
2.1  Introduction

Neurorobotics is the study of the interaction between neural systems and their physical 
embodiments on robotic platforms. Since the brain is strongly coupled with the body and 
situated within the surrounding environment, neurorobots can be a powerful tool for study-
ing the intricate interactions between neural systems and the outside world. Neurorobotics 
also serves as a way to create autonomous systems that capture the advantages of biology 
for intelligent behavior. Compared to the general study of cognitive robotics, neurorobotics 
centers around biological brain functions—for example, the neural circuitry and functional 
anatomy that support basic cognitive processes. This chapter provides our viewpoints on 
this field, highlights some of its milestone events, and talks about its future potential.

2.2  Foundational Ideas in Neurorobotics

Many believe that neurorobotics got its beginning with Grey Walter’s tortoises, which had 
simple light sensors and collision detectors attached to a basic analog circuit. His first 
robots, Elmer and Elsie, were programmed with simple reflexive neural circuits that con-
trolled their movements based on the sensors. Despite the simplicity of these robots, 
complex and interesting behaviors emerged. For instance, one robot was placed in front 
of a mirror with a light on its nose. The robot started to react to its own presence in what 
could be interpreted as narcissistic behavior.

Braitenberg vehicles were another important example of complex behaviors emerging 
from simple circuitry. First introduced in the book titled Vehicles by Valentino Braitenberg 
(1986), a series of simple robots showed how basic neural circuits could create complex 
behaviors, some of which could even be attached to abstract human notions, such as 
emotion, with vehicle names like Fear, Aggression, Love, and Exploration. Each of these 
vehicles contained a light sensor and a motor on the left and right sides. In the vehicle 
displaying fear, the speed of each motor was directly proportional to the amount of light 
sensed by the sensor on the equivalent side. This caused the vehicle to speed away from 
the stimulus source, as if in fear. However, just crossing the wires caused the vehicle to 
speed toward the stimulus, as if in aggression. This simple robot provided an important 
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neuroscience lesson on the function of ipsilateral and contralateral connections in the nervous 
system. By making the motor speeds inversely proportional to the sensors, the vehicle dis-
playing fear could turn into love, slowing down its movement toward the stimulus. Like-
wise, aggression then turned into exploration, gently seeking to be away from the stimulus. 
In this way, Braitenberg demonstrated how changing the balance of excitatory and inhibitory 
connections can affect behavior. Although the circuits themselves were simple, it was easy 
to place human interpretations on the resulting behaviors, teaching an important lesson that 
complex cognitive functions may actually be composed of very simple mechanics.

The Keck Machine Psychology Laboratory at the Neurosciences Institute in La Jolla, 
California, was also a source of foundational contributions in neurorobotics. Director 
Gerald Edelman (1987, 1993), whose work in immunology led to the Nobel Prize, advo-
cated his theory of the nervous system in a book titled Neural Darwinism: The Theory of 
Neuronal Group Selection. The theory suggested there was selection of neural circuits 
during development through synaptic pruning and selection of groups of neurons during 
adulthood through reentrant connections. Important for neurorobotics was the notion of 
value systems to tie environmental signals to neuronal groups, which led to the selection 
of behaviors important for survival. As Edelman would say, “The brain is embodied, and 
the body is embedded in the environment.” Based on this idea, the group developed the 
Darwin series of Brain-Based Devices (Edelman et al. 1992; Reeke, Sporns, and Edelman 
1990). Another phrase that drove this work was “The world is an unlabeled place,” which 
meant that perceptual categories must be selected through experience, rather than supervi-
sion. These Brain-Based Devices were robots with large-scale neural networks controlling 
their behavior (figure 2.1). However, these were not the feedforward-input neural networks 
that were popular then and became the deep neural networks of today. The Brain-Based 
Device’s neural networks contained anatomical details that resembled biological neural 
networks. There were sensory streams, top-down connections, and long-range connections 
between regions that were bidirectional as well as local lateral excitation and inhibition 
within brain regions. An early Brain-Based Device called Darwin V had an artificial ner
vous system that could learn preferences and predict the value of objects (Almassy, 
Edelman, and Sporns 1998). Although the robot was lumbering and did not exactly operate 
in real time, it did demonstrate operant conditioning and value-based learning.

One of the major venues in the early days of neurorobotics was the annual Simulation 
of Adaptive Behavior (SAB) conference. For example, SAB 2000 introduced a wide variety 
of exemplars, which would now be called neurorobots (Meyer et al. 2000). Arleo and 
Gerstner (2000) presented a model of head direction cells and hippocampal place cells, 
which was embodied on a Khepera robot, to demonstrate spatial navigation in the rodent. 
Arsenio (2000) created a neural circuit based on oscillators observed in the brain and showed 
how these could be used to realize humanoid arm movements and gait patterns. Collins and 
Wyeth (2000) introduced a cerebellar controller, based on Albus’s cerebellar model arithmetic 
computer (CMAC) neural network, to overcome delays when planning trajectories. Gonzalez 
and colleagues (2000) constructed a basal ganglia model to show action selection in a mobile 
robot. The robot would find cylinders, pick them up, and deposit the cylinders outside the 
wall of the robot arena. At this same meeting, Darwin VII, a Brain-Based Device capable 
of perceptual categorization, was introduced (Krichmar et al. 2000). For more details on 
Darwin VII, see the case study below. This is just a sampling of the work going on at this time. 
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The theme connecting the wide range of methods, robots, and behaviors at SAB 2000 was 
that neural network models were used to study some aspect of neuroscience by demonstrating 
behavior in a physical robot. Many of the researchers in these studies were pivotal in estab-
lishing the field of neurorobotics as it is known today.

