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Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic,

and cholinergic systems, track environmental signals, such as risks, rewards, novelty,

effort, and social cooperation. These systems provide a foundation for cognitive function

in higher organisms; attention, emotion, goal-directed behavior, and decision-making

derive from the interaction between the neuromodulatory systems and brain areas, such

as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong

influence on behavior and cognition, these systems also play a key role in disease

states and are the primary target of many current treatment strategies. The fact that

these systems interact with each other either directly or indirectly, however, makes it

difficult to understand how a failure in one or more systems can lead to a particular

symptom or pathology. In this review, we explore experimental evidence, as well as focus

on computational and theoretical models of neuromodulation. Better understanding of

neuromodulatory systems may lead to the development of novel treatment strategies for

a number of brain disorders.

Keywords: neuromodulation, computational neuroscience, computational modeling, brain disorders,

neuromodulatory systems

INTRODUCTION

The mammalian neuromodulatory system consists of small pools of neurons (on the order of
thousands in the rodent and tens of thousands in the human) located in the brainstem, pontine
nucleus, and basal forebrain, which can have a powerful effect on cognitive behavior. Ascending
neuromodulatory systems include noradrenergic, serotonergic, dopaminergic, and cholinergic
projections from the brainstem and basal forebrain regions to broad areas of the central nervous
system (Briand et al., 2007). Neuromodulators signal risks, rewards, novelty, effort, and social
cooperation. These systems provide a basis for many higher cognitive functions; attention,
decision-making, emotion, and goal-directed behavior result from the interaction between
the neuromodulatory systems and brain areas, such as the anterior cingulate, frontal cortex,
hippocampus, sensory cortex, and striatum (Figure 1). In this review, we explore experimental
evidence, with a strong focus on computational and theoretical models of neuromodulation. We
discuss how these models might increase our understanding of brain disorders.
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FIGURE 1 | Neuromodulatory system interactions and their role in disease. This figure illustrates how serotonergic (blue), cholinergic (red), noradrenergic (green), and

dopaminergic (purple) systems are highly connected to one another as well as cortical and subcortical structures. Their malfunction has been associated with a host

of neurological and psychiatric conditions as indicated above each brain region. Gray arrows denote recurrent connections.

DOPAMINERGIC SYSTEM

The dopaminergic neuromodulatory system has been extensively
studied and is involved in nearly every aspect of brain function
from cognition to behavior (Schultz, 1997; Schultz et al., 1997,
2000; Berridge, 2004, 2012; Hyman et al., 2006; Durstewitz
and Seamans, 2008). Dopamine originates in either the ventral
tegmental area (VTA) or substantia nigra pars compacta (SNc).
A substantial amount of research has gone into understanding
the circuits that regulate dopamine neuron firing as well as
the downstream effects of dopamine release. In particular, we
know that the VTA and SNc are strongly influenced by the
striatum and subcortical structures such as the lateral habenula
and pedunculopontine tegmental nucleus. It has been shown that
the phasic increase and dip in dopamine response are due to
the activation of the pedunculopontine tegmental nucleus and
lateral habenula, respectively (Matsumoto and Hikosaka, 2007;
Hong and Hikosaka, 2014). Phasic increases also may be due to
collicular or other sensory or non-sensory inputs to VTA/SNc
when a salient event is identified (Redgrave and Gurney, 2006).

Direct and indirect pathways in the striatum disinhibit and
inhibit dopamine neuron firing, respectively, and are themselves
modulated by cortical and limbic inputs. Prefrontal and
hippocampal inputs to the striatum disinhibit the VTA leading to
an increase in phasic and tonic activity, respectively (Takahashi
et al., 2011; Murty et al., 2017). It has been hypothesized
that an abnormal increase in glutamatergic input to striatum
leads to excess dopamine in the striatum and may account for
symptoms of schizophrenia (de la Fuente-Sandoval et al., 2011).
Computational models of the basal ganglia have also shed light
on the role dopamine plays in Parkinson’s disease (Moustafa and
Gluck, 2011; Moustafa et al., 2013; Balasubramani et al., 2015).
Still, many questions remain regarding cortical and limbic inputs

to the striatum, how they compete to drive striatum responses,
and how phasic and tonic dopamine levels might regulate these
brain regions. Understanding these upstream effects is a critical
component as we develop a circuit-level understanding of brain
disorders that are thought to result from abnormal dopaminergic
activity.

Dopamine neurons, in turn, send projections to the
striatum, thalamus, amygdala, hippocampus, and prefrontal
cortex, demonstrating the “feedback” nature of this circuit.
Dopaminergic neurons originating in the SNc project to the
dorsal striatum. Abnormalities in this pathway can lead to motor
disorders including Parkinson’s disease. Two distinct areas in the
VTA project to either the ventral striatum (mesolimbic) or to the
prefrontal cortex (mesocortical). The effect that dopamine has on
its downstream target depends on the post-synaptic receptor and
the firing mode of the DA neuron. Phasic release of dopamine
in the striatum, for example, preferentially activates D1 receptors
on striatal Medium Spiny Neurons (MSNs) and increases their
activity (direct pathway). Increases in tonic dopamine, on the
other hand, are thought to activate D2 receptors (D2R) in the
striatum, which inhibit MSNs in the striatum (indirect pathway).
It has recently been shown, however, that phasic DA can also lead
to increases in inhibitory post-synaptic currents in D2R-MSN
neurons (Marcott et al., 2014), suggesting the role of tonic and
phasic dopamine may be more complex than originally thought.
Increases in both phasic and tonic activity would, therefore,
lead to an increase in the direct pathway and a decrease in the
indirect pathway, which would ultimately cause a strong release
of inhibition on the thalamus.

The effects of tonic and phasic dopamine in the prefrontal
cortex appears to be opposite of the striatum. D1 receptors
in the prefrontal cortex are preferentially activated by tonic
dopamine and have an inverted-U dose-dependent response
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on superficial neurons (discussed below), whereas D2 receptors
are activated by phasic dopamine and increase the activity of
subcortically-projecting neurons in deep layers. This suggests
that D2 receptors play a preferential role in behavior and
reward processing, whereas D1-expressing neurons are involved
in working memory and attentional modulation of visual
cortices (Noudoost and Moore, 2011; Gee et al., 2012; Puig
and Miller, 2014). Interestingly, the temporal dynamics of the
phasic responses of dopaminergic cells resemble those found in
a machine learning method known as reinforcement learning
(Schultz et al., 1997). As we discuss below, this gives us a more
rigorous understanding of the function of dopaminergic neurons
in the brain and helps to understand the important components
of dopamine responses for normal and abnormal brain
function.

