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Introduction 
We present a strategy for controlling autonomous robots that is based on principles of 

neuromodulation in the mammalian brain. Neuromodulatory systems signal important 

environmental events to the rest of the brain, causing the organism to focus its attention on the 

appropriate object, ignore irrelevant distractions, and respond quickly and appropriately to the 

event [1]. There are separate neuromodulators that alter responses to risks, rewards, novelty, 

effort, and social cooperation. Moreover, the neuromodulatory systems provide a foundation for 

cognitive function in higher organisms; Attention, emotion, goal-directed behavior, and decision-

making all derive from the interaction between the neuromodulatory systems, and brain areas 

such as the amygdala, frontal cortex, and hippocampus. Therefore, understanding 

neuromodulatory function may provide control and action selection algorithms for autonomous 

robots that effectively interact with the environment.  

Neuromodulatory Systems 
Neuromodulators are chemical transmitters in the brain that can have a strong and lasting 

effect on an animal’s behavior. The neuromodulatory systems include noradrenergic, 

serotonergic, dopaminergic, and cholinergic projections from below the cerebral cortex to broad 

areas of the central nervous system [2]. The origins of these systems are small pools of neurons 

(on the order of thousands in the rodent and tens of thousands in the human) located below the 

cortex.  

Despite the different origination and chemical signatures of these neuromodulatory 

systems, there are several commonalities among them: 
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1. Each of these neuromodulatory systems originates below the cerebral cortex and 

projects broadly to all regions of the brain. 

2. Each of these neuromodulatory systems is reciprocally connected with cognitive 

areas of the brain such as the amygdala, frontal cortex and the hippocampus [2]. 

3. The effect of each of these neuromodulatory systems on downstream neuronal 

targets is similar. That is, they cause target neural networks to sharpen, resulting 

in a winner-take-all response [1, 3, 4]. 
 

A computational framework for applying neuromodulatory systems to the control of 

autonomous robots can be based on the following premises: 

1. The common effect of the neuromodulatory systems is to drive an organism to be 

decisive when environmental conditions call for such actions, and to allow the 

organism to be more exploratory when there are no pressing events [1, 5].  

2. The main difference between neuromodulatory systems is the environmental 

stimuli that activate them. The serotonergic system responds to risks and threats 

[6], the cholinergic system sets a level of attentional effort [7], the dopaminergic 

system drives reward anticipation [8], and the noradrenergic system responds to 

novel and salient objects [9]. 

From the evidence, it appears that the common effect of the neuromodulatory system is to 

focus attention on important objects in the environment by increasing the signal to noise ratio of 

neuronal responses [1, 5]. Indeed, the major targets of the neuromodulators are areas noted for 

driving behavior, conditioning responses, focusing attention, and making decisions [2]. The 

means by which neuromodulatory systems focus an animal’s attention is through short bursts of 

activity in response to important events occurring in its surroundings. During phasic 

neuromodulation, information from sensory systems (e.g. visual, auditory, etc) is amplified 

relative to recurrent or associational information [1, 3, 4]. The result of this change in the relative 

weighting of information is to sharpen responses to environmental input, increase signal to noise 

ratio, and drive decisive responses in neural networks. Moreover, neuromodulation gates in 

learning such that an animal can predict relationships between sensory information and action 

outcomes [10, 11].  
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A control system for a robot, which is designed according to principles of the 

neuromodulatory system, could offer major advantages over conventional systems in carrying 

out tasks in the face of environmental challenges. Such a system could learn to take appropriate 

actions depending on context, environmental change, and experience. Neuromodulatory systems 

drive many of the fundamental behaviors crucial for an organism’s survival. Cognitive functions 

such as attention, emotion, goal-directed behavior, and decision-making all arise from the 

interaction between neocortical “executive” areas and the neuromodulatory systems. Therefore a 

controller based on the action of neuromodulation could have much to offer the design of 

autonomous robots. 

In this paper, we show in a neural model how bursts of cholinergic, dopaminergic and 

serotonergic activity can sharpen attention, and lead toward appropriate action selection in a 

cognitive robot. The robot’s behavior is guided by a simulation, which has groups of neurons and 

synaptic connections between these neurons, based on known dynamical and anatomical 

properties of the neuromodulatory system and its interaction with surrounding brain regions. 