Around this time period, other groups were creating robot designs that could be 
included within the field of neurorobotics. Rather than building brain circuits, they were 
investigating how the body and brain interact and how neural networks may develop. For 
example, Tony Prescott and his group at the University of Sheffield studied whisking in 
the rodent and developed a robotic sensorimotor circuit with biomimetic whiskers (Pearson 
et al. 2011). Figure 2.2 shows their Whiskerbot, which was completed around 2005. Dario 
Floreano helped establish the field of evolutionary robotics (Nolfi and Floreano 2000). 
Floreano and colleagues used evolutionary algorithms to evolve neural networks that 
supported a range of behaviors from navigating mazes to developing predator-prey strate-
gies (Floreano and Keller 2010). For more details, the reader should refer to chapter 4. 
Rolf Pfeifer and Josh Bongard (2006) had the insight that the “body shapes the way we 
think.” They suggested that biological organisms perform morphological computation—
that is, the body performs certain processes that would otherwise be performed by the 
brain.

Even though these biomimetic and evolutionary algorithms were not directly testing 
brain theories, they were increasing our knowledge of how the brain and body interact, 
and they were creating novel, biologically inspired algorithms and robot designs that 
would further the field of robots and AI.

As parallel-computing resources improved, some groups were approaching brain-
scale neural simulations. Darwin VII’s neural network contained approximately twenty 
thousand neurons and nearly five hundred thousand synaptic connections, all of which 
had to be updated in real time to keep up with the active vision and sensors. The Darwin 

Figure 2.2
Whiskerbot from the University of Sheffield. Whiskerbot had two active whiskers and a detailed neural network 
model to convert whisker deflection signals into simulated spike trains. Source: Adapted with permission from 
Pearson et al. 2011.
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team used a Beowulf cluster with Message Passing Interface (MPI) to achieve real-time 
performance. Phil Goodman’s Virtual Neurobot project had at least one hundred thou-
sand highly detailed neurons on a computer cluster. Although the robot was virtual, it 
did need to respond in real time to recognize intent and trust in a human actor (Bray 
et al. 2012).

During this time there was often pushback from the community about the necessity for 
large-scale modeling. Many interesting results could be achieved with smaller neural net-
works, often with fewer than one hundred neurons. However, solving a problem in certain 
domains with small neural networks was unavoidable. For example, a model of the visual 
cortex that tested theories of feature binding and invariant object recognition (Seth et  al. 
2004b) required a neuron at every camera pixel (or receptive field) for each feature (two 
colors and four orientations). Since the network simulated the expansion of visual cortex 
receptive fields combining primitive features into objects (i.e., V1 → V2 → V4 → IT), a 
large-scale neural network was necessary. However, applying the same modeling detail to 
a neural network that encoded tactile features with whiskers resulted in an order-of-
magnitude-smaller network (Seth et al. 2004a).

In addition to practical reasons, large-scale modeling is often required to realize the 
neuronal dynamics and anatomical pathways observed in brain responses. Although this 
fidelity results in highly complex networks, it does allow one to test theories of the brain 
and make better predictions. Preserving anatomical projections leads to large-scale hetero-
geneous architectures. Having large groups of neurons with biophysical properties leads 
to interesting neural dynamics, as was observed in a large-scale model of the hippocampus 
and surrounding regions (Krichmar, Nitz, et al. 2005). In this model the complex interplay 
between the entorhinal cortex and the hippocampal subfields resulted in the reliance on 
different functional pathways at different points in the robot’s learning (figure 2.3). Using 
large-scale neural models does come with a cost beyond computing power. At some point 
the neural network becomes so complex that it is as difficult to understand as the real 
brain. Interestingly, the analysis of the large-scale hippocampus model required the devel-
opment of new tools; one was a recursive backtrace through neural activity (Krichmar, 
Nitz, et al. 2005), and the other applied Granger causality to the simulated neural network 
(Krichmar, Seth, et al. 2005).

Nowadays, large-scale neural network models are the norm. Neuromorphic hardware 
can support brain-scale neural networks at very low power (Indiveri et al. 2011; Merolla 
et al. 2014; Davies et al. 2018). Deep neural networks with many hidden layers are regu-
larly developed (LeCun, Bengio, and Hinton 2015). With tools such as PyTorch and 
TensorFlow, graphics processing unit (GPU) clusters, and cloud computing, large-scale 
neural networks are within the reach of most researchers and students. Moreover, it turns 
out that size, in the form of many layers, is necessary to solve more challenging problems, 
such as image recognition (Krizhevsky, Sutskever, and Hinton 2017) or human-level game 
playing (Mnih et al. 2015).

