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Triadic Configurations in Limited Choice Sociometric Networks:

Empirical and Theoretical Results

Abstract:  Previous research demonstrated that information contained in triad censuses 

from heterogeneous collections of social networks occupies a high dimensional space.  

Regions of this space, and locations of triad censuses within it, are largely defined by 

lower order network properties: network density and dyad distributions (Faust 2006, 

2007).  The current paper extends comparative work on triad censuses by addressing 

three related issues.  First, it determines and interprets the space occupied by triad 

censuses for 128 friendship networks gathered using a limited choice sociometric 

protocol.  Second, it constructs a theoretical space for triad censuses expected given 

lower order graph properties and examines the dimensionality and shape of this space.  

Third, it brings together these lines of investigation to determine where the empirical 

triad censuses reside within the theoretical space.  Results show that the empirical triad 

censuses are almost perfectly represented in one dimension (explaining 99% of the data) 

and that network density explains over 96% of the variance in locations on this 

dimension.   In contrast, the theoretical space for triad censuses is at least four-

dimensional, with distinctive regions defined by network density and dyad distributions.  

Within this theoretical space, the empirical triad censuses occupy a restricted region that 

closely tracks triad censuses expected given network density.   Results differ markedly 

from prior findings that the space occupied by triad censuses from heterogeneous social 

networks is of high dimensionality.  Results also reinforce observations about constraints 

that network size and density place on graph level indices.

* Blinded Manuscript (WITHOUT author details)
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1.  Background

Triads, configurations of triples of actors and the ties between them, are 

fundamental to many social network methods and theories.  Triads are important in social 

structural investigation since they link local network patterns to theoretically important 

global structures (Davis 1967, 1970; Davis and Leinhardt 1972;  Holland and Leinhardt 

1970, 1976, 1979; Johnsen 1985, 1986, 1989a, 1989b, 1998).  Triadic patterns and 

processes provide the basis for many sociological insights, such as forbidden triads in the 

strength of weak ties argument (Granovetter 1973), structural holes (Burt 1992), network 

closure (Coleman 1988), brokerage (Fernandez and Gould 1994), tertius strategies 

(Simmel 1950; Burt, 1992; Obstfeldt 2005), coalition formation (Caplow 1959), and trust 

(Burt and Kenz 1995).  Triads have been widely used to study social network structure, 

and triadic configurations often are included in statistical models of social networks 

(Snijders, Pattison, Robins, and Handcock 2006).

The triad census, introduced by Holland and Leinhardt more than three decades 

ago (Holland and Leinhardt 1970), is a standard means for studying triadic configurations 

in social networks, yet its formal properties remain understudied.

Recent research on triad censuses has demonstrated that, in aggregate, 

information contained in triad censuses from heterogeneous collections of social 

networks is of high dimensionality, requiring at least four dimensions for adequate 

representation (Faust 2006, 2007).   That line of investigation studied triad censuses in 

various types of social relations (dominance, outcomes of agonistic encounters, 

expressions of positive and negative affect, co-observation, and choices of work partners, 

for example) and animal species (humans, baboons, chimpanzees, macaques, cows, red 
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deer, several bird species, dolphins, and more) using two independent samples of social 

networks.  Evidence for high dimensionality comes from correspondence analysis or 

singular value decomposition of sets of triad censuses, which require three or four 

dimensions to account for a substantial percent of the data (Faust 2006, 2007).  Within 

these high dimensional spaces, empirical triad censuses are located in distinct regions that 

are largely described by network density and the distributions of mutual, asymmetric, and 

null dyads in the network.   Substantively different kinds of social relations reside in 

different regions of the high dimensional space, for example, contrasting networks of 

victories in agonistic encounters (in which dyads are primarily asymmetric) with 

networks of co-observation (in which all dyads are either mutual or null).

The current paper turns from examining contrasts among triad censuses from 

heterogeneous social relations to studying triadic patterns in networks measured using the 

same sociometric question in similar social settings.  The following analyses use a 

collection of 128 social networks all measured with the same limited choice sociometric 

question about friendships between students in American high schools.  The general 

goals of this paper are to determine the space spanned by triad censuses from a single 

kind of social relation, to construct a theoretical space of probable triad censuses from 

networks with known lower order network properties, and to locate the empirical triad 

censuses within this theoretical space.  Where do triad censuses for friendships among 

American high school students reside within this theoretical space of triad census 

possibilities?
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These objectives are subtly, yet fundamentally, different from the objectives of 

investigations that seek to identify statistically important triadic tendencies in social 

networks.  Examples of such contrasting lines of research include determining whether 

there are significant triadic effects in a statistical models social networks or quantifying 

the extent to which observed triad frequencies depart from expectation under a particular

conditional distribution.  In contrast, the current paper aims to directly study triad 

censuses for specific social relation and to compare these triad censuses to a theoretical 

space of possibilities.  