MODELS OF DOPAMINERGIC FUNCTION

The responses of dopaminergic neurons during behavioral
conditioning experiments closely resemble temporal difference
reward prediction error variables found in reinforcement
learning. This has led to the prediction error hypothesis of
dopamine signaling, which connects dopamine signaling to
reinforcement learning models and indicates that dopamine
neurons play an important role in human decision-making. It
has also been hypothesized that dopaminergic neurons respond
to and broadcast uncertainty and/or novelty related signals.
The circuits involved in these computations are shown in
Figure 2. We discuss these circuits and theoretical models below,
together with several computational, network-based models that
propose mechanisms for how dopamine-related computations
are implemented in the brain.

FIGURE 2 | The dopaminergic system and its functions. The dopaminergic

system, which originates in the VTA and SNc, has been implicated in a wide

variety of functions including reward, saliency, uncertainty, and invigoration.

These functions are achieved through interactions with the prefrontal cortex,

striatum, and hippocampus. It is also reciprocally connected with the three

other neuromodulatory systems, further complicating its role in disease states.

REINFORCEMENT LEARNING MODELS

Reinforcement learning is a machine learning method that
concerns itself with finding the appropriate actions that
maximize future reward. Formally, the theory aims to find an
optimal function, or policy, (P) for mapping states (S) into
actions (A) that maximize the sum of future reward. Temporal
difference learning methods, such as the actor-critic model, solve
this problem by computing a reward prediction error signal
(δ), which is used in the updating of a value function (reward
expectation) and policy as shown in the equations below.

δt = rt+l + γV (st−1) − V (st)

V(st+1) = V (st) + α · δ

P(a|st+1) = P(a|st)+ α · δ (1)

where rt+1 is the observed reward at time t+1, V(St) is the
value of state S at time t, γ is a discounting factor, and α is the
learning rate. The algorithmworks by sampling the environment,
making predictions, and then adjusting the predictions based
on the error signal. The ability to use the prediction error
signal to update value estimates and behavioral policies is what
gives this algorithm (and organisms) the flexibility to adapt to
a dynamic environment. The temporal dynamics of the δ term
closely resembles responses seen in dopaminergic cells in vivo,
suggesting a prediction error hypothesis of dopamine function
(Schultz, 1997; Schultz et al., 1997).

Doya extended the temporal difference equations to other
neuromodulatory systems (Doya, 2002, 2008). In his view,
dopamine signals the error in reward prediction (δ in
Equation 1), serotonin controls the discounting of reward
prediction (γ in Equation 1), and acetylcholine controls the
speed of memory update (α in Equation 1). More recent
theoretical models have extended the temporal difference rule
to other neuromodulatory systems and have attributed the α

parameter, which controls the rate of learning, to the serotonergic
(Balasubramani et al., 2015) or noradrenergic systems (Nassar
et al., 2012).

Abnormalities in dopaminergic responses have been linked to
a host of disorders, including schizophrenia, attention and mood
disorders, and Parkinson’s disease (Wise, 2004; Björklund and
Dunnett, 2007; Schultz, 2007; Sillitoe and Vogel, 2008). Within
the context of the reinforcement-learning framework, these
disorders are thought to arise from a failure of dopaminergic cells
to properly compute reward prediction errors and communicate
them to downstream structures. For example, depressive
symptoms would result from a reduction in reward sensitivity
within the reinforcement-learning framework (Huys et al., 2013;
Chen C. et al., 2015). Abnormalities in reward prediction
errors could also induce positive symptoms of schizophrenia
(delusions/hallucinations) through the construction of unusual
associations and abnormal internal models of the world (Maia
and Frank, 2011). As discussed below, different hypotheses of
dopamine function can lead different conclusions regarding the
manifestation of a particular disease.
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DOPAMINE, UNCERTAINTY, AND NOVELTY

Although theoretical and experimental evidence suggests that
dopamine neurons encode reward prediction error (Schultz et al.,
1997), several lines of evidence suggest that this hypothesis is
incomplete. First, dopaminergic neurons not only respond to
reward and reward prediction, but also respond to any salient
or novel input in the environment regardless of its reward
value (Bromberg-Martin et al., 2010). Second, the response of
dopamine neurons to reward predicting stimuli is too fast to
be mediated by a “predictive” input that would likely originate
in prefrontal cortices (Redgrave and Gurney, 2006). Third,
dopamine depletion primarily impacts task performance and
learning is left intact (Berridge and Robinson, 1998; Cannon and
Palmiter, 2003; Berridge, 2012).

This has led to several alternative hypotheses regarding
dopaminergic function. The two we describe below are the
saliency and uncertainty hypotheses. The saliency hypothesis
suggests that dopamine neurons respond to salient or novel
environmental events to discover novel actions (Redgrave and
Gurney, 2006). This directly contrasts with the prediction error
hypothesis in which reward prediction errors were used to update
the weights of a set of defined actions. Within this framework,
abnormal dopaminergic responses would lead to abnormalities
in processing salient information. This is consistent with the
aberrant salience hypothesis of schizophrenia (Kapur, 2003),
which suggests that positive symptoms in schizophrenia originate
and evolve from an improper allocation of attentional resources
to what normally would be non-salient events.

It has also been suggested that dopamine encodes the
precision, the inverse of uncertainty, of alternative actions beliefs
(Friston et al., 2012). This hypothesis is rooted in Bayesian
inference models and is able to reconcile the prediction error
hypothesis and incentive salience hypothesis, which accounts for
the fact that dopamine is not necessary for learning. If dopamine
encodes precision values, abnormal dopamine responses would
lead to false inferences about the world as a result of an improper
balance of sensory and prior information. False inferences could
ultimately manifest as positive symptoms of schizophrenia,
including delusions and hallucinations (Adams et al., 2013).

The uncertainty and salience hypotheses predict that
dopamine plays an important role in regulating the information
that gains access to conscious perception. The mechanism
by which this is achieved, however, is unknown. Previous
theoretical and computational models, as well as experimental
studies have suggested several mechanisms that could support
such computations, including: dopaminergic projections to the
prefrontal cortex/basal ganglia, balance of excitation/inhibition
in prefrontal cortex, D1/D2 receptor activation, and
NMDA/GABA receptor activation. In particular, Cohen
and colleagues developed a model that suggests that dopamine
acts as a gate to regulate information that can enter prefrontal
cortex (Braver and Cohen, 1999). In this model, dopamine acts
on both the afferent excitatory and local inhibitory input in the
prefrontal cortex, leading to a disruption in the maintenance and
updating of information in the prefrontal cortex. They suggested
that cognitive symptoms in schizophrenia arise from increasing

the variability of dopamine inputs to the prefrontal cortex, which
would destabilize working memory traces (Braver and Cohen,
1999; Rolls et al., 2008). This model was extended to include the
basal ganglia as part of the gating mechanism (Hazy et al., 2006).