Although this neurorobot will be used to investigate how neuromodulation can lead to adaptive 

behavior, principles of this cognitive system may be relevant for the control of robots in general. 

Methods 

Robot and Experimental Apparatus 
The robot used for the experiments, CARL-1, was constructed in the Cognitive Anteater 

Robotics Laboratory at University of California, Irvine (see Figure 1A). It consisted of a two 

wheeled mobile base equipped with a CCD video camera having a RF transmitter for vision, IR 

sensors for obstacle avoidance, and a WiFi device server (http://www.sena.com) for 

communication between the robot and a computer workstation. The pan and tilt position of the 

camera was controlled by commands to a pair of servomotors. The base of the robot was 10 

inches in diameter and 8.5 inches high. A distributed network of PIC-18F2680 microcontrollers, 

which communicated over a CAN interface, read from CARL-1’s sensors, controlled CARL-1’s 

actuators, and communicated wirelessly with a computer workstation that contained the neural 

simulation. Camera video frames were transmitted wirelessly to the Firewire port of the 

workstation. 
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CARL-1’s environment consisted of a 10-foot by 10-foot enclosure that contained eight 

light panels built into the flooring (see Figure 1B). The color of the panels at the four corners 

were set to Cyan, Green, Magenta, and Red at a given frequency and duration through RS-232 

communication from the workstation to electronics controlling the panels.  All eight panels had 

IR transceivers that could communicate position information to CARL-1 when it was on top of 

the panel. 

Neural Architecture 
The neural simulation that controlled CARL-1 consisted of a visuomotor area, 

neuromodulatory systems, action areas and behavior drivers (Figure 2). The visuomotor area 

consisted of sub-areas, each with 15x20 (height x width) neurons that mapped on CARL-1’s 

field of view. These retinotopically mapped neurons responded preferentially to cyan, green, 

magenta, and red. The simulated neuromodulatory systems consisted of a cholinergic basal 

forebrain (BF) area, a serotonergic raphe nucleus (Raphe), and a dopaminergic ventral tegmental 

area (VTA). Each of these neuromodulatory areas contained 100 neurons. The action areas 

consisted of a Find and Flee area that each contained 100 neurons. The behavior driver areas 

consisted of a Good and Bad area that each contained 100 neurons. 

Neural areas were connected through synaptic projections consisting of probability 

distributions of connectivity between individual neurons. Neurons in the visuomotor areas had a 

10% chance of being connected to neuromodulatory neurons, and an initially weak weight 

(uniformly distributed between 0.05 and 0.10) that could change through experiential plasticity. 

Within a visuomotor subarea (e.g. RedRed), neurons connected to neighboring neurons with a 

2-dimensional Gaussian distribution having a standard deviation of 5 neurons, and an initial 

weight uniformly distributed between 0.8 and 1.0. Between visuomotor areas (e.g. RedGreen), 

neurons had a 25% chance of being connected with initial weights uniformly distributed from 0.8 

to 1.0 for excitatory connections and from -0.8 to -1.0 for inhibitory connections. The behavior 

driver neurons had strong “all-to-all” connections to the neuromodulatory systems and the action 

areas. Specifically, the Good neurons had excitatory connections to VTA and Find neurons with 

weights set to 200, and inhibitory connections to Raphe and Flee neurons with weights set to -

200. Conversely, the Bad neurons had excitatory connections to Raphe and Flee neurons with 

weights set to 200, and inhibitory connections to VTA and Find neurons with weights set to -
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200. VTA neurons projected “all-to-all” to Find neurons, Raphe neurons projected “all-to-all” to 

Flee neurons, and BF neurons projected “all-to-all” to Raphe and Flee neurons with initial 

weights uniformly distributed from 0.1 to 0.2. 

Visual neurons were set based on input from CARL-1’s camera. The OpenCV library 

(http://sourceforge.net/projects/opencv/) was used to sub-sample the image to 30x40 pixels and 

run color histogram filters across the image to create separate subareas that responded 

preferentially to cyan, green, magenta, and red. These responses, which were normalized 

between 0 and 1, were used to activate visuomotor neurons of corresponding colors. These visual 

responses were connected topographically to visuomotor neurons with a 2-dimensional Gaussian 

distribution having a standard deviation of 5 neurons, and a weight uniformly distributed from 

1.0 to 1.5. 