2.2.1  Case Study: Darwin VII—Perceptual Categorization and Conditioning  
in a Brain-Based Device

Darwin VII was one of the first neurorobots to demonstrate experience-dependent learning 
(i.e., learning by sampling the environment without supervisory signals) with a detailed, 
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neurobiologically plausible neural network (Krichmar and Edelman 2002). Darwin VII 
autonomously explored its environment and sampled stimuli that contained positive and 
negative values (figure  2.4). Through its experiences, Darwin VII built up perceptual 
categories of the objects it sampled. Darwin VII’s simulation was based on the anatomy 
and physiology of vertebrate nervous systems. The simulated nervous system comprised 
a number of areas labeled according to the analogous cortical and subcortical brain regions 
for vision, auditory processing, and value. Each area contained different types of neuronal 
units consisting of simulated local populations of neurons or neuronal groups. The simu-
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Figure 2.3
Darwin X and a hippocampal model of episodic memory. (a) The overall neural network architecture included 
neuronal groups for the visual “what” and “where” streams (V1 → V2/4 → IT, V1 → V2/4 → Pr, respectively), 
head direction system (HD), reward system (R+, R−, S), and hippocampus. (b) Subfields within the hippocampus 
neural group. Arrows denote synaptic projections between subgroups. (c) Schematic of a dry variant of the Morris 
water maze. Colors denote landmarks; numbers denote starting positions of trials. (d) Darwin X Brain-Based 
Device. The hidden platform was a piece of black construction paper that Darwin X could not see with its camera 
but could detect with a downward-facing IR sensor. Adapted with permission from Krichmar, Nitz, et al. 2005.
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lated nervous system contained 18 neuronal areas, 19,556 neuronal units, and approximately 
450,000 synaptic connections. Figure 2.4b shows a high-level diagram of the different neural 
areas and the synaptic connections between neural areas in the simulated nervous system. A 
neuronal unit in Darwin VII was simulated with a mean firing-rate model, and the activity 
of such a unit corresponded roughly to the firing activity of a group of neurons averaged 
over a time period of 200 ms. This corresponded to the time needed to process sensory input, 
compute neuronal unit activities, update the connection strengths of plastic connections, and 
generate motor output.
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Figure 2.4
Darwin VII robot and neural network. (a) Darwin VII consists of a mobile base equipped with several sensors 
and effectors. Darwin VII is constructed on a circular platform with wheels that permit independent translational 
and rotational motion, with pan and tilt movement for its camera and microphones, and with object gripping by a 
one-degree-of-freedom manipulator or gripper. The CCD camera, two microphones on either side of the camera, 
and sensors embedded in the gripper that measure the surface conductivity of stimuli provide sensory input to the 
neuronal simulation. Eight infrared (IR) sensors are mounted at 45° intervals around the mobile platform. The IR 
sensors are responsive to the boundaries of the environment and were used to trigger reflexes for obstacle avoidance. 
All behavioral activity other than obstacle avoidance is triggered by signals received from the neural simulation. 
(b) The regional and functional neuroanatomy of Darwin VII. There are six major systems that make up the 
simulated nervous system: an auditory system, a visual system, a taste system, sets of motor neurons capable of 
triggering behavior, a visual tracking system, and a value system. The 64 × 64 gray-level pixel image captured by 
the CCD camera was relayed to a retinal area R and transmitted via topographic connections to a primary visual 
area VAP. Three subpartitions in VAP were selective for blob-like features, short horizontal line segments, or short 
vertical line segments. Responses within VAP closely followed stimulus onset and projected nontopographically 
via activity-dependent plastic connections to a secondary visual area analogous to the inferotemporal cortex (IT). 
The frequency and amplitude information captured by Darwin VII’s microphones was relayed to a simulated 
cochlear area (LCoch and RCoch) and transmitted via mapped tonotopic and activity-dependent plastic connections 
to a primary auditory area A1. A1 and IT contained local excitatory and inhibitory interactions producing firing 
patterns characterized by focal regions of excitation surrounded by inhibition. A1 and IT sent plastic projections 
to the value system S and to the motor areas Mapp and Mave. These two neuronal areas were capable of triggering 
two distinct behaviors, appetitive and aversive. The taste system (Tapp and Tave) consisted of two kinds of sensory 
units responsive to either the presence or absence of conductivity across the surface of stimulus objects as mea
sured by sensors in Darwin VII’s gripper. The taste system sent information to the motor areas (Mapp and Mave) 
and the value system (S). Area S projected diffusely with long-lasting, value-dependent activity to the auditory, 
visual, and motor behavior neurons. The visual tracking system controlled navigational movements, in particular 
the approach to objects identified by brightness contrast with respect to the background. To achieve tracking 
behavior, the retinal area R projected to area C (“colliculus”). Source: Adapted with permission from Krichmar 
and Edelman 2002.
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The total contribution of synaptic input to unit i was given by

Ai(t) = cij s j (t)
j = 1

N

∑

where N is the number of connections to unit i, cij is the weight value of the connection 
projecting to unit i from unit  j, and sj (t ) is the activity of unit j at time step t. Negative values 
for cij corresponded to inhibitory connections. The activity level of unit i was given by

Si (t + 1) = φ (tanh( gi (Ai(t ) + ω si (t ))))

where

φi(x) =
0; x <σ i

x;  otherwise 

⎧
⎨
⎪

⎩⎪

and ω determined the persistence of unit activity from one cycle to the next, σi is a unit-
specific firing threshold, and gi is a scale factor, which differed depending on the neural area.