2.  Density, dyads, and triads

Network density, the dyad census, and the triad census are especially important 

network properties used in the following analyses.  For a dichotomous directional relation 

on g actors, where ijx  records the tie from actor i to actor j, network density is defined as:
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If outdegrees are fixed so dxi   for all actors, i, then density can be expressed as:
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This clearly shows the formal relationships between degree, network size, and network 

density:  for fixed degrees, as network size increases, network density decreases.

Dyadic and triadic features of networks are succinctly summarized in censuses of 

subgraphs of two or three nodes.  A dyad consists of a pair of nodes and the state of the 

arcs between them.  For a dichotomous directional relation there are 2
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each of which must be in one of three isomorphism classes:  mutual (M),  asymmetric 

ignoring arc direction (A), or null (N).  For a given network, its dyad census is a count of 

the number of dyads in each isomorphism class.  These counts are often referred to as 

MAN.

Figure 1 here

A triad is a subgraph of three nodes and the arcs between them.   For a directional 

dichotomous relation there are 6
)2)(1(
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 triads, each of which is isomorphic with 

one of sixteen isomorphism classes.  These isomorphism classes are shown in Figure 1 

with standard labeling giving the number of mutual, asymmetric, and null dyads along 

with a letter (T, C, D, or U) to indicate directionality, when there is more than one triad 

isomorphism class with the same MAN count (Holland and Leinhardt 1970).  For a given 

network, its triad census records the number of triads in each of the16 isomorphism 

classes, and is summarized in a 16 element vector )...,( 1621 ccct , where ck denotes the 

number of triads in isomorphism class k.

A number of graph properties can be derived from the triad census counts for a 

given network (Holland and Leinhardt 1976; Wasserman and Faust 1994).  These 

properties include network size (g), the number of arcs ( x ), network density

(
)1( 



gg

x
), and the dyad census MAN counts, among others.  Since network density and 

the dyad census can be derived from the triad census, but not the reverse, these properties 

are said to be lower order than the triad census.

There is a long tradition of using the triad census to investigate structural 

properties of social networks, especially networks of positive interpersonal sentiments 
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(Brewer and Webster 1999; Davis 1970; Davis and Leinhardt 1972; Hallinan 1974a, 

1974b; Holland, and Leinhardt 1972; Leinhardt 1972).  Much of this research has been 

concerned with characterizing common triadic tendencies in these social relations and 

linking triadic patterns to theoretically important network structures, such as structural 

balance, clusterability, ranked clusters, and transitivity.  It is therefore fitting to continue 

this line of investigation, focusing on triad censuses for a collection of friendship 

networks.

3.  Sociometric data

Empirical data are from The National Longitudinal Study of Adolescent Health 

in-school questionnaires from Wave I, conducted in 1994-5 (Harris et al. 2003).  Given 

the widespread use of these data it is worth describing them in some detail.  The study 

sampled high schools so that 

“… high schools selected are representative of US schools with respect to region 

of country, urbanicity, size, type, and ethnicity. Eligible high schools included an 

11th grade and enrolled more than 30 students. … Participating high schools 

helped to identify feeder schools—that is, schools that included a 7th grade and 

sent at least five graduates to that high school. From among the feeder schools, 

one was selected with probability proportional to the number of students it 

contributed to the high school”  (Harris et al. 2003).  

Sociometric data were collected using an in-class questionnaire.  Each student who was 

present on the day of the survey was given a roster of students in the high school and its 

feeder school and asked to list, using assigned code numbers, their closest male and 

female friends.  The exact questions were:
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 “List your closest male friends. List your best male friend first, then your next 

best friend, and so on. Girls may include boys who are friends and boyfriends.”

 “List your closest female friends. List your best female friend first, then your next 

best friend, and so on. Boys may include girls who are friends and girlfriends”   

(Harris et al. 2003).

Space was provided to list, by code number, up to five male friends and five female 

friends.  Students also were allowed to list friends who were not on the roster, did not 

attend the schools, or were not enrolled in school, though these responses are not 

included in the in-school sociometric data.  A reproduction of the social network section 

of the questionnaire, showing the exact response format, is in Bearman, Moody, Stovel, 

and Thaljin (2004, page 205).  

Given the response format of the questionnaire, each student is limited to 

nominate no more than five male and no more than five female friends.  Since this 

imposes an upper limit to the number of choices, and students were not required to name 

exactly five male and exactly five female friends, the format used in the Adolescent 

Health questionnaire is a limited choice sociometric protocol.

The following analyses use data from 84 linked junior and senior high schools in 

which response rates were at least 50% (Moody 2005). Of the 84 senior high schools, 44 

were linked to a separate junior high or middle school, giving a sample of 128 schools.  