More recently, we developed a circuit-based model that shows
how D1 and D2 receptors could balance the relative weight of
information from different brain regions (Avery and Krichmar,
2015). This computational model suggests that activation of
D1 receptors allows information from the thalamus to take
precedence within the prefrontal cortex by blocking interference
from lateral excitation in superficial layers (see Figure 3).
Optimal D1 activation results in one column of the PFC being
active, which represents holding a stimulus in working memory.
Low D1 activation results in inter-columnar interference within
the PFC. This can lead to a noisy representation of an object
in working memory via lateral input from other regions of
the PFC, which might manifest as cognitive symptoms in
schizophrenia. A similar mechanism is proposed for attention
disorders (Arnsten et al., 2012). Our model also suggests
that activation of D2 receptors on deep layers 5 neurons
in the prefrontal cortex disinhibits thalamic inputs to the
prefrontal cortex via interactions with the basal ganglia (Avery
and Krichmar, 2015). Improper activation of D2 receptors in
the prefrontal cortex may lead to non-specific activity from
the thalamus, potentially contributing to positive symptoms
observed in schizophrenics. We also suggest that improper
activation of D2 receptors on subcortically projecting layer 5
neurons leads to abnormalities in reward processing, resulting in
negative symptoms of schizophrenia.

A model based on a dynamical systems framework suggests
that D1 and D2 receptors influence the stability of persistent and
spontaneous cortical attractor states by increasing and decreasing
NMDA and GABA conductances, respectively (Durstewitz and
Seamans, 2008). If a network is in a stable regime (high D1, low
D2), the pattern of neuronal activity in the network will remain
unchanged until a sufficiently strong input can push the network
into a different state. If the network is in an unstable regime
(low D1, high D2), however, even weak inputs impinging on the
network will cause neurons to randomly shift from spontaneous
to persistent states. This is related to the gating hypothesis in the
sense that a highly stable state would effectively block incoming
information (closed gate), whereas an unstable state would allow
inputs to drive the network into a different state (open gate). The
dynamical systems model predicts that instabilities in cortical
attractor states, which arise from an improper balance in D1
and D2 receptor activation, might lead schizophrenia symptoms
(Loh et al., 2007; Durstewitz and Seamans, 2008). In particular,
cognitive and negative symptoms result from reduced NMDA
(reduced D1), which leads to a reduction in firing rate in the
prefrontal cortex. A reduction in both NMDA and GABA, on
the other hand, leads to instabilities in the network that produce
positive symptoms.

Each of these computational models offers insight into
understanding the role of the dopaminergic system in the
healthy and diseased brain and alludes to possible treatment
strategies. The dynamical systems model, for example, suggests
that NMDA and GABA receptors are important for maintaining
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FIGURE 3 | Within a column in the PFC, neuromodulators were modeled by changing the strength of inputs from non-preferred directions (D1 receptors) between

layer 2/3 neurons in different columns and the strength layer 5 neuronal responses (D2 receptors). This architecture also shows how layer 5 neurons in each column

received input from the MD/SC and output to a non-specific inhibitory group and the basal ganglia in order to clear working memory and update other columns,

respectively. In this model, Positive and negative symptoms arise from abnormalities in layer 5 outputs to subcortical structures and cognitive symptoms arise from a

“leaky” spread of excitation of lateral excitatory inputs within the PFC.

stable working memory representations and may be important
targets for drug therapies. Network-based models, on the other
hand, point to regions of interest for deep brain stimulation or
pharmacological intervention and could also make predictions
regarding downstream effects of manipulation of a particular
region of the brain. These models will become even more
important as we begin to develop experiments that connect
different levels of investigation of the brain and will allow us to
generate more refined hypotheses regarding disease mechanism
and treatment strategies.

SEROTONERGIC SYSTEM

Serotonergic projections, which originate in the raphe nuclei
of the brainstem, extend to almost all forebrain areas (Barnes
and Sharp, 1999), including the cortex, ventral striatum,
hippocampus, and amygdala (Harvey, 2003; Meneses and Perez-
Garcia, 2007). The raphe receives strong connections from
the prefrontal cortex and the anterior cingulate cortex (Briand
et al., 2007). Through interactions with these brain regions and
other neuromodulatory systems, serotonin influences a broad
range of decision-based functions such as reward assessment,
cost assessment, impulsivity, harm aversion, and anxious states
(Asher et al., 2013). The circuits involved in these functions are
shown in Figure 4. Impairments to the serotonergic system have
been linked to anxiety disorders and depression (Craske and
Stein, 2016), as well as Parkinson’s disease (Bédard et al., 2011).

SEROTONIN AND IMPULSIVITY

Several studies have investigated serotonin’s involvement in
impulsivity, which is the tradeoff between taking an immediate
reward, or else waiting for a future, potentially larger reward.
In the temporal difference learning rule, this term is called
temporal discounting or gamma (see γ in Equation 1). Kenji

Doya suggested that serotonin levels may be related to temporal
discounting level (Doya, 2002). His group has confirmed this
prediction in rodent and human experiments (Tanaka et al.,
2007; Miyazaki et al., 2011). In addition, it has been shown that
forebrain serotonin depletion the steepens discounting of delayed
rewards, which leads to impulsive actions (Winstanley et al.,
2003). In another study, it was observed that higher serotonin
firing activity causes a rat to wait longer for upcoming rewards, as
predicted by temporal discounting (Miyazaki et al., 2011). Wait
errors associated with lower serotonergic neural activity suggest
that 5-HT can affect choice involving delayed rewards.

The link between serotonin and temporal discounting has
been explored using the Acute Tryptophan Depletion (ATD)
procedure. 5-HT requires the amino acid tryptophan, which only
can be acquired through diet. In ATD, subjects temporarily have a
low-protein diet and drink an amino acid supplement that omits
tryptophan. In essence, ATD acts as a temporary serotonin lesion.
Altering 5-HT levels via ATD influences a subject’s ability to resist
a small immediate reward over a larger delayed reward (Tanaka
et al., 2007, 2009; Schweighofer et al., 2008). As such, subjects that
underwent ATD had both an attenuated assessment of delayed
reward and a bias toward small reward, which were indicative of
impulsive behavior and higher temporal discounting.