Connections within and between neuronal areas were subject to activity-dependent modi-
fication following a value-independent and a value-dependent synaptic rule. Synaptic modi-
fication was determined by both pre- and postsynaptic activity and resulted in either 
strengthening or weakening of the synaptic efficacy between two neuronal units. The Bienen-
stock, Cooper, and Munro (BCM) learning rule was used to govern synaptic change because 
it has a region in which weakly correlated inputs are depressed, and strongly correlated inputs 
are potentiated (Bienenstock, Cooper, and Munro 1982).

Value-independent synaptic changes in cij were given by

Δ cij (t + 1) = ε (cij (0) − cij (t )) + ηsj(t )F (si (t ))

where si (t ) and sj (t ) are activities of post- and presynaptic units, respectively, η is a fixed 
learning rate, ε is a decay constant, and cij (0) is the initial (t = 0) weight of connection cij. 
The decay constant ε governed a passive, uniform decay of synaptic weights to their original 
starting values. The function F is a piecewise linear approximation of the BCM learning 
rule.

The synaptic change for value-dependent synaptic plasticity was given by

Δcij (t + 1) = ε(cij (0) − cij (t)) + ηs j (t)F(si(t))S

where S  is the average activity of the value system S (see figure 2.4b).
Darwin VII’s environment consisted of an enclosed area with black walls and a floor 

covered with opaque black plastic panels, on which metallic cubes were distributed 
(figure 2.4a). The top surfaces of the blocks were covered with black-and-white patterns: 
blobs and stripes. Stripes on blocks in the gripper could be viewed in either a horizontal or 
vertical orientation, yielding a total of three stimulus classes of visual patterns to be dis-
criminated (blob, horizontal, and vertical). A flashlight mounted on Darwin VII and aligned 
with its gripper caused the blocks, which contained a photodetector, to emit a beeping tone 
when Darwin VII was in the vicinity. The sides of the stimulus blocks were metallic and 
could be rendered either strongly conductive (“good taste,” or appetitive) or weakly conduc-
tive (“bad taste,” or aversive). Gripping of stimulus blocks activated the appropriate taste 
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neuronal units (either area Tapp or area Tave) to a level sufficient to drive the motor areas 
above a behavioral threshold. In the experiments, strongly conductive blocks with a striped 
pattern and a 3.9 kHz tone were arbitrarily chosen to be positive-value exemplars, whereas 
weakly conductive blocks with a blob pattern and a 3.3 kHz tone represented negative-value 
exemplars.

Early during the conditioning trials, Darwin VII picked up and “tasted” blocks that led to 
either appetitive or aversive responses (see figure 2.5a, left panel). During this period, it was 
the output of the taste neuronal units that activated the value system (S) and drove the motor 
neuronal units (Mapp and Mave) to cause a behavioral response. After conditioning, however, 
both the value system and the motor neuronal units were immediately activated upon the 
onset of IT’s response to a visual pattern or A1’s response to a tone. This shift from value 
system activity triggered in early trials by the unconditioned stimulus to value system activity 
triggered at the onset of the conditioned stimulus is analogous to the shift in dopaminergic 
neuronal activity found in the primate ventral tegmental area after conditioning (Schultz, 
Dayan, and Montague 1997).

After associating visual patterns with taste, Darwin VII continued to pick up and “taste” 
stripe-patterned blocks but avoided blob-patterned blocks (see figure  2.5a, left panel). 
After associating auditory sounds with taste, Darwin VII continued to pick up the high-
frequency beeping blocks but avoided the low-frequency beeping blocks (see figure 2.5c, 
left panel). The right panel of figure 2.5b shows the percentage of conditioned responses, 
which were driven by the auditory or visual stimulus, for seven Darwin VII trials. The 
increase in conditioned responses showed that Darwin VII learned that auditory or visual 
cues predicted the value of the object, which resulted in it taking the appropriate behavioral 
response. These learning curves closely resembled those for similar conditioning experi-
ments in rodents, pigeons, and other organisms.

In Darwin VII, activity in the simulated inferotemporal cortex, IT, provided the basis 
for visual perceptual categorization. Initially, IT’s responses to visual stimuli were weak 
and diffuse (see IT activity in figure 2.5a, right panel ). After approximately five stimulus 
encounters, activity-dependent plasticity between primary visual cortex, VAP, and IT caused 
IT responses to the different stimuli to become strong, sharp, and separable (see IT activity 
in figure 2.5b, right panel). Darwin VII’s object recognition was observed to be invariant 
with respect to scale, position, and rotation. Visual categorization of a stimulus occurred no 
matter where an object appeared in Darwin VII’s visual field, with the apparent size of the 
stimulus ranging from a maximum when the object was directly in front of Darwin VII to 
one-quarter of the maximum size when the object was distal to Darwin VII. Correct catego-
rization of striped blocks in Darwin VII’s field of vision, when blocks were not in its gripper, 
occurred when the stripes on the blocks were rotated over a range of ±30° of a horizontal or 
vertical reference. These invariant category responses developed as a result of competition 
among activity-dependent plastic connections between retinotopically mapped VAP and non-
topographically mapped IT.