The sample includes N=75,810 individuals.  As can be seen in Table 1, schools range in 

size from 25 to 2,250 students and network density ranges from 0.0012 to 0.3467.  For 

fixed nodal degree, network density necessarily falls with network size (equations 1 and 

2) resulting, for this sample of schools, in a squared Pearson correlation of 907.2 r
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between network density and the reciprocal of school size.  Schools also differ in their 

proportions of mutual, asymmetric, and null dyads.

Table 1 here

Sociometric data from the Adolescent Health project have been used to study a  

variety of topics, including: adolescent delinquency and violence (Haynie 2001, 2002; 

Haynie and Payne 2006; Payne and Cornwell 2007), racial and ethnic segregation (Joyner 

and Kao 2000; Kao and Joyner 2006; Moody 2001b; Mouw and Entwisle 2006; Quillian 

and Campbell 2003), effects of residential segregation on friendship (Mouw and Entwisle 

2006),  residential mobility and friendship formation (Haynie, South and Bose 2006; 

South and Haynie 2004), suicide intentions (Bearman and Moody 2004), obesity and 

friendship (Strauss and Pollack 2003), grade based subgrouping (Handcock, Raftery and 

Tantrum 2007), friendship reciprocity (Vaquera and Kao 2008), parental effects on 

friendship (Knoester, Haynie, and Stephens 2006), and to illustrate new social network 

methods (Goodreau 2007; Moody 2001a; Handcock, Raftery and Tantrum 2007). 

4.  Analysis and results

Analysis proceeds in three stages.  First, triad censuses for the 128 friendship 

networks are found and singular value decomposition is used to produce a low rank 

approximation for the collection of censuses.  This result is then interpreted using 

network density.  Second, a theoretical space for triad censuses is constructed using 

singular value decomposition of censuses that are expected given network density and the 

proportions of mutual, asymmetric, and null dyads from the dyad census.  Finally, triad 

censuses for the 128 empirical networks are projected into this theoretical space and the 

result is interpreted.
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4.1  Triad censuses from limited choice sociometric networks

Triad censuses for the 128 empirical networks were found (using PAJEK 1.02, 

Batagelj and Mrvar 2004) and aggregated into a single matrix.  This 16128 matrix has 

networks indexing rows and triad isomorphism classes indexing columns.  After 

transforming to row proportions, the matrix, T , is analyzed using singular value 

decomposition (SVD) to determine the aggregate space spanned by triad censuses for the 

128 networks.

Singular value decomposition of a p-by-q matrix, T , is defined as the matrix 

decomposition, 
qqqqqpqp 
 VDUT , where U is a p-by-q matrix of left singular vectors, V is a 

q-by-q matrix of right singular vectors, and D  is a q-by-q diagonal matrix of singular 

values, in non-increasing order, }{ l  (Ben-Israel and Greville 1974; Digby and Kempton 

1987).  SVD of T for the 128 Adolescent Health triad censuses gives left singular 

vectors in the rows of
16128

U , pertaining to the 128 networks in the rows of T , and right 

singular vectors in the rows of 
1616

V , pertaining to the 16 triad isomorphism classes in the 

columns of T .  When displayed,  U  and V  are rescaled so that 2DUU   and 

2DVV  , where 2D  is a diagonal matrix of squared singular values.  

A matrix of rank W  requires W sets of singular values and singular vector pairs to 

reproduce the original data.  The 16128 matrix T  could have rank equal to 15, due to 

the constraint that the 16 triad census counts must sum to 







3

g
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of the sum-of-squares of T that is explained by w  sets of singular vectors and singular 

values (Ben-Israel and Greville 1974).  

Singular values from SVD of T  for the 128 empirical networks are presented in 

Table 2 and the first left and right singular vectors are displayed in Figures 2 and 3, 

respectively.  These results show that one singular value and set of singular vector pairs 

accounts for 99.42% of the total sum-of-squares of T .  It is worth reflecting on this 

result.  Although satisfactory representation of T  could have required a 15-dimensional 

solution, the fact that one singular value and pair of singular vectors accounts for over 

99% of the data clearly demonstrates that these triad censuses are adequately summarized 

using a one-dimensional approximation of T .  This result contrasts strikingly with prior 

findings that required at least four dimensions to account for triad censuses from 

heterogeneous collections of social networks.