Neuronal Dynamics and Synaptic Plasticity 
Neural activity in CARL-1 was simulated by a mean firing rate neuron model where the 

firing rate of each neuron ranged continuously from 0 (quiescent) to 1 (maximal firing). The 

activity level of a neuron represented its average firing rate over 100ms. This model 

demonstrated the necessary neural dynamics, and was efficient enough to run in real-time on a 

robotic platform with sensors and actuators. The equation for the mean firing rate neuron model 

was: 

€ 

si(t) = ρisi(t −1) + (1− ρi)
1

1+ exp(−0.1Ii(t))
 

 
 

 

 
        (1) 

where t was the current time step, si was the activation level of neuron i, ρi was the 

persistence of the neuron, and Ii is the synaptic input. Visuomotor neurons had a persistence of 

0.5 and all other neurons had a persistence of 0.1. 

The synaptic input of the neuron was based on pre-synaptic neural activity, the 

connection strength of the synapse, and the amount of neuromodulator activity:  

€ 

Ii(t) = nm(t −1)wij (t −1)s j (t −1)
j
∑        (2) 

where wij is the synaptic weight from neuron j to neuron i, and nm is the level of 

neuromodulator at synapse ij.  

To simulate the effect of phasic neuromodulation, inhibitory inputs and extrinsic inputs 

were amplified relative to the overall neuromodulatory activity (i.e. nm was set to be ten times 
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the combined average activity of the simulated BF, Raphe, and VTA neural areas). Connections 

from the visual input neurons to visuomotor neurons, from neuromodulatory neurons to action 

neurons, and within the neuromodulatory systems were considered extrinsic. All other excitatory 

connections were considered intrinsic, and for those connections, nm was always equal to 1.  

Connections from the visuomotor areas (Cyan, Green, Magenta, and Red) to the 

neuromodulatory areas (BF, Raphe, VTA), and from the visuomotor areas to the action areas 

(Find and Flee) were subject to synaptic plasticity that depended on the current activity of the 

pre-synaptic neuron, the post-synaptic neuron and the overall activity of the neuromodulatory 

systems. 

 (3) 

where ε was the decay rate, which was set to 0.00001 that decayed weights back to their 

original value (wij(0)). This decay acted as a slow forgetting function and prevented over 

learning. δ was a learning rate set to 0.001, ΘNM was a gating function in which learning only 

occurred when the level of neuromodulator activity (nm from equation 2) was greater than a 

threshold value, which was set to 2, and ΘBCM was a sliding threshold dictating the amount of 

synaptic potentiation and depression. The BCM threshold changed as a function of post-synaptic 

neural activity [12]. 

€ 

ΔΘBCM = 0.001(si(t)
2 −ΘBCM )        (4) 

Action Selection and Behavior 
CARL-1’s behavior switched between three states: random exploration, orienting and 

approaching objects of interest (Find), and moving away from noxious objects (Flee). By 

default, CARL-1 explored unless the difference between the average activity of the Find and 

Flee neural areas was greater than a threshold of 0.75, in which case the more active area would 

elicit the corresponding behavior. 

During exploration behavior, CARL-1 would move at a constant speed while panning its 

camera to the left and right. CARL-1’s turning rate was proportional to the camera pan position. 

That is, the further the camera was panned from the midline, the higher the turning rate in that 

direction. 

€ 

Δwij (t) = ε(wij (0) − wij (t −1)) + δΘNM (nm)s j (t −1)(si(t −1) −ΘBCM )
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During Find and Flee behavior, CARL-1 would saccade its camera to the centroid of the 

most salient object within its field of vision. The most salient object was chosen by applying a 

Softmax function to the activity of the four visuomotor areas (Cyan, Green, Magenta, Red): 

€ 

pc =
exp(5ac )

exp(5ai)
i=1

4

∑
         (5) 

where pc is the probability of choosing color c, ac is the average activity of visuomotor 

area c, and ai is the average activity of visuomotor area i. The Softmax function was applied 

every time step when CARL-1 was in Find or Flee behavior. Because there were always visual 

stimuli in its field of view, CARL-1 would inevitably find some object in the environment to 

point its camera at during Find and Flee behaviors. The camera’s pan and tilt position was set to 

the centroid of activity for the chosen color area.  

