wh-dependencies. The center panel of Figure 1 shows this positive correlation,
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plotting the log-transformed frequency of the verb frame1 against the judged ac-
ceptability. As with the island difference pattern, we take this correlation as a
behavioral target for acquisition, and so our modeled learners will aim to generate
this pattern when tested on these stimuli.

2.2.3 Interpretation preferences

The third behavior is interpretation preferences for potentially ambiguous wh-
questions (De Villiers et al., 2008). Children were presented with a story and
asked a related wh-question that had two possible interpretations: one where the
dependency is resolved in the main clause and one where the dependency is re-
solved in the embedded clause. For example, after hearing a story about a boy
who got hurt and was talking about it later, children were asked a question like
“How did the boy say how1

he hurt how2
himself?” If children’s answer was

about how the saying occurred, they would seem to have resolved the dependency
in the main clause (how1); if instead their answer was about how the hurting oc-
curred, they would seem to have resolved the dependency in the embedded clause
(how2).

The right panel of Figure 1, on the x-axis, plots the proportion of time children
preferred an embedded-clause wh-dependency, given nine different wh-questions.
The y-axis shows possible model predictions. We take the target pattern to be
qualitative, assessing whether the modeled learner’s predictions can align with a
threshold of above or below 50%, as shown by the grey boxes in the right panel
of Figure 1. That is, child and model preference for an embedded dependency
occurring less than 50% of the time are in the bottom lefthand grey quadrant,
while child and model preferences for an embedded dependency occurring more
than 50% of the time are in the top righthand grey quadrant.

3 Learning theory: Efficient linguistic representation

The modeled learner of Dickson et al. (2022) implements a learning theory
adapted from O’Donnell (2015), which encodes the following intuition: children
can acquire relevant knowledge about wh-dependencies by learning to efficiently
represent wh-dependencies. More specifically, if children have an efficient rep-
resentation of wh-dependencies (i.e., the right chunks that can be put together to
generate any wh-dependency), then island-crossing wh-dependencies will emerge
as being far less acceptable (i.e., low probability) because these wh-dependencies
are represented with some low-probability chunks. Dickson et al. (2022)’s learn-
ing theory implementation focuses on an efficient representation of a subpart of
the utterance that contains the wh-dependency itself (Pearl and Sprouse, 2013;

1Note that log-transformed probabilities range from -∞ to 0, with higher probabilities
having a log probability closer to 0.
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Pearl and Bates, 2022), termed the “syntactic path” (see (3) below). Below we dis-
cuss the modeled learner’s intake, which relies on the syntactic path, the learner’s
hypothesis space of possible wh-dependency chunks, and the learner’s inference
process.

3.1 Learner intake

As mentioned above, the modeled learner aims to identify an efficient rep-
resentation of the syntactic path of a wh-dependency, which is a subpart of the
utterance containing the wh-dependency. In (3), we see the syntactic path for the
utterance “Who does Jack think the necklace is for who?”.2

(3) Syntactic path structural nodes
CP

NP

N

Who

IP

Aux

does

NP

N

Jack

I

PRESENT

VP

V

think

CP

C

NULL

IP

NP

the necklace

I

PRESENT

VP

V

be

PP

P

for

NP

who

More specifically, the syntactic path can be thought of as the syntactic nodes that
“contain” the wh-dependency (Pearl and Sprouse, 2013), focusing on the path of
child to parent nodes that contain the “gap” (e.g., who) and eventually contain
the wh-word (e.g., who, as shown in (3)). In (3), the structural nodes of the syn-
tactic path can be represented with the highlighted sequence IP-VP-CP-IP-VP-PP.
Syntactic paths may also contain lexical information (e.g., the complementizer
is NULL for the CP: Pearl and Sprouse 2013; Pearl and Bates 2022). Here, we
assume all lexical information connected to the head of the syntactic path nodes
(i.e., NULL for the complementizer of the CP, “think” for the main VP’s verb, etc.)
is included in the modeled learner’s intake: IPPRESENT-VPthink-CPNULL-IPPRESENT-
VPbe-PPfor.

3.2 Possible representations: Fragment Grammar (FG) model

To identify an efficient representation of wh-dependencies, our learning the-
ory assumes children must identify efficient chunks that can be combined to gen-

2We note that this tree assumes a particular syntactic phrase structure representation,
but a syntactic path can be defined for any syntactic tree structure.
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erate any wh-dependency. Here, we define the modeled learner’s hypothesis space
of potential wh-dependency chunks using Fragment Grammars (FGs) (O’Donnell,
2015) – see Dickson et al. (2022) for mathematical details of the hypothesis space
specification. The basic idea is that the modeled learner considers the space of all
possible wh-dependency chunks (“fragments”) and identifies a set of chunks that
can be used to generate any wh-dependency (the “grammar”). An efficient FG
will strike a balance between the simplicity of the representation and the ability to
capture the data (see Figure 2).