The behavior of Darwin VII showed that a robot operating on biological principles and 
without prespecified instructions could carry out perceptual categorization and conditioned 
responses. In both the perceptual categorization and conditioning experiments, the devel-
opment of categorical responses required exploration of the environment and sensorimotor 
adaptation through specific and highly individual changes in connection strengths. Darwin VII 
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A

B

C

Figure 2.5
Left: Darwin VII during behavioral experiments. The panels to the right of Darwin VII show the activity of 
selected neural areas in the simulation (R, top left; IT, top right; A1, bottom left; Mave, bottom right, left side; 
Mapp, bottom right, right side). Each pixel in a selected neural area represents a neuronal unit, and activity is 
normalized in a range from no activity (dark blue) to maximal activity (bright red). (a) Darwin VII upon the 
first encounter with an aversive block. The stimulus block shown in this figure and in (b) had a blob-like visual 
pattern but did not beep. In this early conditioning trial, Darwin VII is shown picking up and “tasting” an aversive 
block. Activity in IT is insufficient, but activity in the taste system Tave is sufficient to drive activity in the aversive 
motor behavior neural area (Mave) above the behavioral threshold. (b) Darwin VII upon the tenth encounter with 
an aversive block having blob-like visual patterns. After primary conditioning with visual stimuli, activity in 
area IT is sufficient to drive the Mave neuronal units above the behavioral threshold, triggering a motor response 
to avoid “tasting” an aversive block. (c) Darwin VII upon the tenth encounter with an aversive block having 
only auditory cues. After primary conditioning with auditory stimuli, activity in area A1 is sufficient to drive the 
Mave neuronal units above the threshold to trigger a behavioral response. Right: The percentage of conditioned 
responses (%CR) per stimuli encountered by Darwin VII for auditory and visual stimuli. Each point is the average 
%CR for seven Darwin VII trials. Source: Adapted with permission from Krichmar and Edelman 2002.
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laid down groundwork for increasingly sophisticated neurorobots with more complex 
neural circuits and morphologies, which gave further insights into the relationships between 
brain, body, and behavior.

2.3  Building a Neurorobotics Community

Over the years, a neurorobotics community has emerged in part due to workshops and 
special journal issues on the topic. The IEEE Robotics and Automation Magazine devoted 
an issue to the topic (Browne et al. 2009). Special sessions were occasionally held on the 
topic at major IEEE robotics conferences. The European Union’s Human Brain Project, a 
large-scale research project for understanding the nervous system, included a neurorobot-
ics division headed up by Alois Knoll and Florian Rohrbein (Falotico et al. 2017).

In 2004, a special session on “Neurorobotic Models in Neuroscience and Neuroinformat-
ics” took place at the International Conference on the Simulation of Adaptive Behavior (Seth, 
Sporns, and Krichmar 2005). To introduce the session, it was stated that a neurorobotic device 
has the following properties: 1) It engages in a behavioral task, 2) it is situated in a structured 
environment, and 3) its behavior is controlled by a simulated nervous system designed to 
reflect, at some level, the brain’s architecture and dynamics. The session included Auke 
Ijspeert’s research on evolving neural networks for a robotic salamander (Ijspeert, Crespi, and 
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Cabelguen 2005; Ijspeert et al. 2007). In this research, different motor patterns (i.e., swimming 
or walking) emerged due to the interaction between brain and body with the specific environ-
ment (i.e., water or land). Olaf Sporns and Max Lungarella showed how embodiment can 
alter and improve information processing in a neural system (Lungarella et al. 2005). In 
addition, several papers on how the hippocampus contributes to spatial memory were pre-
sented (Arleo, Smeraldi, and Gerstner 2004; Banquet et al. 2005; Chavarriaga et al. 2005; 
Krichmar, Seth, et al. 2005).

Robot models of rodent navigation have made up a number of neurorobotic implementa-
tions. One reason for the interest in these models is because robot navigation is a fascinating 
and complex problem. Another reason is that the neural activity patterns observed in the rat 
are clear, interesting, and amenable to modeling. For example, a head-direction cell can be 
modeled with an attractor network and cosine tuning curves (Stringer et al. 2002). A hip-
pocampal place cell can be modeled with a two-dimensional Gaussian (Foster, Morris, and 
Dayan 2000). The more recent finding of grid cells in the entorhinal cortex has led to a 
number of proposed neural models (Zilli 2012). Using attractor networks and neural elements 
that resemble head direction cells, place cells, and grid cells, the Australian RatSLAM team 
has reported results with neuro-inspired algorithms that are as good as or better than state-
of-the-art localization and mapping by conventional robots (Milford et al. 2016). Although 
great progress has been made in the conventional robotics community with SLAM, or 
simultaneous localization and mapping (Kohlbrecher et al. 2011; Mur-Artal, Montiel, and 
Tardos 2015) and path planning (LaValle 2011a, 2011b), a number of open issues still remain 
when it comes to flexible navigation under dynamic conditions. Under these challenging 
situations, rodents show superior performance and robustness and still provide inspiration 
for improved robot navigation algorithms.