SEROTONIN AND HARM AVERSION

Serotonin (5-HT) has been linked to predicting punishment or
harm aversion (Cools et al., 2008; Crockett et al., 2008, 2012;
Seymour et al., 2012). ATD caused subjects to be aggressive and
risk taking by rejecting more monetary offers in the Ultimatum
Game (Crockett et al., 2008). In a reversal-learning task, Cools
and colleagues demonstrated that ATD subjects made more
errors for harmful than rewarding stimuli (Cools et al., 2008).
Crockett and colleagues showed that lowering 5-HT levels with
ATD resulted in decreased punishment-induced inhibition in a
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FIGURE 4 | The serotonergic system and its functions. The serotonergic system originates in the Raphe Nucleus of the brainstem and is connected to prefrontal,

sensory, limbic, and striatal structures. Serotonin has been associated with a variety a functions including impulsivity, harm aversion, anxious states, punishment, and

withdrawal. Experimental and theoretical studies have suggested it has an antagonistic relationship with the dopaminergic system.

Go/No-Go task to Crockett et al. (2009). In a follow up ATD
study, they investigated the mechanisms through which 5-HT
regulated punishment-induced inhibition with their Reinforced
Categorization task (Crockett et al., 2012). Furthermore, recent
evidence suggests that enhancing serotonin function through
serotonin specific reuptake inhibitors (SSRIs) increased harm
aversion, while enhancing dopamine through levodopa reduced
altruism (Crockett et al., 2015). Together, these results suggest
that 5-HT influences the ability to inhibit actions that predict
punishment and to avoid harmful circumstances.

SEROTONIN AND ANXIETY

In addition to punishment and impulsivity, 5-HT affects
stress and anxiety (Millan, 2003; Jasinska et al., 2012). It has
been proposed that environmental impact factors and genetic
variations of the serotonin transporter (5-HTTLPR) can be
linked to stress (Jasinska et al., 2012). Furthermore, 5-HT
function has been tied to an organism’s anxious states triggered
by conditioned or unconditioned fear (Millan, 2003). This
suggests a functional role for 5-HT in the control of anxious
states. These anxious states and behavioral responses were
modeled in neurorobot experiments, which will be described in
more detail in the Dopamine and Serotonin Opponency section.
In brief, a stressor caused the robot’s simulated serotonin level
to increase, which in turn caused the robot to hide (Krichmar,
2013). In the model, artificially decreasing the rate that serotonin
returned to base levels had a similar effect to the short allele
variant of 5-HTTLPR discussed above, where serotonin reuptake
is impaired. Under these conditions, the neurorobot showed
longer-lasting hiding responses to a stressful sensor event (e.g.,
a bright light). These responses are similar to those seen in mice,
where manipulations of 5-HT1A and 5-HT2A receptors resulted

in the mice avoiding the center of an open arena and exploring
novel objects, suggesting that these manipulations of serotonin
led to higher anxiety levels (Heisler et al., 1998; Weisstaub et al.,
2006).

MODELS OF SEROTONIN
NEUROMODULATION

Using an Actor-Critic model, Asher et al. (2010), Zaldivar
et al. (2010) constructed a neural network where a reward
critic represented the dopaminergic system and a cost
critic represented the serotonergic system (see Figure 5).
In these experiments, the neural network model played the
socioeconomic game of Hawk-Dove against other agents. In the
Hawk-Dove game, players must choose to either take a resource
(escalate) or share a resource (display). If both players escalate, a
fight ensues, resulting in a penalty. If only one player chooses to
escalate, then that player gets the resource, and the other player
get nothing. If both players display, then the resource is shared.
The reward critic tracked the expected value of obtaining the
resource, and the cost critic tracked the expected punishment
from fighting for the resource.

The simulations showed that the model was sensitive to
the other player’s strategy and the game environment (i.e., the
likelihood of receiving a serious injury). The adaptive neural
agent was more likely to escalate over the resource when activity
of the reward system (VTA) exceeded the activity of the cost
system (Raphe). Conversely, when the reward activity did not
exceed the activity of cost, the adaptive neural agent tended
toward display actions. The simulations also predicted that
impairment of the serotonergic systemwould lead to perseverant,
uncooperative behavior. A simulated lesion of the serotonergic
system resulted in the agent almost always engaging in risk taking
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FIGURE 5 | Neuromodulation effects in simulation of the Hawk-Dove game. (Left) Architecture of the neural model (Neuromodulatory: Raphe and VTA; TOI-State:

Open, Escalate, and Display; and two Action: Escalate and Display). Solid arrows from the TOI-State neurons denote all-to-all connections. The shaded oval and

dotted arrows denote plastic connections. Within the Action neurons, the arrowhead denotes an excitatory connection, and the line with the dot at the end denotes

an inhibitory connection. (Right) Proportion of actions taken by the Neural agent. Open, Escalate, and Display are states the Neural agent observes, and Escalate (E),

Display (D), and Undecided (U) are actions the Neural agent can take. U represents random choice between “E” and “D”. Labels denote the Neural agent’s response

to the three states. Dove-like strategies are displayed in blue, Hawk-like are displayed in red, and the lack of a strong bias is displayed in yellow. Reproduced from

Asher et al. (2010) with permission.

(or lack of harm aversion) behavior, whichwas similar to behavior
seen in human studies where serotonin levels were lowered via
ATDwhile subjects played games such as Prisoner’s Dilemma and
the Ultimatum game (Wood et al., 2006; Crockett et al., 2008).

Following the simulation studies, human robot interaction
experiments were performed to test the model’s performance
against human players, as well as the influence of embodied
agents on game play (Asher et al., 2012). These experiments
involved ATD; the dietary manipulation described above
that temporarily lowers serotonin levels. Overall, subjects
demonstrated aggressive behavior when playing against an
aggressive version of the model with a simulated 5-HT lesion,
which tended to escalate more. This resulted in subjects altering
their strategy from Win-Stay-Lose-Shift (WSLS) against agents,
to a retaliatory Tit-For-Tat (T4T) against an aggressive version
of the model. A Bayesian analysis revealed two types of subjects;
one in which subjects were more aggressive when tryptophan-
depleted, and one in which they were less aggressive. In addition,
some of the subjects were more aggressive toward robots than
simulations, and vice versa (Asher et al., 2012). These results
highlight the importance of taking individual variation into
consideration in serotonin studies.

In a model inspired by serotonergic neuromodulation related
to punishment or harm, Weng and colleagues constructed a
neural model where artificial serotonin levels regulated stress or
pain in two different tasks (Weng et al., 2013). The first was a
visual recognition task that investigated how such a system can
learn visual cues via a teacher that only provides punishments
and reward signals. The second task had an agent wander in the
presence of a friend and a foe. In both tasks, the interplay between
reward and pain led to high performance and the emergence
of internal representations without the need of a supervisory
signal.