Figure 2: Some possible FG representations that capture the syntactic path
of the wh-dependency in (3) with different-sized chunks, demonstrating the
trade-off in learned representations based on the size of the stored chunk.

A learner who chooses minimal-size chunks (on the left of Figure 2) would
end up with fewer chunks overall (i.e., a simpler representation). These chunks
would have a higher probability because they’re often used, and can be flexi-
bly combined to generate wh-dependencies. However, to generate a specific wh-
dependency, many chunks have to be used, and so the generated wh-dependency
includes that higher “construction” cost.

In contrast, a learner who chooses maximal-sized chunks (on the right of
Figure 2) would end up with many chunks overall (one chunk for each unique wh-
dependency in the input, which is a more complex representation). These chunks
would have a lower probability because they’re far less often used, and would not
be able to easily capture new wh-dependencies that haven’t been encountered in
the input. However, to generate a specific wh-dependency, only one chunk has to
be used, and so the generated wh-dependency has a low construction cost.

A learner who strikes a balance between these two extremes and chooses
chunks of different sizes is an “intermediate learner” (center of Figure 2). This
learner forms generalizations about the data to chunk frequently co-occurring
structures (maintaining a low construction cost like the “maximal” learner) but
keeps the learned pieces small enough to maintain a low-complexity, flexible rep-
resentation (leveraging the advantage of the “minimal” learner). Thus, intermedi-
ate chunks can be a more efficient representation than either minimal or maximal
chunks – and the learner’s inference process involves how to find just the right
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intermediate chunks.

3.3 Learner inference

To search the hypothesis space of possible wh-dependency chunks, the mod-
eled learners follow Dickson et al. (2022), adapted from O’Donnell (2015), and
use Bayesian inference, a plausible inference computation for young children
(see Pearl (2021) for more detailed discussion). The modeled learners here use
a computational-level implementation of Bayesian inference (Marr, 2010; Pearl,
2023b), and search the hypothesis space using Metroplis-Hastings sampling. In
particular, the modeled learner samples a potential FG (i.e., a set of chunks) from
the set of possible chunks, parses the entire available input with this sampled FG,
and tracks how probable the data are with this FG representation. The learner
then makes an informed adjustment to the learned representation and adopts this
adjustment if the probability of the data under the adjusted representation in-
creases (O’Donnell, 2015). Over many iterations, this process leads to the mod-
eled learner adopting a high-probability FG.

To be clear, we don’t assume that children are capable of accomplishing this
mental computation of Bayesian inference in this way – it seems unlikely they can
hold a detailed representation of all their input data over many years in mind, for
one thing. However, we are committed to children performing Bayesian inference,
likely approximating this mental computation as best they can with the cognitive
resources they have available.

4 A more realistic modeled learner with memory limitations

4.1 The role of memory in wh-dependency processing

An assumption of the previous modeled learners of Dickson et al. (2022) is
that they can perfectly extract and represent the data they learn from: the syntactic
paths of the wh-dependencies in their input. In other words, when the modeled
learner processes the input, none of the information is lost, and all of the infor-
mation contributes to the learned representation. However, children have limited
cognitive resources, including memory limitations, that likely would impact their
ability to accurately extract and represent wh-dependency information. In partic-
ular, we know that memory plays an important part in processing dependencies
(McElree et al., 2003), and children’s short term memory, along with related abil-
ities like encoding information with context and maintaining attention, develops
over time (Paris, 1978; Gathercole et al., 2004; Fandakova et al., 2014). Given
this, we investigate the impact of memory limitations on modeled learners search-
ing for an efficient FG representation of wh-dependencies.

More specifically, we implement memory-impacted modeled learners who
exhibit a recency effect (Anderson and Milson, 1989), where more recent infor-
mation is more likely to be remembered. In humans, this effect follows a power-
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law distribution: recent items have a high probability of being remembered, but
this probability quickly decreases for the items farther away from the most recent
item (see Figure 3). Here, the items to be remembered are the units in the syntactic
path. So, a recency effect causes our memory-impacted learners to forget some
of the syntactic path units (typically, the ones further from the end of the path)
and be forced to learn an efficient FG representation for the pieces of the syntactic
paths that remain.

4.2 Recency effect implementation

To implement this recency effect, we altered the syntactic paths of the wh-
dependencies in the modeled learner’s data intake, removing (i.e., “forgetting”)
lexical items in these syntactic paths with a probability proportional to their po-
sition in the path (see (4)), which is based on a power-law implementation of a
recency effect (Anderson and Milson, 1989).

remember probability = prem =
1

(position + 1)α
(4)

In particular, a lexical item’s “remember probability” prem depends on its
position relative to the end of the syntactic path. Lower positions are closer to
the end (more recent), and so result in higher prem values. The α parameter rep-
resents the “forgetting rate” and controls the shape of the remember probability
curve, with higher values resulting in more-recent items being remembered rela-
tively more often (Figure 3). When α=0, all positions are remembered perfectly
(remember probability = 1.00). For α>0, the more recent lexical items (lower
positions relative to the end of the syntactic path) are remembered (somewhat or
much) more often relative to less-recent positions.