During Find behavior, CARL-1 would saccade its camera to the centroid of the most 

salient object within its field of vision, and orient toward that object. CARL-1’s wheel velocity 

was proportional to the camera tilt position, that is, the lower the tilt position the slower the 

forward velocity. CARL-1’s wheel turning rate was proportional to the camera pan position 

causing it to orient towards the visual target (e.g. if the camera was panned left, the wheel 

commands turned CARL-1 to the left). This had the behavioral effect of first fixing CARL-1’s 

gaze on a target of interest, followed by turning the body toward the target, approaching the 

target, and then slowing down when close to the target. 

During Flee behavior, CARL-1 would saccade its camera to the centroid of the most 

salient object within its field of vision, but move away from that object. The camera’s pan and 

tilt position, which was set to the centroid of activity for the chosen color area, was used to 

calculate wheel commands that were, in essence, the opposite of the Find motor commands. 

CARL-1’s turning rate was proportional to the camera pan position but in the opposite direction 

of the target (e.g. if the camera was panned left, the wheel commands turned CARL-1 to the 

right), and its velocity was inversely proportional to the camera tilt position. That is, the lower 

the tilt position the faster the reverse velocity. This had the behavioral effect of first fixing the 

gaze on a target of interest, stopping forward progress, and then turning and backing away from 

the target. 
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Simulation Computation 
The neural simulation contained 6,700 neurons and roughly 1.3 million synaptic 

connections. The neural simulation was run on a 2xQuad-Core 2.8 GHz Intel Xeon Mac Pro 

Workstation on the OS X operating system using POSIX threads, OpenCV, and the FLTK 

Graphical User Interface (GUI) library. The simulation cycle was fixed at 100 milliseconds. 

During each simulation cycle, the sensor data was read and processed, the neural activations 

were calculated, the change in the strength of plastic connections were calculated, behavior was 

selected, motor commands were sent to CARL-1, and the behavioral and neural data were logged 

for post-experimental analysis.  

Experimental Paradigm 
CARL-1 was first trained to associate the color green with Find behavior, and red with 

Flee behavior, and then tested under various conditions.  

In the training period, CARL-1 explored the environment. Occasionally, when CARL-1 

was near a color panel, the operator would press a button on the GUI that would either 

maximally activate the Good area (see Figure 2) and turn the light panel to green, or maximally 

activate the Bad area (see Figure 2) and turn the light panel to red. The button would be turned 

off after several seconds. Training would continue in this manner until CARL-1 had experienced 

10 Good and 10 Bad events. 

In the testing period, CARL-1 explored its environment for 7500 simulation cycles. The 

four light panels were set such that each light panel had a different color. Every 8 to 10 seconds, 

the location of the four colors was changed randomly.  

Results 
Training and testing were repeated with ten different CARL-1 “subjects”. Each subject 

consisted of the same physical device, but possessed a unique simulated nervous system differing 

at the level of synaptic connections. These differences among subjects were a consequence of 

random draws from probability distributions of connectivity, and the variation of initial 

connection strengths between those neurons. However, the overall neural architecture was 

similar across all subjects. 
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Behavioral Results 
After training, all ten subjects responded to green stimuli with Find behavior and to red 

stimuli with Flee behavior (see Figures 3 and 4). During Find behavior, CARL-1 would begin its 

approach to the green light panel from several feet away (see Figure 3A, Top Left). As it neared 

the light panel, its camera tilted down and it stopped on the panel (see Figure 3A, Top Middle). 

As soon as the panel changed to a neutral value color, its camera tilted up and CARL-1 shifted to 

exploratory behavior (see Figure 3A, Top Right). During Flee behavior, CARL-1 would stop its 

approach when it saw the red light panel from several feet away (see Figure 3B, Top Left). With 

its camera centered on the red panel, CARL-1 turned away from the threatening stimulus (see 

Figure 3B, Top Middle). After turning completely away from the red panel, CARL-1’s gaze 

moved away from the salient object and it shifted to exploratory behavior (see Figure 3B, Top 

Right). 