2.4  Neurorobotics and Neuromorphic Engineering

An important potential development for the field of neurorobotics is the reemergence of 
neuromorphic engineering (Indiveri et al. 2011). By reemergence, we mean that the origi-
nal analog circuits developed by Carver Mead (1990) and his team in the 1980s have led 
to near-commercially viable computers designed by large companies such as IBM (Merolla 
et al. 2014) and Intel (Davies et al. 2018). Like neurorobotics, neuromorphic engineering 
uses inspiration from the brain to build computer architectures and sensors. Because these 
computers were specifically designed for asynchronous, event-driven processing, spiking 
neural networks that controlled neurorobots were ideal for these platforms. Moreover, 
neuromorphic architectures hold great promise for neurorobot applications due to their 
low power budget and their fast, event-driven responses. For example, the SpiNNaker 
neuromorphic computer from Manchester has been used in an obstacle avoidance and 
random exploration task (Stewart et al. 2016). In addition to running neural networks on 
specialized hardware, very low power neuromorphic vision and auditory sensors are being 
developed (Liu and Delbruck 2010). Similar to biology, these sensors only respond to 
change or salient events, and when they do respond, it is with a train of spikes. This allows 
seamless integration of these sensors with spiking neural networks, and their event-driven 
nature leads to power efficiency that’s ideal for embedded systems, such as robots.
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The development of lightweight neuromorphic chips inspired the idea that many com-
puting processes related to outdoor navigation could be implemented on neuromorphic 
hardware to control ground robots. Neuromorphic hardware is especially beneficial for 
outdoor navigation, as the robots must rely on battery power for long periods of time and 
are often used in vital operations such as search and rescue. Spiking implementations of 
low-level perceptual navigation tasks as well as high-level planning tasks allow for naviga-
tion subtasks to run in parallel.

Working with IBM’s low-power TrueNorth neuromorphic chip (Esser et al. 2016), we 
demonstrated that a convolutional neural network (CNN) could be trained to self-drive a 
robot on a mountain trail (Hwu et al. 2017). Initially, the robot was driven along the trail 
using remote control. The RGB camera frames, along with the corresponding action con-
trols of steering left, steering right, and driving forward, were recorded for training the 
CNN. The CNN was first trained with conventional backpropagation techniques, using 
the RGB images as input and the set of three actions as output. The weights of this neural 
network were then transferred to weights in a spiking neural network of the same structure 
as the original CNN. This spiking network was run on the TrueNorth chip, which was 
powered by the same single hobby-level nickel metal hydride (NiMH) battery used to 
power the motors of the robot (figure 2.6). The advantage of using this pipeline was that 
we were able to harness well-developed techniques of CNN training while achieving 
order-of-magnitude gains in energy efficiency. The circuit diagram and pipeline shown in 
figure 2.6 could generalize to other hardware and neurorobot applications.

2.4.1  Case Study: Spiking Wavefront Propagation—Brain-Inspired 
Neuromorphic Path Planning

Navigation is a necessary component of most robots and animals, both of which operate 
under the constraints of limited time and energy. Using inspiration from brain connectivity, 
neuron spiking dynamics, and a recent finding that axonal conductance undergoes 
experience-dependent plasticity (Fields 2015), a model of spiking wavefront propagation 
was created (Hwu et al. 2018). The model was inspired by the role of the hippocampus 
in animal navigation. This includes the existence of place cells in the hippocampus, which 
are active according to the physical location of the animal (O’Keefe and Dostrovsky 1971). 
These place cells are involved in hippocampal replay, in which the place cells activate in 
sequence according to potential trajectory routes the animal can take (Dragoi and Tonegawa 
2011; Pfeiffer and Foster 2013). Another biological observation behind spiking wavefront 
propagation is that spreading waves of activity can be found across several areas of the 
brain including the hippocampus, supporting brain connectivity and memory (Zhang and 
Jacobs 2015).

Combining these observations, the model of spiking wavefront propagation is able to 
plan paths through a grid representation of space. Each grid unit corresponds to a dis-
cretized area of physical space, and connections between units represent the ability to 
travel from one area to a neighboring area. Each unit in the grid represents a single neuron 
with spiking dynamics. The membrane potential of neuron i at time t + 1 is represented by

vi (t + 1) = ui (t ) + Ii (t ),
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in which ui (t ) is the recovery variable, and Ii (t ) is the input current at time t. The recovery 
variable ui (t + 1) is modeled as

ui (t + 1) = (−5 if vi (t ) = 1; min(ui (t ) + 1, 0) otherwise),

such that if it starts as a negative value, it increases at a steady rate toward a baseline value 
of 0. The input current Ii (t + 1) is represented as

Ii(t + 1) = (1 if dij (t) = 1; 0 otherwise),
j
∑

such that dij (t ) is the delay counter of the signal from neighboring neuron j to neuron i. 
The delay dij (t + 1) is calculated as

dij (t + 1) = (Dij (t ) if vj (t ) = 1; max(dij (t ) − 1, 0) otherwise),

such that it behaves as a timer corresponding to axonal delay with a starting value of Dij (t ). 
This starting value of Dij (t ) is a delay value depending on the cost of traversing the spatial 
area corresponding to the neuron. Taken together, these equations describe the simplified 
dynamics of a spiking neuron. When a spike from a neighboring neuron occurs, the input 
current Ii is set to 1, causing a spike. Immediately after, the recovery variable ui is set to −5, 
which then counts up by 1 at each successive time step and stops at 0. This mechanism models 
the refractory period of the neuron. Next, all delay counters dij for all neighbor neurons j are 
set to their assigned starting values of Dij.