Figure 3: Probability of remembering a lexical item at different positions
relative to the end of the syntactic path, based on forgetting rate α values.

Table 1 illustrates the impact of different forgetting rates (implemented with
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α) for the example syntactic path from (3). In particular, the probability of the
item being remembered is shown, relative to its position.

PRESENT think NULL PRESENT be for
Position 6 5 4 3 2 1
α = 0.1 0.82 0.84 0.85 0.87 0.90 0.93
α = 0.8 0.21 0.24 0.28 0.33 0.42 0.57

Table 1: Impact of different forgetting rates α on syntactic path lexical items,
showing the probability of an item being remembered, given its position (Po-
sition) relative to the end of the syntactic path.

When a lexical item is forgotten, the modeled learner replaces it with a
generic “unknown” (UNK) symbol. For instance, with α=0.8, the probability of
remembering the item in position 6 (PRESENT) is 0.21, and so with probability 1-
0.21=0.79, this item is forgotten when the syntactic path instance is encountered in
the input, and replaced with UNK. That is, the syntactic path used by the modeled
learner for learning becomes IPUNK-VPthink-CPNULL-IPPRESENT-VPbe-PPfor.

5 Modeled learner input

Modeled learner input was drawn from a realistic sample of child-directed
speech interactions, directed at children between the ages of one and a half
and five, from the CHILDES Treebank (Pearl and Sprouse, 2013). We identi-
fied 12,704 wh-dependencies from this sample. We then estimated the total wh-
dependencies encountered by children during a plausible learning period (from
18 months to 4 years old: Perkins and Lidz 2021; Pearl and Bates 2022), consid-
ering the average waking hours (Davis et al., 2004), utterances per hour (Rowe,
2012), and wh-dependency frequency in children’s input. This estimate yielded
2,146,324 wh-dependencies total for our modeled learners to learn from, dis-
tributed according to the sample of 12,704 wh-dependencies.

6 Results

Given this realistic input estimate of wh-dependencies to learn from, the mod-
eled learners then use Bayesian inference to identify an efficient FG representa-
tion comprised of different-sized chunks that can be used to generate any wh-
dependency. Below we report the modeled learners’ ability to generate the target
behavior patterns that signal knowledge of syntactic islands. To demonstrate the
impact of memory limitations, we show the performance both of learners with
no memory limitations as a baseline as well as memory-impacted learners. The
selected results come from modeled learners that have different rates of forget-
ting, yielding different average probabilities of forgetting any particular lexical
item in a syntactic path: α=0 (0% forgotten), α=0.1 (9% forgotten), α=0.8 (52%
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forgotten), and α=4 (96% forgotten). We ran 20 modeled learners for each of the
forgetting rates (generating a new set of wh-dependency paths for each learner
with some lexical items removed).3

6.1 Target pattern: The island difference

Figure 4: Generated acceptability judgment patterns, with 95% confidence
intervals, from modeled learners with different levels of forgetting. All mod-
eled learners are able to generate the target “island difference” pattern, indi-
cated with a positive slope.

In Figure 4, we see that all modeled learners are able to generate the tar-
get behavior pattern of the “island difference”, which encodes the superadditive
acceptability judgment pattern of Sprouse et al. (2012) and reflects internalized
knowledge of syntactic islands. That is, both idealized learners with perfect mem-
ory (0% forgotten) and memory-impacted learners (9-96% forgotten) can gener-
ate the positive slope that indicates the appropriate acceptability judgment pat-
tern. So, even under severe memory constraints (e.g., lexical items forgotten 96%
of the time), learners identifying efficient wh-dependency chunks can succeed at
acquiring wh-dependency knowledge that allows them to generate this behavior
signaling knowledge of syntactic islands.

6.2 Target pattern: The impact of verb frequency

In Figure 5, we see that modeled learners without heavy memory loss (lexical
items forgotten 0-52% of the time) are able to generate the target behavior pat-
tern, where the frequency of the verb frame positively correlates with the judged
acceptability of the selected wh-dependency. That is, both idealized learners (0%
forgotten) and some memory-impacted learners (9-52% forgotten) can generate

3The training and testing sets, the output data, and relevant code generating the results
can be found at https://github.com/nielswd23/noisy-deps.
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Figure 5: Generated acceptability judgment patterns from modeled learners
with different levels of forgetting. Modeled learners without heavy memory
loss (≤52% forgotten) are able to generate the target pattern that shows the
impact of verb frequency, indicated with a positive slope.

the positive slope that indicates the appropriate acceptability judgment pattern.
However, a learner who forgets lexical items 96% of the time can’t. Intuitively,
this failure by a severely-impacted learner is less surprising because this pattern
depends more on specific lexical items (i.e., the main verb). So, it seems likely
that this modeled learner didn’t see enough lexical item data to notice that the
specific lexical item of the main verb mattered.