These behaviors were driven by phasic bursts of activity from the neuromodulatory 

systems. Green stimuli caused a phasic response in the VTA neurons resulting in an 

amplification of the green visuomotor area, a dampening of distracter colors, and a strong 

increase in the Find activity. For example, in the bottom of Figure 3A, different neural activities 

are shown just prior to and during Find behavior. When the light panel switched from Red to 

Green (see Figure 3A, Bottom Left), the Raphe and Flee neural areas were still active and in 

competition with the VTA and Find areas. However, a burst of VTA activity amplified Green 

and Find activity, causing a suppression of Raphe, Red and Flee activity (see Figure 3A, Bottom 

Right). In the bottom of Figure 3B, neural activities are shown prior to and during Flee behavior. 

Just prior to Flee behavior, there was moderate activity throughout the neural simulation (see 

Figure 3B, Bottom Left). The red area has slightly elevated activity, but it was not much more 

active than other color areas. Moments later, a burst of Raphe activity amplified Red and Flee 

neuronal responses, and caused a suppression neural activity in other visuomotor, 

neuromodulatory, and action areas (see Figure 3B, Bottom Right).  

To further test the necessity of phasic responses in the neuromodulatory systems to 

generate appropriate behavioral responses, we conducted simulated lesion experiments in all 

subjects. In one set of experiments, the activity of neurons in the Raphe area were set to zero, 

and in another set of experiments, the activity of neurons in the VTA area were set to zero. These 

lesion groups were compared with a control group that had a complete neural simulation. 



To Appear in IEEE Robotics and Automation Magazine 
PREPRINT 

10 

Lesions of the VTA significantly reduced the number of Find responses (p < 0.0005, Wilcoxon 

Rank Sum test; see Figure 4, left), but not the Flee responses (see Figure 4 right). Lesions of the 

Raphe significantly reduced the number of Flee responses (p < 0.0005, Wilcoxon Rank Sum test; 

see Figure 4, right), but not the Find responses (see Figure 4, left).  

The basal forebrain is thought to increase attentional effort in challenging conditions. 

Therefore, we lesioned the BF alone and in conjunction with lesions of other neuromodulatory 

areas to better understand its functional role. Lesions of the basal forebrain area alone did not 

have a significant effect on behavior (see BF in Figure 4). However, a lesion of basal forebrain 

and VTA completely abolished the Find behaviors (see BF+VTA in Figure 4 left), and a lesion 

of basal forebrain and Raphe completely abolished the Flee behaviors (see BF+Raphe in Figure 4 

right).  

Effect of Phasic Neuromodulatory Responses on Neuronal Activity 
Phasic neuromodulatory activity is thought to increase the signal to noise ratio (SNR) in 

neural circuits such that the organism increases the discrimination between salient and non-

salient stimuli. To test this idea, we calculated a SNR metric based on the visuomotor area’s 

response to a target color divided by the visuomotor area’s response to all other colors during 

Find and Flee behavior. 

€ 

SNR =
vistgt

visi
i=1

4

∑
;          (6) 

where vistgt is the average activity of the green area during a Find behavior and the 

average activity of red during a Flee behavior, and visi is the average activity of visuomotor area 

i.  

Lesions of neuromodulatory responses significantly lowered the SNR in the visuomotor 

area during behavioral responses. The SNR was significantly lower in the group with VTA 

lesions than in the Control group during Find behavior (p << 0.0001, t-test; see Figure 5, left). A 

lesion of BF and VTA further reduced the SNR for Find responses (p << 0.0001, t-test 

comparing VTA lesion to BF+VTA lesion; see Figure 5, left). The SNR was significantly lower 

in the group with Raphe lesions than in the control group for Flee behavior (p << 0.0001, t-test; 

see Figure 5, right). Lesions of both the BF and Raphe further reduced the SNR for Find 
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responses (p << 0.0001, t-test comparing Raphe lesion to BF+Raphe lesion; see Figure 5, right).  