These computational models show how simulating
serotonergic effects, even in fairly simple neural models,

explain how altering serotonin modulation of neural activity
can affect harm aversion and altruistic behavior. Moreover,
embodying these models in robots highlights these behaviors
and leads to the possibility of using human robot interaction as a
means to study these disorders.

At the neuronal level, detailed computational models that
include ionic currents can investigate receptor specific effects
of serotonin to drug treatments (Wong-Lin et al., 2012; Cano-
Colino et al., 2014). In a model of prefrontal cortex, it
was shown that serotonin modulates spatial working memory
performance via 5-HT1A and 5-HT2A receptors (Cano-Colino
et al., 2014). Performance followed an inverted-U relationship,
that is, both increases and decreases in serotonin concentrations,
[5-HT], led to random choice errors. In their model, 5-HT
suppressed pyramidal cell activity via the 5-HT1A receptor
by increasing a K+ and excited pyramidal cells via 5-HT2A
receptors by increasing the Ca2+-dependent K+ current, which
increased intracellular Ca2+. The effects of 5-HT on GABAergic
interneurons were modeled by inhibiting passive leak currents
via 5-HT2A receptors. Another modeling group constructed
an efficient spiking neural network model of the dorsal raphe
nucleus, which included both serotonergic and non-serotonergic
neurons (Wong-Lin et al., 2012). They simulated dorsal raphe
nucleus recording experiments from a non-human primate
performing a simple perceptual decision task for both rewarding
and unrewarding trials (Nakamura et al., 2008; Bromberg-Martin
et al., 2010). In addition, to observing the different firing patterns
that were found in the primate, the model showed theta band
oscillations, especially among the non-5-HT inhibitory neurons,
during the rewarding outcome of a simulated trial. In summary,
these detailed computational models can allow an investigation
of the neural dynamics of serotonergic neuromodulation and
its effects on specific receptors. Models at this level may be
informative on possible treatments for serotonergic related
disorders.

Frontiers in Neural Circuits | www.frontiersin.org 7 December 2017 | Volume 11 | Article 108



Avery and Krichmar Modeling Neuromodulatory Systems and Their Interactions

MODELS OF DOPAMINE AND SEROTONIN
OPPONENCY

It has been suggested that the serotonergic and dopaminergic
systems primarily activate in opposition, but at times in concert
for goal directed actions (Boureau and Dayan, 2011). Opponency
between these systems has been proposed behaviorally and in
theoretical models (Daw et al., 2002; Tops et al., 2009). In this
notion, dopamine triggers invigorated, reward seeking behavior,
and serotonin triggers withdrawn and punishment avoiding
behavior. Whether the anatomy supports unidirectional (i.e., the
raphe inhibiting dopaminergic areas) or bidirectional inhibition
(i.e., raphe inhibiting and being inhibited by dopaminergic areas)
is an open issue (Boureau and Dayan, 2011). But there is evidence
that projections from raphe serotonin cells to DA areas oppose
the actions of DA and mediate avoidance of threats (Deakin,
2003). Interestingly, there is evidence in the striatum that under
certain conditions dopamine transporters are able to transport
significant amounts of 5-HT into DA terminals (Zhou et al.,
2005). These studies suggest that the dopamine and serotonergic
systems are highly interactive.

Computational models have been used to investigate these
interactions between dopamine and serotonin. One model
had tonic serotonin tracking the average reward rate and
tonic dopamine tracking the average punishment rate, and
that phasic serotonin responses carry a prediction error signal
for punishment (Daw et al., 2002). However, it has been
difficult to find empirical evidence supporting these roles for
tonic and phasic neuromodulation. Modeling has shown that
direct opponency between these systems is unnecessary for
behavioral opponency (Asher et al., 2010; Zaldivar et al., 2010).
In many cases, an environmental tradeoff between expected
rewards and costs can lead to opposition between active reward-
seeking and withdrawn behavior. Indeed, by having different
neuromodulatory systems handle different sensory events, this
type of opponency emerged in the present model.

A neurorobot model explored the idea of dopaminergic
and serotonergic opponency by having the serotonergic system
directly inhibit the dopaminergic system (Krichmar, 2013). In
this study, he behavior of an autonomous robot in an open-field
test paradigm was controlled using a neural network algorithm
(see Figure 6). The open-field test is often used in animal models
of anxiety (Heisler et al., 1998; Lacroix et al., 2000; Lipkind
et al., 2004; Fonio et al., 2009). Similar to mice in the open
field test, the robot demonstrated withdrawn, anxious behavior,
such as wall following and finding its nest (i.e., the robot’s
charging station) when serotonin levels were high, and risky,
reward seeking behavior, such as moving to the center of the
arena or investigating a novel object when dopamine levels were
high. Furthermore, the algorithm tested the idea that top-down
signals from the frontal cortex to neuromodulatory areas are
critical for an organism to cope with both stressful and novel
events. As described above, it has been suggested that the mPFC
inhibited the serotonergic raphe nucleus after handling a stressful
event (Jasinska et al., 2012). This feedback loop prevented the
raphe from being overly active after the stressor had been
handled. Indeed, when the model’s mPFC was lesioned, the robot

withdrew to the outer wall or its charging station in response to
a stressor such as a bright light or collision. The model further
suggested that projections from the OFC to the dopaminergic
VTA have a similar function when responding to a positive
value event. When the simulated OFC was lesioned, the robot
obsessively explored the center of the room and objects in the
room. By using a neurorobot experiment that mimics an animal
model of anxiety and depression, we can readily observe the
behavior in a controlled environment, while also being able to
make manipulations that would be difficult in the real animal.

In addition to the studies of serotonin and dopamine in
the frontal cortex, interactions between the dopaminergic and
serotonergic systems have been observed in the basal ganglia,
which may have implications for Parkinson’s disease treatments
(Bédard et al., 2011). Moustafa and colleagues constructed a
neural network model of the basal ganglia, including nuclei such
as striatum, subthalamic nucleus and globus pallidum, which
were controlled by dopamine and serotonin neuromodulation
(Balasubramani et al., 2015). They predict that the modulatory
effects of 5HT on dopamine D2 receptors on medium spiny
neurons relate to risk sensitivity and reward-punishment
learning in the basal ganglia. This may explain risky decision
making impairments observed in Parkinson’s patients. Moreover,
the model suggests that optimizing 5HT levels along with
DA medications may improve Parkinsonian deficits in reward-
punishment learning.