Figure 2 here

Figure 3 here

Table 2 here

In Figure 3, displaying the first right singular vector, v , for triad isomorphism

classes, it is apparent that the main contrast is between the 003 (all null) triad and the 

others.  The large distinction between 003 and the other 15 triads on this dimension 

indicates that its percentage distribution across the 128 networks is markedly different 

from the other triads.  Notably, aggregating across networks, 98.42% of all triads are type 

003, whereas the range for the other triads is from 0.000007% for type 030C to 1.19% 

for type 012.  This suggests an interpretation of this dimension related to network size 

and density, which prior research has found to be important network features constraining 
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graph-level indices, including the triad census (Anderson et al. 1999; Faust 2006, 2007; 

Friedkin 1981).  Focusing on the first left singular vector, u , this vector has a squared 

Pearson correlation of  0.228r 2   with network size, and 0.962r 2   with network 

density.   (For the first right singular vector, v , 0.305r 2   with the number of arcs in the 

triad, though the relationship clearly is not linear, since variability on this vector 

primarily separates the 003 triad from the others.)  I return to the effect of network 

density on the triad census and dimensionality of the singular value decomposition in 

section 5, below.

These results demonstrate that triad censuses for the 128 Adolescent Health 

friendship networks are well fit in a single dimension that is essentially identical to 

network density.   The contrast between the low dimensionality of this result and the high 

dimensionality required to represent heterogeneous collections of social networks (Faust 

2006, 2007) suggests that triad censuses from limited choice sociometric data are 

distinctively constrained in comparison to triad censuses from a broader range of social 

relations.  To pursue this further, the following analyses construct a theoretical space 

spanned by possible triad censuses and then locate the 128 empirical triad censuses 

within this space.

4.2  A theoretical space for triad censuses

Consider the full range of likely triad census outcomes – that is, the probable

distributions of observations across the sixteen triad isomorphism classes.  This 

constitutes a “theoretical space” or universe for the triad census.  Given prior findings on 

the triad census, it seems reasonable to construct a theoretical space that takes into 

account network density and the dyad census.  To determine this theoretical space of triad 
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censuses, two random graph approaches to triad census probabilities are used.  Each of 

these gives an expected distribution across the sixteen triad isomorphism classes, taking 

into account specific lower order graph properties.

First, the Bernoulli random graph model gives triad probabilities as functions of 

network density.  This model assumes a random graph with arc probabilities equal to  .  

Then, the probability that three nodes form a particular triadic configuration is a function 

of the number of arcs in the triad and the number of ways that the arcs can be arranged to 

give the particular configuration (Skvoretz, Fararo, and Agneessens 2004).  Equations for 

these calculations are presented in Table 3.  Triad probabilities from the Bernoulli 

random graph model were generated by varying   from 0.0 to 1.0 in steps of .01, 

yielding triad censuses probabilities for 101 values of  .

Second, the uniform graph distribution conditional on the dyad census, U|MAN, is 

used to calculate a second set of triad probabilities (Holland and Leinhardt 1970, 1976).  

This approach has as its sample space all graphs with a given distribution of mutual, 

asymmetric, and null dyads.  The probability of a particular triadic configuration is then a 

function of the dyad proportions on which the distribution is conditioned, the number of 

mutual, asymmetric, and null dyads in the triad, and the number of ways that the dyads 

can be arranged to give the particular triadic configuration.  Equations for these

calculations are in Table 3.  To find triad probabilities using the U|MAN  distribution, the 

proportions of mutual, asymmetric, and null dyads were varied from 0.0 to 1.0, in steps of 

.05.  All sets of dyad proportions summing to 1.0 were used to calculate triad census 

probabilities, generating probabilities for 231 triad censuses.

Table 3 here
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Together, the Bernoulli and U|MAN triad census probabilities provide the 

skeleton for a theoretical space of triad census expectations.  To determine the 

dimensionality and shape of this theoretical space, the triad probabilities from the two