The other comparisons were not significantly different (p > 0.01; t-test). 

The responses of the neuromodulatory systems were strongly correlated with colors that 

predicted value. Red predicted threatening stimuli and Raphe activity increased in the presence 

of red (see Figure 6A). Green predicted positive valence stimuli and the VTA activity increased 

in the presence of green (see Figure 6B). While neuromodulatory responses increased with colors 

that predicted value, their responses decreased for colors that were value-independent and that 

were predicted a value not associated with a particular neuromodulatory system (see Figure 6).  

Discussion 
In the present paper, we used a cognitive robot, CARL-1 to test the hypothesis that 

neuromodulatory activity can shape learning, drive attention, and select actions. CARL-1 learned 

to approach stimuli that were predictive of positive value and move away from stimuli that were 

predictive of negative value (see Figures 3 and 4). An intact neuromodulatory system was 

necessary for correct behavioral responses (see Figure 4) and for appropriate neuromodulatory 

responses to stimuli (see Figures 5 and 6). These experiments suggest a mechanism of how 

neuromodulatory systems influence attention and decision-making.  

The neural control of the cognitive robot presented here may be a design strategy for 

controlling autonomous systems based on principles neuromodulation found in the mammalian 

brain. Such a controller would flag an important environmental stimulus, cause the autonomous 

system to focus its attention on the appropriate signal, ignore irrelevant distracters, and quickly 

respond to pressing events.  

Dopamine and “Wanting” Behavior 
Dopamine appears to be important for “wanting”, that is, the motivation process in 

acquiring an object [13]. Dopamine, which is found throughout the central nervous system, is 

produced in the ventral tegmental area. A recent proposal ties the prediction error to wanting by 

suggesting that incentive salience is the expected future reward that maps actions to rewards 

[14]. Alternatively, it has been proposed that dopamine is involved with the discovery of new 

actions and it influences action-outcome contingencies [11]. From the evidence, it appears that 

dopamine is an important signal for the acquisition of value-laden objects. 
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In the present paper, we showed that dopaminergic neuromodulation arising from a 

simulated Ventral Tegmental Area was necessary for value-laden “wanting” responses. When 

CARL-1’s dopaminergic system was intact, it approached stimuli that were predictive of positive 

value, and ignored neutral stimuli (see Figure 3A and control group in Figure 4). When CARL-

1’s VTA was lesioned, the number of Find responses, which signify “wanting”, significantly 

decreased (see VTA group in Figure 4). Instead of approaching these positive-value stimuli, 

CARL-1 treated green objects as neutral stimuli. 

Serotonin and “Risky” Behavior 
Serotonin originates in the Raphe nucleus and its effect on the nervous system appears to 

be related to the control of stress. The structures, which receive serotonin from the Raphe, 

modulate behavioral response to threats, and risks [6]. For example, serotonin plays an important 

role in social anxiety and social threats in primates [15]. 

In our experiments with CARL-1, we showed that serotonergic neuromodulation arising 

from a simulated Raphe nucleus was needed to respond appropriately to threatening stimuli. 

When CARL-1’s serotonergic system was intact, it moved away from threatening stimuli, and 

ignored neutral stimuli (see Figure 3A and control group in Figure 4). But when CARL-1’s 

Raphe was lesioned, its behavior became “risky” in that it approached Red stimuli as if they 

were of neutral value (see Raphe group in Figure 4). 

Acetylcholine and Attentional Effort 
Acetylcholine originates from the basal forebrain and projects to the cortex, amygdala, 

and hippocampus. The basal forebrain appears to enhance input processing and the allocation of 

attentional resources for important stimuli under challenging conditions [16]. Removal of 

cholinergic projections to the parietal and frontal cortex impairs the ability to increase attentional 

effort [17].  