NORADRENERGIC SYSTEM

With the exception of the basal ganglia, noradrenergic neurons,
which originate in the locus coeruleus (LC), project to nearly
every cortical and subcortical region (Berridge and Waterhouse,
2003). The LC receives inputs from brainstem structures, but is
also highly regulated by the prefrontal cortex, highlighting its role
in integrating low-level autonomic and cognitive information
and broadcasting this signal throughout the brain. Traditionally
the noradrenergic system was thought to mediate arousal levels
through slow changes in tonic levels of activation. Phasic
activation of the LC, however, characterized by short bursts of
activity, has taken on an important role in behavioral adaptation
and task performance (Aston-Jones et al., 1994; Aston-Jones and
Cohen, 2005).

Phasic activation of the LC typically occurs in response
to salient or novel inputs (Sara et al., 1995; Vankov et al.,
1995) as well as task-relevant conditioned stimuli. If a reward
is not associated with the novel stimulus, the response will
eventually attenuate, which is likely important for transitions
between phasic and tonic states. Interestingly, the ability of
the LC to fire phasic bursts depends on the LC’s tonic mode
of activation. When tonic activity is either too low or too
high, phasic bursts are not present (Aston-Jones and Cohen,
2005). Task performance is optimal when LC neurons can be
phasically activated and declines with increasing or decreasing
tonic activity. Therefore, an inverted-U relationship between
tonic LC activity and task performance exists that resembles
the Yerkes-Dodson relationship between arousal levels and
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FIGURE 6 | Embodied model of neuromodulation in an open-field test experiment. Experiments were run on an iRobot Create, equipped with a laser range finder and

a netbook that contained the neural model and controlled the robot’s behavior. (A) Neural model architecture. Sensory events were handled by three binary neurons.

These neurons projected to the attentional filter neurons (AchNE) and the dopaminergic and serotonergic neurons (DA and 5-HT). The DA and 5-HT neurons projected

to the OFC and mPFC neurons. The most active OFC or mPFC neuron dictated the robot’s behavioral state. The AChNE neurons had a modulatory effect on the

projection from the DA and 5-HT to OFC and mPFC (see blue ellipse and arrows). OFC and mPFC projected to 5-HT and DA neurons with inhibitory connections.

Excitatory and inhibitory connections within and between OFC and mPFC neurons were all-to-all. (B) Wall following behavior. (C) Find home behavior. Finding home

consisted of locating the robot’s docking station. (D) Open-field behavior. The robot moved toward open spaces in the environment based on laser range finder

readings. (E) Explore object. The robot approached narrow objects based on laser range finder readings. Reproduced from Krichmar (2013) with permission.

task performance. This inverted-U nature of noradrenergic
function in terms of signal detection and task performance has
also been shown in working memory in the prefrontal cortex
(Vijayraghavan et al., 2007; Wang et al., 2007; Avery et al., 2013).
That is, too little or too much noradrenaline will likely impair
working memory. This, in turn, could lead to attention disorders,
stress-related disorders, and obsessive-compulsive disorders.

In the past decade or so, two important theories of
noradrenergic function have been developed: (1) The “adaptive
gain theory” suggests that the noradrenergic system mediates the
switch between exploration and exploitation behaviors (Aston-
Jones and Cohen, 2005). (2) The “network reset” theory, on the
other hand, suggests that the noradrenergic system is critical for
functional reorganization of cortical activity when environmental
contingencies change to allow for behavioral adaptation (Bouret
and Sara, 2005). A schematic depicting the brain regions involved
in these computations is shown in Figure 7. We will discuss each
of these below as well as recent studies in humans and rodents
that have demonstrated an important connection between the
noradrenergic system and pupillary responses and how these
might be related to cortical states and internal model updating
in the brain. Finally, we will discuss a neural network model
we recently developed that investigates how varying levels of
dopamine and noradrenaline influence working memory and
behavior.

EXPLORATION-EXPLOITATION TRADEOFF

Reinforcement learning theory suggests that at each moment
we should act in a way that maximizes reward. The problem
with this is that sometimes the algorithm can get stuck in local
minimums. The agent may become restricted to a subset of states
within the entire space without knowing more rewarding states

are possible. In this case, it is advantageous to make locally “non-
optimal” actions in order to determine if there are surrounding
states that will yield larger rewards. This idea is known as
“exploration-exploitation” tradeoff. It has been hypothesized that
the noradrenergic system is vital in resolving this computation.

In particular, Aston-Jones and Cohen (Aston-Jones and
Cohen, 2005) suggest that exploration and exploitation modes
are mediated by tonic and phasic LC activity, respectively. High
phasic and low tonic activity is indicative of an exploitive phase
in which an animal is task engaged. High tonic modes, however,
put the animal into a highly distractible state, allowing them to
explore the state space. They propose that the anterior cingulate
and orbitofrontal cortices mediate transitions between tonic and
phasic LC activity. It is thought that the anterior cingulate plays a
role in evaluating cost and conflict, and that the orbitofrontral
cortex plays a role in evaluating reward. However, both these
regions are implicated in the representation of goal directed
behaviors, uncertainty, and outcome expectancies (Schoenbaum
et al., 2009; Stern et al., 2010; Gremel and Costa, 2013). More
recent work looking at pupillary responses (discussed below)may
allow further avenues to test and reshape this theory.

NETWORK RESET, CORTICAL STATES,
AND BELIEF UPDATES

The noradrenergic system responds strongly to unexpected
changes in the environment as well as task-relevant stimuli,
which signal a change in behavior. This has led researchers to
hypothesize that phasic activation of the LC is important for
a “network reset” that induces a large-scale reconfiguration of
neuronal activity across the brain to allow for changes in behavior
and cognition (Bouret and Sara, 2005). This has been linked, for
example, to the switching between the dorsal attention network,
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FIGURE 7 | The noradrenergic system and its functions. The noradrenergic system, which originates in the locus coeruleus, has been implicated in

exploration-exploitation trade-off computations and large-scale reorganization of networks in the brain in response to surprise. Locus coeruleus activity is regulated by

prefrontal and cingulate cortices and sends its projections throughout the cortex as well as to other neuromodulatory regions such as the basal forebrain.

which directs attention to expected stimuli, and the ventral
attention network, which attends to novel stimuli (Corbetta
et al., 2008). It has also been shown that stress, which directly
involves the noradrenergic system, can similarly induce a large-
scale reconfiguration of functional activity in the brain and that
the reconfiguration is dampened when subjects are given a drug
to block adrenergic receptors (Hermans et al., 2011).