approaches were combined into a matrix, T
~

, with 231+101=332 rows and 16 columns, 

and then analyzed using singular value decomposition.1

SVD of T
~

, defined as VDUT
~~~~  , yields left and right singular vectors U

~
 and V

~

defining the space of triad censuses expected given network density and dyad census 

proportions.  Singular values for the first 13 dimensions of this space are presented in 

Table 2.  The first three singular value/ singular vector pairs account for 75.55% of the 

sum-of-squares of T
~

, establishing that the theoretical space of triad censuses is of 

relatively high dimensionality.

Figure 4 here

Figure 5 here

The first three left singular vectors, U
~

, of the theoretical space are displayed in 

Figure 4, and the first three right singular vectors, V
~

, are in Figure 5.  In two dimensions, 

the theoretical space is roughly the shape of an elongated triangle, as seen in both Figures 

4 and 5.  Focusing first on the space for networks (Figure 4) the corners of the triangle 

are anchored by triad censuses from networks with extreme dyad census distributions.  

The upper-right corner of the triangle is occupied by triad censuses from extremely dense 

networks and consequently many 300 triads.  The lower-right corner of the triangle is 

                                                
1 Other distributions that might be used include the uniform distribution conditional on 
the indegrees or outdegrees (Wasserman 1977), which provides more conditioning than 
the Bernoulli distribution, and the uniform distribution conditional on the indegrees, 
outdegrees, and number of mutual dyads (Snijders 1991), which provides more 
conditioning than U|MAN but cannot be calculated directly.
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occupied by triad censuses from networks that have extremely low density, and thus 

many 003 triads.  The parabolic “spine”, curving from upper to lower right, shows triad 

censuses from the Bernoulli random graph model and traces decreasing network density, 

thus moving from 300 to 003 triads.  In the far left-center of the triangle are triad 

censuses from networks that primarily have asymmetric dyads.  In these triad censuses 

two isomorphism classes predominate: 030T and 030C.  The proportion of asymmetric 

dyads tracks, from right to left, parabolic curves opening to the right, with higher 

proportions of asymmetric dyads in parabolas to the left of the figure.  The edge of the 

triangle running from middle left to upper right contains triad censuses from networks 

with high proportions of mutual dyads.  Similarly, the edge running from middle left to 

lower right has triad censuses from networks with high proportions of null dyads.  

The third dimension of the space for networks is similar to the first dimension and 

is related to asymmetry in the network, as can be seen in Figure 4.  When interpreting this 

dimension it is worth noting that network density is related to asymmetry since highest 

asymmetry is possible in networks with 5.0 .  

The first three right singular vectors, V
~

, for triad isomorphism classes are 

displayed in Figure 5.  This configuration corresponds to the triangular space for 

networks (Figure 4).  The first and third dimensions are related to asymmetry in the triads 

and the second dimension contrasts the high density from low density triads. 

This theoretical space covers the full range of expectations for the triad census

conditional on dyad census proportions, and also includes triad census expectations based 

on network density, ranging from 0 to 1.  The space can be thought of as a skeleton for

triad expectations around which triad censuses from empirical networks can be located.   
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Since regions of the theoretical space are described by distinctive triadic configurations 

they can be useful in characterizing triadic patterns in particular empirical networks.

4.3  Projection of empirical triad censuses into the theoretical space

To determine where triad censuses for the 128 empirical networks are located in 

the theoretical space, they are projected into the theoretical space, U
~

, as supplementary 

points using the equation: 1~~ˆ  DVTU  (Lebart, Morineau, and Warwick 1984).  Û  gives 

the locations for the triad censuses from the 128 empirical networks in the w-dimensional 

theoretical space defined by V
~

.

Figure 6 here

Figure 6 presents the first three right singular vectors, U
~

, of the theoretical space 

and the projected points, Û , for the 128 empirical triad censuses.  This figure shows that 

triad censuses from the 128 empirical sociometric networks occupy a very limited region 

in the theoretical space,  closely tracking the low end of the parabolic density spine

defined by triad censuses from the Bernoulli random graph model.  Triad censuses from 

the lowest density networks are at the tip of the parabolic spine, in the extreme lower 

right corner of the triangular space for the first two dimensions.  The densest networks 

show a slight departure from the spine in the direction of symmetry rather than 

asymmetry.  This is consistent with a tendency for friendship choices to be mutual.

Fit of the 128 empirical triad censuses in the theoretical space is assessed using 

canonical redundancy (Lambert, Wildt, and Durand 1988; Stewart and Love 1968).  For 

two sets of variables, X and Y, canonical redundancy, 2
XYR  , is the proportion of variance 

in linear combinations of Y explained by linear combinations of X.  In the current 

application it is the proportion of variance in linear combinations of the empirical triad 
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censuses, T , explained by linear combinations of their projections in the theoretical 

space, Û .   2

ÛT
R


 is calculated as a function of matrices of correlations between columns 