Multiple possibilities exist for encoding the values Dij. These values should encode the 
cost of traversing from one area to another. This may be the energy required, the potential 
risks, or the physical wear. For instance, traveling through rough terrain would be riskier 
and require more energy for ground robots and therefore have higher costs. A cost map of 
the same dimensions as the grid can transfer to values of Dij in a one-to-one fashion. The 
cost map, if known in advance, can be used to populate delay values of the grid prior to 
running spiking wavefront propagation. They may also be learned on the fly while explor-
ing the terrain. In neuroscience, this would correlate to axonal plasticity, in which the 
myelin sheath of a neuron consisting of white matter grows in volume with heightened 
activity and subsequently increases the speed of signals traveling from one neuron to 
another (Fields 2015). As an agent travels through its environment, either randomly or by 
intentionally navigating, Dij values are updated each time the agent enters a new grid area 
using the following equation:

Dij (t + 1) = Dij (t ) + δ (mapxy − Dij (t )),

where δ is the learning rate, and mapxy is a sample of the cost as the agent traversed loca-
tion coordinates (x, y) corresponding with grid neuron i. The update rule is applied for 
each of the j neighbors of neuron i. The advantages of axonal plasticity are that the agent 
can learn while operating, continuously gaining new information. With a small learning 
rate, the model accounts for noise in the environment such that if the agent samples a 
faulty cost value due to sensor error or environmental factors, the effect is averaged across 
multiple trials. However, learning accurate cost values for an entire grid may require many 
trials, as each grid area must be traversed several times. It may therefore be preferable to 
start with an a priori map of costs, updating with sensor-based observations as they occur.
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To perform path planning using the grid encoded with costs, an input current is added to 
the neuron corresponding to the location of the agent to induce a spike. This induces spikes 
in neighboring neurons, subsequently starting a traveling wave across the entire grid. As the 
spikes occur, their spikes are recorded using address event representation (AER), which 
includes pairs of neuron IDs and spike times. Figure 2.7 shows how using AER can be used 
for path planning.

To plan a path from the start location to any other location, the first spike time of the 
destination neuron is recorded. The ID of the destination neuron is also recorded on a list. 
Then the spike times of each neighboring neuron are examined, and the neuron with the 
most recent spike is appended to the list. The same process is repeated with this neighbor-
ing neuron, and so on, until the start neuron is added to the list. The optimal path account-
ing for length and cost is then returned as the reversed list of neuron IDs.

The present spiking wavefront algorithm was successfully tested on a mobile ground robot 
traversing over grass, dirt, and asphalt terrains (Hwu et  al. 2018). The robot was created 
from affordable hobbyist parts and an Android phone for computation (figure 2.8, bottom 
left ). The robot motors and sensors were powered by a single NiMH battery, making energy 
savings a priority in its operation. The robot was tested at a large outdoor park in two areas 
(figure 2.8, top left ). One area was a grass field surrounded by an asphalt road. Three cost 
maps were created out of this area (figure 2.8, top right ): one with a uniform low cost, one 
with a low cost for the surrounding road, and one with a low cost for the surrounding road 
and a medium cost for park benches. The other area was grassy with trees, a surrounding 
outer asphalt road, and a dirt trail cutting straight across. A single cost map was generated 
from this area, consisting of a low cost for the surrounding road, a high cost for the trees, 
and a medium cost for the dirt road. Using these different maps, researchers generated a path 
to navigate between a set of starting and end points with the spiking wavefront algorithm. 

Time Neuron ID (r,c)

 1 (1,1)

 2 (1,2),(2,1),(2,2)

 3 (1,3),(2,3),()3,1

 ... ...

 6 ...(3,6),(5,3),...

 ... ...

 9 (3,4),(4,2),(6,6)

Goal

Start

Figure 2.7
Path planning using an address event representation table. Left: Spike types and neuron IDs are recorded in this 
table. In order to plan a path using the trained grid of neurons, the neuron corresponding with the location of 
the agent receives an impulse spike. This spike triggers a wavefront signal to propagate across the grid surface. 
Since some neurons have longer axonal delays, the wavefront edge travels at different speeds. Using the table, 
the neuron corresponding to the goal is identified. Then, stepping back through the time steps, a path of neurons 
can be traced back to the start neuron (right). Since costs are encoded using axonal delays, the planned path 
avoids costlier terrains with obstacles. Source: Adapted with permission from Hwu et al. 2018.
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Waypoints along the path corresponded to neuronal units representing locations on the map. 
The robot then used the GPS of the Android phone to drive along the waypoints generated 
by the algorithm. The paths taken by the robot highlighted trade-offs between finding the 
shortest path and finding the smoothest path (figure 2.8, bottom right). When a uniform cost 
was used, the shortest path was always chosen. When the road was considered, the robot 
would occasionally take it, even if it meant traveling a longer distance. For the map contain-
ing the dirt road, the robot judged the trade-offs of taking the fastest route versus traveling 
over bumpy grass. The robot demonstration applied spiking wavefront propagation to cost-
aware path planning, showing the possibility of energy savings on an energy-limited mobile 
platform.