More specifically, the verbs become too rare in the input for the severely-
impacted modeled learner to include them in the learned chunks of the grammar.
For example, in lower levels of forgetting, the learner can generate higher prob-
ability for wh-dependencies that include “say” (which appears frequently in the
input) by using a learned chunk that includes “say” within a larger structure.
This contrasts with wh-dependencies that include other verbs (e.g. “whine”),
which don’t appear frequently in the input; therefore, the learner doesn’t learn
larger, higher-probability chunks that include “whine”. However, with 96% for-
getting, “say” also doesn’t appear frequently enough to include in a larger, higher-
probability chunk. In fact, no verbs do. So, all wh-dependencies with this structure
have the same probability, because they all use the same chunks that don’t include
the verb lexical items. More generally, learners who rely on the efficient chunking
strategy can only succeed at acquiring the appropriate wh-dependency knowledge
if their memory limitations are less severe.

6.3 Target pattern: Interpretation preferences

In Figure 6, we see that all modeled learners behave qualitatively the same,
and are able to generate most of the target behavior preferences. That is, both
idealized learners with perfect memory (0% forgotten) and memory-impacted
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Figure 6: Generated modeled learner interpreted preferences compared
against observed child interpretation preferences at varying forgetting rates.
Each point plots the mean model score (preference for the long-distance de-
pendency interpretation) on the y-axis for an individual test item. The error
bars indicate a 95% confidence interval over the 20 modeled learner runs.

learners (9-96% forgotten) can generate nearly all the preference patterns (7 out
of 9) that children have. So, even with memory constraints, modeled learners
identifying efficient wh-dependency chunks can succeed at acquiring most of the
wh-dependency knowledge that allows them to generate this behavior signaling
knowledge of syntactic islands. For the remaining patterns that weren’t captured,
future work can investigate if different implementations of this learning theory
(perhaps with different memory or data intake assumptions – see discussion in
section 7) can capture more of the observed target behavior.

6.4 Results summary

We find that even memory-impacted modeled learners are still able to capture
the majority of the target behavior patterns, just as idealized learners with perfect
memory can. In many cases, even very severe memory limitations (lexical items
forgotten 96% of the time) don’t hinder the modeled learners from learning rep-
resentations that allow them to generate the target behavior patterns. We interpret
these results as supporting the plausibility of the learning theory implemented in
the modeled learners, which involves learners trying to identify efficient chunks
for their representation of wh-dependencies. That is, while we may not know for
certain exactly how much information is lost due to children’s memory limita-
tions, it seems likely that this learning theory is viable as a way for children to
learn about syntactic islands.
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7 General discussion and future work

Our findings support the proposed learning theory from Dickson et al. (2022),
which focuses on a learning an efficient representation of the input, by demon-
strating that modeled learners implementing this theory can acquire relevant wh-
dependency knowledge about syntactic islands (Sprouse et al., 2012; Liu et al.,
2022; De Villiers et al., 2008) even when they operate with memory constraints.
More broadly, our findings align with the goal of developing cognitively-plausible
theories of acquisition that evaluate how well learning theories would actually
work for children who are developing both their linguistic (and non-linguistic)
knowledge along with their linguistic (and non-linguistic) processing abilities
Pearl (2023a,b).

However, there are limitations to the current learner implementations that can
be investigated in the future. For instance, the learners here implemented a mem-
ory constraint based on the established psychological phenomenon of the recency
effect. However, other (more sophisticated) memory constraints are possible, such
as those anchored in word predictability (more predictable words are better re-
membered: Hahn et al. 2022). We can additionally consider memory constraints
that cause learners not only to forget lexical items, but also the syntactic structure
associated with those items.

Another assumption of the current work concerns the learner’s intake. Here,
the modeled learners were restricted to the syntactic path, which excluded other
(potentially relevant) parts of the structure. Future work could include the rest
of the utterance structure as part of the intake, forcing the modeled learners to
learn an efficient representation for the entire utterance structure that contains the
wh-dependency.

In addition, because the strategy of identifying efficient chunks is not lim-
ited to learning about syntactic islands, future work may also be able to evalu-
ate whether this learning theory can capture other sophisticated wh-dependency
knowledge that involves multiple interpreted positions (gaps), such as across-the-
board extraction and parasitic gaps (Ross, 1967).
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