of Û  and columns of T , 
TU

R ˆ  and 
UT

R ˆ ,  and correlations between columns of Û , 
UU

R ˆˆ , 

as:

)(
1

ˆˆ
1
ˆˆ

2
ˆ UTTUUUUT

RRRR 

 trace

k

where k  is the number of variables in set T  and 1
ˆˆ


UU

R  is the inverse of 
UU

R ˆˆ .

At least three and as many as five dimensions are required to fit T  in the 

theoretical space (accounting for 95.7% and 99.5% of the variance, respectively), as seen 

in Table 4.   This contrasts with the low dimensionality of T  determined by the SVD 

presented above (Table 2), where a single dimension adequately reproduced the 128 

empirical triad censuses.  

Clearly, triad censuses from the from the Adolescent Health friendship networks 

occupy a restricted range in the theoretical space of outcomes that could have been 

observed empirically.  The basis for this result and its implications are discussed in more 

detail in the following section.

Table 4 here

5.  Network density and dimensionality of the Adolescent Health triad censuses

Both singular value decomposition of the 128 triad censuses from the Adolescent 

Health networks and projection of these censuses into the theoretical space give low 

dimensional solutions that are closely related to network density.  To more fully 

understand these results, it is worth considering the relationships among network density, 

triad census distributions, and dimensionality of the space of triad censuses in greater
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detail.  This section reviews the general results presented above and then elaborates how

network density affects the triad census, and, in turn, how this leads to low dimensional 

singular value decomposition solutions. 2

First, a theoretical space of triad census probabilities is of high dimensionality:  at 

least three- and possibly as high at 12-dimensional (see Table 2).  The first two 

dimensions of this theoretical space form a triangle with a parabolic density spine 

running from empty to complete networks.  Corners of the space are occupied by 

networks with extreme dyad distributions.   The third dimension of the space contrasts 

triad censuses from networks with high symmetry from those with high asymmetry.  The 

fact that density and dyadic features describe this space is not unexpected given that it 

was constructed from triad census probabilities calculated using the Bernoulli and 

U|MAN random graph models.   Nevertheless, it is important to recognize that previous 

research has found that triad censuses from a variety of empirical social networks closely 

resemble those expected from the U|MAN distribution (Faust 2007; Holland and 

Leinhardt 1979), and density alone is not sufficient to explain those triad distributions 

(Faust 2006, 2007).  In addition, a space of high dimensionality is required to represent 

collections of triad censuses from heterogeneous social relations (Faust 2006, 2007).  

Therefore, the high dimensional theoretical space presented in this paper is likely to be a 

reasonable characterization of triad censuses from many empirical social networks.

In contrast to this theoretical result, triad censuses from the 128 limited choice 

sociometric networks of the Adolescent Health study occupy a one-dimensional space 

                                                
2 I am grateful to a reviewer of an earlier version of this paper for calling my attention to 
the formal relationships between network density and the singular value decomposition 
result.



18

that is almost completely described by network density.  This single dimension accounts 

for more than 99% of the sum-of-squares of the data and network density explains 96% 

of its variance.  Furthermore, when triad censuses from the Adolescent Health friendship 

networks are projected into the theoretical space, they occupy a very limited region of the 

space, closely tracking censuses that would be expected given low network density.  This 

low dimensionality demonstrates that triad censuses from the limited choice sociometric 

networks are considerably more constrained than the high dimensional potential that 

might be realized, both in a theoretical space of triad census probabilities and in 

comparison to triad censuses from a variety of empirical social relations studied in 

previous research (Faust 2007). 

A further observation provides the formal basis for more thorough interpretation 

of these findings about dimensionality.  Specifically, the one-dimensional representation 

of triad censuses from the Adolescent Health friendship networks and their locations

within the theoretical space both occur because network density constrains possible 

triadic outcomes. It is worth examining in some detail how network density is related to 

the triad census and, in turn, how this affects the singular value decomposition.  

Recall that network density is exactly related to mean in/outdegree, d , and 

network size,
11
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, (also see equations 1 and 2).  For fixed degrees, as 

network size increases, density necessarily falls as the reciprocal of network size.  Fixed 

and limited choice sociometric data collection protocols restrict individual outdegrees. 

Thus, networks with nearly identical mean degree but of different sizes must have 



19

densities that are largely a function of network size.  With regard to the empirical 

example in this paper, the limited choice sociometric design of the Adolescent Health 

study allowed students to name up to ten friends, though the mean number of choices is 

4.2 (n = 75,810).  Moreover, even though there is considerable variability in school size, 

the mean number of choices does not vary much across the 128 schools, as can be seen in 

Table 1.  As a consequence, network density is quite low in most schools (25th percentile 