The function of the LC in network resetting suggests that
it may play a role in internal model updating, which is a well
understood computation in a Bayesian framework. Interestingly,
pupillary responses, which are strongly correlated to LC activity,
are indicative of internal model updating based on Bayesian
modeling of human responses. In particular, pupil diameter, in
human experiments, correlates with learning rates and Bayesian
belief updating in a task incorporating predictive inference
and uncertainty (Preuschoff et al., 2011; Nassar et al., 2012;
Lavín et al., 2014). When a change occurred in the inference
task (unexpected uncertainty), pupil diameter increased and
correlated with learning rates in their model. This suggests that
this new information opened a “gate” to allow new sensory
information to affect currently stored priors. More formally,
this implies that locus coeruleus may affect the learning rate in
Bayesian models as given by the following equation:

Pt+1 = Pt + α · δ (2)

where P is the prior probability at time t, α is the learning
rate and δ is the prediction error as described by reinforcement
learning. When the environment is unstable, α will increase to
allow for learning and reduce uncertainty. As stability increases,
α will decrease so that priors are not updated. The circuit-
level mechanism behind this is unknown, however, recent
work in the mouse suggests that activation of somatostatin
or vasoactive intestinal peptide (VIP) inhibitory interneurons,

which disinhibit the cortical or limbic circuit, could gate learning
(Letzkus et al., 2015). The noradrenergic and cholinergic systems
strongly activate these interneurons, further solidifying their
role in uncertainty-related computations. Taken together, these
results suggest that the LC may disinhibit circuits to facilitate
learning and, simultaneously, improve signal to noise ratios
and to allow information to flow smoothly from one region
to another when environmental uncertainty is high. Given the
LC’s link with pupillary responses, it is important to point out
that abnormalities in pupillary responses have been associated
with a host of disorders including negative symptoms and
attentional allocation in schizophrenia (Granholm and Verney,
2004; Granholm et al., 2014), social reward in autism (Sepeta
et al., 2012), and reward computations in Parkinson’s disease
(Manohar andHusain, 2015; Muhammed et al., 2016). Therefore,
the LC and pupillary responses may provide a link between
investigations of brain disorders and theoretical models of brain
function.

Internal model updating may be realized in the brain
through cortical state changes, which are also strongly linked
to pupillary responses. Cortical states are often associated with
oscillatory behavior. For example, low frequency synchronous
oscillations are seen in resting states, and asynchronous patterns
of activity are seen in active states. Cortical membrane potential
recordings show that the transitions between these states occur
on the order of seconds and are precisely correlated with

pupil fluctuations (Reimer et al., 2014). Moreover, there is an
inverted-U relationship between neuronal responses in cortex to
sensory cues and behavior that corresponds with pupil diameter
(McGinley et al., 2015). When pupil diameter is small, low
frequency oscillations exist in the network and there is a high
degree of variability in neuronal responses and animal behavior.
As the pupil diameter increases, task performance increases
concomitantly with sensory-evoked responses while neuronal
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variability and slow oscillations decrease. Beyond the peak, pupil
diameter continues to increase and task performance decreases
as gamma oscillations begin to emerge in neurons. Amazingly,
much of the variability seen in the membrane potential is directly
correlated with pupil fluctuations. These results suggest that
sensory information is largely dampened by the brain, however,
there is an optimal “window” in which internal “noise” is silenced
and sensory events can strongly and reliably drive cortical
responses.

The above studies suggest that optimal sensory processing
occurs when noradrenergic (NA) levels are neither too high nor
too low. This “inverted-U” performance trend is also seen in the
prefrontal cortex when primates perform working memory tasks
(Vijayraghavan et al., 2007; Wang et al., 2007; Avery et al., 2013).
This coincides well with the notion that attention disorders
result from the prefrontal cortex being in a “non-optimal”
working memory state. Drugs that treat attention disorders,
such as guanfacine, which acts on adrenergic α2A receptors, are
thought to push the system into an optimal working memory
state. We developed a network model of working memory that
incorporated this inverted-U feature for dopamine (DA) and
noradrenaline (NA) neuromodulation (Avery et al., 2013). The
model was of a cortical column with spiking neurons, synaptic
conductances, and simulated D1, α2A, and α1 receptors. We
simulated the oculomotor delay response task, in which a subject
must remember the location of a brief visual cue during a
delay period, and then saccade to that location. We explored
how changing dopamine and noradrenaline concentrations
simultaneously impacts performance and found that working
memory is impaired in non-optimal zones, but for different
reasons. When NA levels were high and DA levels were
low, working memory impairments resulted from excess noise,
however, when NA was low and DA was high, impairments
resulted from an overall reduction in prefrontal activity. An
overall reduction in prefrontal activity is thought to happen
during high stress situations and is evolutionarily beneficial
in fight or flight situations when “instictual” behaviors need
to come online (Arnsten, 2009). If left unchecked, however,
stress can ultimately lead to depressive symptoms (Gold et al.,
2015). Non-optimal levels in NA may, therefore, play a role in
depression and should further be investigated along with the
more classic neuromodulators such as dopamine and serotonin.
This study highlights the important point that neuromodulatory
systems are interconnected and manipulating one system may
be useful experimentally, but might not be valid in a real-world
setting.

The model described above suggests that optimality in terms
of prefrontal processing exists in a higher dimensional space
and understanding how multiple neuromodulators interact in
different modes (i.e., tonic vs. phasic) could help to expand
upon our understanding of attention disorders and cognitive
symptoms found in other diseases. Given that frontal regions
shape sensory responses, these studies also suggest that different
“non-optimal” zones of neuromodulatory activity, which may be
associated with unique brain disorders, could manifest as unique
changes in sensory processing. In the future it will be interesting
to explore how sensory processing and working memory,

which are simultaneously shaped by multiple neuromodulatory
systems, interact in both healthy and diseased states.

CHOLINERGIC SYSTEM

The cholinergic system originates in the basal forebrain and
affects essentially every system in the brain including sensory,
prefrontal and limbic systems. Research on sleep-wake cycles
suggests that a main function of acetylcholine (ACh) plays a
major role in memory consolidation (Hasselmo, 1999; Hasselmo
and McGaughy, 2004). Hasselmo and colleagues suggested that
when ACh levels are low, recurrent connections are stronger
and memories are retrieved. But, when ACh levels are high
sensory inputs are enhanced, recurrent inputs are reduced, and
memory is encoded. Figure 8 shows a schematic of the brain
regions and neuromodulators thought to be involved in these
memory and sensory functions with the basal forebrain at its
center. In particular, it was shown that during slow wave sleep,
reduced ACh levels in the hippocampus lead to an increase in
recurrent activity relative to cortical inputs, facilitating memory
consolidation. While subjects were awake or in REM sleep,
however, ACh levels are elevated, leading to an enhancement
of cortical input to the hippocampus and stimulating memory
encoding. In the following sections, we will mostly discuss
conceptual and computational models focused on cholinergic
effects on cortical processing. For a recent review discussing
modeling cholinergic effects on hippocampus, see Newman et al.
(2012).