This demonstration combined with the spiking CNN shows the potential for a complete 
neuromorphic computing solution to outdoor navigation (Hwu, Krichmar, and Zou 2017). 

a  Map 1 – Without road

c  Map 1 – With road
and obstacles

d  Map 2 – With roads
and obstacles
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b  Map 1 – With road

Figure 2.8
Outdoor demonstration of spiking wavefront propagation. Top left: A satellite image of an outdoor park where 
two areas were used to generate cost maps. Top right: (a) A uniform cost was given to the grassy area. (b) A low 
cost was given to the road surrounding the grassy area. (c) A low cost was given to the road, and a medium cost 
was given to park benches. (d) A low cost was given to the surrounding road, a high cost was given to trees, and 
a medium cost was given to the dirt path cutting across the area. Bottom left: Side, front, and interior views of 
the Android-based robotics platform. Bottom Right: The first row shows two paths planned with the same starting 
and ending points. The path on the left column was generated using a cost map without the outer road, and the 
path on the right column was generated using a cost map including the outer road. The bottom row shows the 
same but with a different set of starting and ending points. When the road is accounted for, the planned path takes 
the longer, smoother path, as opposed to the shortest path. Source: Adapted with permission from Hwu et al. 2018.
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Such a system could enable more computation on mobile platforms and provide more 
insight into how the brain is able to function with limited energy.

2.5  Future Outlook	

Built on a variety of interdisciplinary ideas, neurorobotics has grown into a rich and inter
esting field. Some of the subtopics of research have remained the same throughout its history, 
such as navigation, motor planning, mapping, and the development of neural networks. 
However, the research continues to develop as newer techniques in neurobiology, such as 
optogenetics, as well as techniques in machine learning and deep neural networks continue 
to add new tools and insights.

The fields of AI, machine learning, and especially artificial neural networks have enjoyed 
particular success in recent years. Although deep neural networks have largely been suc-
cessful, there are a number of new challenges within the field. For the most part, the 
neural networks work well on specific tasks but have trouble extending knowledge from 
previously learned tasks to newer but related tasks. Moreover, the neural networks take 
a large amount of data and training and fail to capture many behaviors that are easy for 
humans (Larson 2017). This indicates that the study of the brain can contribute much to 
the field.

According to neuroscientist and entrepreneur Jeff Hawkins (2017), the brain has three 
key features required for intelligence: 1) learning by rewiring; learning in the brain is both 
rapid and gradual and can store representations that last over a lifetime; 2) sparse repre
sentations; under the constraints of nature, the brain stores information using the fewest 
metabolic resources possible; 3) embodiment; interaction between the brain and environ-
ment together is required for intelligence. We would also argue that the following features 
are important: 4) value systems; good and bad stimuli from the environment must be 
learned by detecting saliency and reacting appropriately (Friston et  al. 1994; Krichmar 
2008) and 5) prediction; we must be able to extrapolate from past experiences to learn 
how to process future experiences (Clark 2013). Applying these principles, future research 
in neurorobotics can potentially achieve a more holistic understanding of intelligence, 
striving for behavior that generalizes across multiple domains and maintains information 
over long time frames. Neurorobotics is a promising approach to addressing many of the 
issues the AI community faces today.

2.6  Conclusion

To truly understand intelligence, we believe one must study the brain and body and apply 
these principles to all applications. Intelligent biological systems are currently our best 
standard, serving as a model for what AI eventually hopes to achieve. The insights gathered 
from neurorobotics will ultimately lead to a strong understanding of the essence of intel-
ligence, which will then benefit our understanding of ourselves and lead to applications 
that improve future technologies.
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Additional Reading and Resources

• ​ Edelman, G.  M. 1987. Neural Darwinism: The Theory of Neuronal Group Selection. 
New York: Basic Books. This book introduces an important brain theory that was amenable 
to testing with neurorobotics.
• ​ Krichmar, J. L., and H. Wagatsuma, eds. 2011. Neuromorphic and Brain-Based Robots. 
Cambridge: Cambridge University Press. This book provides a snapshot of the state of the 
art in neurorobotics at that time. It covers a range of topics from low-level perception to 
machine consciousness.
• ​ Tani, Jun. 2016. Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-
Organizing Dynamic Phenomena. Oxford: Oxford University Press. Jun Tani has been a 
pioneer in neurorobotics. His book covers how higher-order cognition might be realized in 
neurorobots.
• ​ Neurorobotics software and designs:

◦ ​ RatSLAM: https://openslam​-org​.github​.io​/openratslam​.html.
◦ ​ Android-based robotics platform: https://www​.socsci​.uci​.edu​/~jkrichma​/ABR​/index​
.html.
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