= 0.0053, 75th percentile = 0.0155) and is well predicted from school size ( 907.2 r , as 

reported above).  

Triad probabilities are affected by network density (see equations in Table 3), as 

are possible empirical outcomes.  Some rough calculations using the mean density of 

0193.0  and the Bernoulli random graph model illustrate this point.  At a density of 

0193.0 , the probability of an all null 003 triad is 8896.0)0193.01()003Pr( 6 

and the probability of an all mutual 300 triad is 50000000000.0)0193.0()300Pr( 6  .  

Although triad proportions in empirical networks with density 0193.0 might vary 

from these probabilities, triadic outcomes are severely constrained – this density is 

simply too low to construct large numbers of the kinds of triads that contain many arcs, 

such as the 300 triad.   Aggregating across triads from all 128 schools in the Adolescent 

Health data, the relative frequency of the 003 triad is 0.9842 and the relative frequency of 

the 300 triad is 0.0000007, illustrating the effect of density on triadic outcomes.  This

result also shows departure from expectation toward both the all mutual 300 triad and the 

all null 003 triad, as compared with the Bernoulli random graph model.  This pattern is 

consistent with triadic closure and clustering of friendships.
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The prevalence of 003 triads in the Adolescent health networks, in turn, affects 

dimensionality of the singular value decomposition.  To see this effect, suppose that the

networks-by-triads array, T , records the relative frequency of the 003 triad in the first 

column.  This means that most rows of T will have a value in their first column that is

around 0.98 (the marginal proportion) and other values that are quite small – together 

summing to 0.02.  Now, consider the one-dimensional singular value decomposition of 

T , shown in Figures 2 and 3 and in Table 2.  As seen in its definition, singular value 

decomposition reconstructs a matrix as a product of three matrices, U , D , and V , in this 

case: VUDT  . A one-dimensional singular value decomposition uses the first left 

singular vector u , with entries }{ iu , the first right singular vector v , with entries }{ jv , 

and the first singular value 1 .  The entry in cell (i,j) of T is approximated as a function 

of the first singular value 1 , the entry in row i of u , and the entry in row j of v :  

jiij vuT 1 .  As a consequence, to reconstruct the Adolescent Health triad proportions in 

one dimension, the value in the first left singular vector, v , pertaining to the 003 triad 

must be quite large relative to the other values to approximate the entries in T  that are 

around 0.98.  It follows that there must be a large difference between the value in v  for 

003 and the values for the other triads.  This is shown graphically in the gap in triad 

locations in Figure 3.  Since so much of the information in these data distinguishes the 

003 triad from the others, a one-dimensional SVD solution approximates the data quite 

well to capture this distinction.

The one-dimensional space of networks (the first left singular vector, u ) shows a 

complementary density effect.  Since values in the first right singular vector, v , are 

comparatively large for the 003 triad, to provide a reasonable approximation to T a  
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value in the first left singular vector, u , must primarily accommodate the proportion of 

003 triads a network.  In the Adolescent Health data a network will have a low value of 

u when its 003 triads are less common than is typical, thus offsetting the large value in v

for the 003 triad. Such networks, seen on the left side of Figure 2, are ones with 

relatively high density and therefore a low percent of 003 triads compared to other 

networks.  To summarize these two results, the one-dimensional singular value 

decomposition for the 128 triad censuses is an expected outcome of the pervasiveness of 

003 triads in these networks, which in turn is an expected result of low density networks.  

A related, though slightly different, effect of density is found when the empirical 

triad censuses are projected into the multidimensional theoretical space. Here, it is useful 

to think of the theoretical space as representing a universe of expectations for triadic 

outcomes, given network density and the dyad census MAN.  This theoretical space

covers triad censuses through the full range of network density (from empty to complete 

networks) and the full range of legitimate combinations of mutual, asymmetric, and null 

dyads in the dyad census.  Whether triad censuses exist empirically in all regions of this 

theoretical space is an open question.  However, in Figure 6 it can be seen that triad 

censuses from the Adolescent Health study closely track the low end of the density spine 

in the theoretical space and do not extend into higher density regions of the space.  This 

indicates that, in this theoretical universe, these triad censuses do not deviate much from 

what would be expected given their low density and do not appear in extensive regions of 

the space of possible triad censuses.
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6.  Discussion

Are the results presented in this paper “artifacts” of the affect of network density

on triad census distributions, a consequence of using a limited choice sociometric data 

collection protocol, or due to the nature friendship relations in American high schools?  It 

seems likely that the answer is “yes” to all of these possibilities.  

As illustrated above, density constrains possible triad census outcomes.  In turn, 

fixed and limited choice sociometric data collection protocols inescapably limit network 

density through the relationship of density with mean outdegree and network size.   As a 