In our experiments, the simulated basal forebrain enhanced CARL-1’s ability to attend to 

salient objects. Removal of the basal forebrain alone through simulated lesions did not have a 

significant effect on CARL-1’s behavior or the signal to noise response in the visuomotor area 

(see BF in Figures 4 and 5). However, removal of the basal forebrain and another 

neuromodulatory area, such as VTA or Raphe significantly reduced the appropriate behavioral 

responses and the signal to noise ratio well below the levels where only Raphe or VTA were 
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lesioned (see BF+Raphe and BF+VTA in Figures 4 and 5). This suggests a compensatory 

mechanism for the basal forebrain and other regions, and it is in agreement with the notion that 

ACh increases the allocation of attentional resources. 

Role of Phasic Neuromodulation 
Phasic bursts of neuromodulatory activity were necessary to shape CARL-1’s behavior 

during training, and to drive appropriate behavioral responses during testing. The phasic 

response of the simulated neuromodulators caused CARL-1 to attend to appropriate stimuli, 

ignore distracters, and take decisive actions (see Figure 3). Neuromodulator activity was strongly 

correlated with stimuli that were value-laden (see Figure 6). When phasic neuromodulation was 

impaired, the signal to noise ratio of the system decreased (see Figure 5), and CARL-1 made 

poor decisions (see Figure 4). This link between phasic neuromodulation and accurate action 

selection is in agreement with empirical data from animal models [11]. It appears that phasic 

neuromodulation is important for shifting attention when environmental demands require such 

vigilance [5].  

The Neurorobot Approach 
Neurorobotics and cognitive robotics are emerging fields in computer science, 

neuroscience, and engineering [18]. Neurorobots not only provide a tool for studying brain 

function by embedding neural simulations on a robotic platform, but they also provide the 

groundwork to develop intelligent machines based on neurobiological principles. The present 

work showed how a model of neuromodulation could be used to shape a robot’s behavior, such 

that it focused its attention on important events, and made effective decisions. 

Although it could be argued that virtual environments could be used for the present work, 

the real environment is required for several reasons [19, 20]. First, simulating an environment 

can introduce unwanted and unintentional biases into the model. For example, a computer-

generated object presented to a vision model has its shape and segmentation defined by the 

modeler and directly presented to the model. In a simulation, the color and shading of an object 

is typically uniform and noise free. However a device that views objects on the floor of a room 

has to segment the shape and figure from the ground based on its own active vision and deal with 

camera sensor noise, occlusions, viewing angles, and varying light conditions. Second, because 

real environments are rich, multimodal, and noisy; an artificial design of such an environment is 
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computationally intensive and difficult to simulate. However, all these interesting features of the 

real world come for free when the robot is allowed to freely move and actively sense in an 

environment. Finally, there are theoretical implications that can be characterized by the slogan 

“understanding through building” [20]. To truly understand the system being studied, it is 

essential to build the actual physical system. Real physical systems tend to yield the most 

insights because they include the most details in their design and are grounded in the physics of 

the real world. 

In the work presented here, CARL-1 overcame much of the environmental and sensory 

noise through phasic neuromodulation. Because the environment was varied and interesting, it 

developed interesting, experience-dependent responses that would be difficult to replicate in a 

simulated environment. For example, the Find and Flee responses that emerged through CARL-

1’s learning were fairly complex. CARL-1 would focus its attention on a salient object, by 

aiming its camera at the object of interest, as it either approached or moved away from the 

stimulus (see Figure 3). In particular, the Flee response gave the impression of an animal warily 

eyeing a threatening object as it slowly backed way. 

Neuromodulation as a Robot Controller  
While conventional robots and autonomous systems require some level of supervision 

and tuning of parameters to fit a particular domain, biological organisms have the ability to 

respond quickly and appropriately in an ever-changing world. We have shown how a model of 

the neuromodulatory system and surrounding regions, can cause a robot to: (1) sharpen its 

sensory systems, (2) attend to behaviorally relevant objects and ignore distractions, (3) learn to 

predict the value and outcome of its decisions, and (4) respond decisively and appropriately to 

environmental events.  

Other groups have taken a similar approach in modeling neuromodulation and action 

selection. The phasic response of dopamine has been modeled to examine reward anticipation 

behavior in a robot [21]. Models of the basal ganglia have been tested on robots to demonstrate 

action selection and switching behavior [22]. In a robotic system that has correlates with features 

of the noradrenergic system, “cyber rodents” explored new behaviors when their battery packs 

are full, but took more exploitative behavior when their battery packs were nearly empty [23]. A 

study of selection and learning in a simulated robot showed how modulating attentional effort 
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could induce learning and memory [24]. These studies, which use neural architectures to guide 

behavior and test models of cognition, are in a similar vein to the present work.  