consequence, fixed and limited choice protocols preclude observing triad censuses from

some (perhaps considerable) portion of the theoretically possible universe.   Nevertheless, 

one might question whether these unobserved, and unobservable, triadic outcomes are 

indeed socially realistic possibilities given what we know about friendship relationships 

among adolescents.  People can only maintain a limited number of friendships, regardless 

of the sizes of the groups to which they belong.  So, it is reasonable to expect that large 

groups will have low density, as is found in the large schools in the Adolescent Health 

data.

Whether the limited choice data collection protocol used in the Adolescent Health 

study under-represented the “true” number of friends that students have is an important 

issue to consider.  Unfortunately, this question cannot be adequately addressed using the 

data at hand, since we cannot know how students might have responded had they been 

presented with a different network data collection protocol.  However, a couple of 

observations might be relevant to the answer.  On average, students named 4.2 friends,

out of a possible maximum of ten.  This could understate the affect of the fixed choice 
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response format, since there is considerable gender homophily in these networks.  The 

mean number of same-sex friends is 2.77 for females and 2.27 for males, but 17.81% of 

females named 5 or more same-sex friends, as did 13.10% of males3.  It appears that 

there is some censoring due to the limited choice format, though the magnitude of the 

effect might be relatively small.

What, if anything, do these results imply about the nature of friendships among 

adolescents in U.S. high schools?  Three observations seem warranted.  First, the number 

of friends that students have is not unlimited, though the Adolescent Health data do not 

allow us to determine what the actual number of friends is.  Second, friendships tend to 

be mutual, as seen in the departure of networks (especially high density networks) from 

the Bernoulli random graph model in the direction of symmetry rather than asymmetry 

(Figure 6).  Finally, and not surprisingly, friendships tend to be clustered, as implied by 

the higher than expected proportions of 003 and 300 triads.  Therefore, in the theoretical 

space of triads, the Adolescent Health networks are located in the low density region of 

the space, close to what would be expected given their density, but tending toward 

symmetry rather than asymmetry.

In summary, the triad census, like other graph-level measures, is heavily 

constrained by lower order graph features, especially network density.  This is consistent 

with previous observations about limitations that network size and density place on 

graph-level indices (Anderson, Butts, and Carley 1999; Butts 2006; Faust 2006; Friedkin 

1981).  The constraint that density places on the triad census becomes especially severe 

in large networks with low mean degree.  We might expect that data collection protocols 

                                                
3 Students named more than five same-sex friends by putting code numbers for friends of  
one sex in response blanks intended for friends of the opposite sex.
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that artificially fix or limit outdegrees will exacerbate the problem.  This conclusion has 

already been well articulated by others (Hallinan 1974a, 1974b; Holland and Leinhardt 

1973) but could benefit from further research.
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Table 1.  Descriptive statistics for 128 networks

Network 
size Density

Mean 
number 
of ties

Proportion 
mutual

Proportion 
asymmetric

Proportion 
null

Mean 592.266 0.019 4.319 0.009 0.021 0.970
Std. Deviation 440.576 0.041 1.086 0.022 0.038 0.060
Minimum 25 0.001 1.590 0.000 0.002 0.500
Maximum 2250 0.347 8.667 0.193 0.307 0.998
Percentiles

25 309.500 0.005 3.659 0.002 0.007 0.976
50 463.000 0.009 4.467 0.003 0.010 0.986
75 736.750 0.016 4.996 0.006 0.019 0.991

N 128 128 128 128 128 128

Table 1



Table 2. Singular values and percent sum-of-squares from SVD of  triad censuses,128
limited choice sociometric networks and 332 theoretical networks

128 Empirical triad censuses 332 Theoretical triad censuses

Dimension
Singular 

value

Singular 
value 

squared Percent
Singular 

value

Singular 
value 

squared Percent
1 10.540 111.092 99.416 5.397 29.128 35.058
2 0.793 0.629 0.563 4.829 23.319 28.067
3 0.138 0.019 0.017 3.213 10.323 12.425
4 0.067 0.005 0.004 2.693 7.252 8.729
5 0.017 0.000 0.000 2.301 5.295 6.373
6 0.010 0.000 0.000 2.160 4.666 5.616
7 0.006 0.000 0.000 1.109 1.230 1.480
8 0.003 0.000 0.000 0.938 0.880 1.059
9 0.001 0.000 0.000 0.682 0.465 0.560

10 0.001 0.000 0.000 0.615 0.378 0.455
11 0.369 0.136 0.164
12 0.111 0.012 0.015

Table 2



Table 3.  Formulas for triad census probabilities

Triad Density1 Dyad census2

003 6)1(  )3(N

012 5)1(6  )2(3AN

102 42 )1(3  )2(3MN

021D 42 )1(3  )2(
4
3 NA

021U 42 )1(3  )2(
4
3 NA

021C 42 )1(6  )2(
2
3 NA

111D 33 )1(6  MAN3

111U 33 )1(6  MAN3

030T 33 )1(6  )3(
4
3 A

030C 33 )1(2  )3(
4
1 A

201 24 )1(3  )2(3NM

120D 24 )1(3  )2(
4
3 MA

120U 24 )1(3  )2(
4
3 MA

120C 24 )1(6  )2(
2
3 MA

210 )1(6 5  )2(3AM

300 6 )3(M

                                                
1 Probability in Bernoulli digraph (Skvoretz et al.  2004).

2 Numerators for probability, uniform given dyad census (MAN).  The denominator is , 

)3(

2 







 g
using 

descending factorial notation where )1()1()(  kzzzz k
  (Holland and Leinhardt 1970, 1976).

Table 3



Table 4.  Canonical redundancy, fit of 128 networks in the theoretical space of one to five 
dimensions

Dimensions Canonical 
redundancy

1 0.831
2 0.864
3 0.957
4 0.981
5 0.995

Table 4