Our work with CARL-1 differs from the above studies in that it describes a specific 

neural mechanism for neuromodulation and shows how this mechanism can lead to decisive 

behavior under noisy conditions. That is, a neural network can quickly change from arbitrary 

responses to a winner take all response by amplifying connections carrying sensory information. 

This mechanism has been shown in the present experiments with CARL-1, in theoretical 

modeling [1], and in empirical data [3, 4].      

Cognitive robots and neurorobots provide a synergy between empirical and simulated 

data, which can lead to improvements in the model and predictions in the modeled organism. An 

advantage of the neurorobot approach taken here is that it provides a model that can be directly 

tested against animal models; both in its behavioral response and in its neuronal response. 

Another advantage of this approach is that cognitively and neurally inspired robots can provide a 

framework for a new class of intelligent machines. We have presented a design strategy, based 

on principles of the neuromodulatory system, which controlled the behavior of autonomous robot 

systems. This research showed that such a system could respond appropriately to environmental 

changes. Although the field is at a nascent stage, researchers in cognitive robotics are following 

working models: biological nervous systems and human cognition. If scientists are able to find 

the underlying principles of these working models and engineers can construct machines based 

on these principles, it will result in a major advancement in the field of robotics.  
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Figure Captions 
Figure 1. CARL-1 and Experimental Setup. A. CARL-1 is a wheeled mobile robot with a 

RF-CCD camera for vision, IR sensors for obstacle avoidance, and wireless RS-232 for 

communication with a computer workstation. B. CARL-1’s environment consisted of an 

enclosure with eight light panels. Each panel could communicate its position to CARL-1 if it was 

on top of the panel. The four corner panels could be set to one of four colors. 

 

Figure 2. Schematic of Neural Architecture. Each ellipse denotes a neural area that 

contains simulated neurons. The arrows between neural areas denote synaptic projections 

containing many connections between neurons. Within area connections, inhibitory connections 

and connections from Behavior Drivers to Action areas are omitted for clarity (see text for 

details). The neural simulation contains 6,700 neurons and roughly 1.3 million synaptic 

connections. 

 

Figure 3. CARL-1 behavior and neural activity. A. Find Behavior. Top row. Snapshots 

of CARL-1 during Find behavior. Bottom row. Left. Selected neural areas just prior to Find 

behavior. Right. Selected neural areas during Find behavior. Each pixel denotes a neuron, where 

the activity is color-coded from quiescent (dark blue) to maximally active (bright red). B. Flee 

Behavior. Top row. Snapshots of CARL-1 during Flee behavior. Bottom row. Left. Selected 

neural areas just prior to Flee behavior. Right. Selected neural areas during Flee behavior. 

 

Figure 4. Behavioral responses for the 10 subjects with an intact simulated nervous 

system (Control), lesion of the simulated Raphe nucleus (Raphe), lesion of the simulated Ventral 

Tegmental Area (VTA), lesion of the Basal Forebrain (BF), and lesions of multiple areas 

(BF+Raphe and BF+VTA). On each box in the plot, the central mark is the median, the edges of 

the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers, and outliers are plotted individually with plus signs. 

 

Figure 5. Signal to noise ratio (SNR) of target color activity to all color activities during 

Find and Flee behaviors. Plots show the mean SNR (see equation 6) for the 10 subjects with an 
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intact simulated nervous system (Control), lesion of the simulated Raphe nucleus (Raphe), lesion 

of the simulated Ventral Tegmental Area (VTA), lesion of the Basal Forebrain (BF), and lesions 

of multiple areas (BF+Raphe and BF+VTA).  Error bars denote the standard deviation. 

 

Figure 6. Scatter plots of visuomotor activity versus neuromodulatory activity for 10 

subjects over all Control trials. The Pearson’s correlation coefficient (r) is given at the top of 

each plot. A. Color neural activity versus Raphe activity. B. Color activity versus VTA activity. 
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