Attention is strongly modulated by acetylcholine through
its projections to sensory cortices (Sarter et al., 2001, 2005).
Interestingly, research suggests that the same underlying
principle seen in the hippocampus may also hold in sensory
cortices. In particular, it is suggested that cortical acetylcholine
enhances sensory input relative to recurrent inputs and feedback,
leading to an overall improvement in the signal to noise ratio.
Cholinergic inputs to visual cortex, for example, have been found
to enhance the gain of sensory inputs by stimulating nicotinic
receptors located presynaptically on thalamocortical inputs to
layer 4 (Disney et al., 2007). Muscarinic receptors have been
shown desynchronize population responses and reduce cortical
noise by activating somatostatin neurons, which primarily target
apical dendrites (Goard and Dan, 2009; Chen N. et al., 2015).
Interestingly, muscarinic receptor stimulation has also been
shown to enhance attentional signals in the macaque (Herrero
et al., 2008), suggesting that the general role of “increasing
sensory drive” in the cortex may need to be adapted.

Cholinergic projections to the prefrontal and parietal cortices
also seem to play an important role in attention. Cholinergic
inputs to these areas play an important role in cue detection
(Parikh and Sarter, 2008; Howe et al., 2010) especially when
increased attentional effort is required (Bucci et al., 1998;
Dalley et al., 2001). Interestingly, prefrontal projections to
the basal forebrain can regulate acetylcholine levels in the
parietal cortex (Nelson et al., 2005) and may therefore affect
the relative salience of targets and distractors (Broussard et al.,
2009). A recent study has also implicated decreased nicotinic
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FIGURE 8 | The cholinergic system and its functions. The cholinergic system originates in the basal forebrain and sends projections to many cortical and subcortical

regions. As a result, it has been implicated in a variety of functions including memory, attention, and uncertainty computations. Activity of the basal forebrain is thought

to be regulated by prefrontal cortices, as well as other neuromodulatory brain regions.

stimulation to a reduction in frontal lobe activity, termed
hypofrontality (Koukouli et al., 2017), which is often associated
with the pathophysiology of schizophrenia. This study showed
that introducing a single nucleotide polymorphism (SNP) into
nicotinic receptors leads to hypofrontality in mice. Moreover,
they showed that hypofrontality is alleviated by nicotine
administration. This is one of the first studies that establishes a
mechanistic link between schizophrenia and nicotine addiction
and suggests an important role for the cholinergic system in the
pathophysiology and treatment of schizophrenia.

In contrast to cholinergic projections from the substantia
innominata to the prefrontal and parietal cortices, which increase
attention to salient objects, cholinergic projections from the
medial septum to the cingulate and hippocampus are important
for decreasing attention to irrelevant stimuli (Chiba et al.,
1995; Baxter and Chiba, 1999). In the Baxter and Chiba study,
rats with lesioned cholinergic projections to the hippocampus
disrupted the animal’s ability to decrement attention away from
a conditioned stimulus. This pathway for decrementing attention
is far less studied than the cholinergic pathway to the cortex and
the mechanism behind this is not well understood. It is possible
that the decrementing of attention depends on the hippocampus’
ability to encode novel information (Hasselmo and Stern, 2006).
If attention to a conditioned stimulus should be decremented
due to lack of reward, it requires the hippocampus to encode
the fact that a reward wasn’t present. It is interesting to note that
working memory requires interaction between prefrontal cortex
and hippocampus, perhaps especially of novel information,
suggesting that the incremental and decremental pathways work
together to orient behavior in order to learn the value of
information in the environment. The importance of ignoring
irrelevant information and focusing attention on relevant
information is observed in learning disorders such as attention
deficit hyperactivity disorder, mild cognitive impairment that
lead to dementia, and schizophrenia (for review, see Lubow and
Weiner, 2010).

CHOLINERGIC AND NORADRENERGIC
COMPUTATIONS OF UNCERTAINTY

The ability to enhance sensory information, decrease recurrent
activity, and regulate learning and memory suggests that
acetylcholine may have a unique role in uncertainty-mediated
inference computations in the brain. A Bayesian statistical theory
developed by Yu and Dayan (2002, 2005), indeed, proposes
that acetylcholine and noradrenaline levels encode expected
and unexpected uncertainty, respectively. These systems, in
turn, modulate perceptual inference by balancing sensory and
prior information and influencing learning. In a Bayesian
statistical framework, the posterior distribution (i.e., perception)
is determined by likelihood and prior distributions, which can be
thought of, in the context of the Yu and Dayan model, as sensory
inputs and top-down expectations, respectively:
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Where p(h|d) is the posterior distribution of hypothesis given the
data, p(d|h) is the likelihood function (sensory inputs), p(h) is
the prior, and Z is a normalizing factor. Uncertainty is critical
in this model as it determines the relative weight we should
assign to priors vs. sensory inputs when making inferences.
When prior uncertainty is high, optimal inference entails that
sensory inputs should be preferentially weighted and learning
should be enhanced so that priors may be updated (also, see
discussion in Noradrenergic System section). The same principle
also holds when weighting information from different modalities,
such as visual and haptic information (Körding and Wolpert,
2006).

The posterior distribution is traditionally solved through
exact inference or naïve inference, however, each has its own
disadvantages computationally (Yu and Dayan, 2002, 2005).
Exact inference requires representing and computing over
all possible contexts, making it unlikely to be implemented
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in neuronal circuits given our current understanding how
information is represented in the brain, which is thought to be
distributed and inexact (Loftus, 1996; Wixted et al., 2014). Naïve
inference does not store prior information over time, making it
cheaper computationally than exact inference. Naïve inference,
however, leads to poor performance when prior uncertainty is
low. The Yu and Dayan model takes a more balanced approach
by computing a single state and attaching an uncertainty estimate
to this state, which they attribute to the cholinergic signal in
the brain. This overcomes the computational disadvantages of
the exact inference model and outperforms the naïve model by
allowing for use of prior information when uncertainty is low.

The Yu and Dayan model also hypothesizes that phasic
bursts of LC activity encode unexpected uncertainty, which
can be thought of as a large change in the environment
that evokes a “surprise” response. This is consistent with the
network-reset theory discussed above in the section on the
noradrenergic system. Unexpected uncertainty acts to inform
the model that a significant change has happened and priors
need to be updated. Inabiltiy to recognize these changes, which
can be demonstrated with noradrenergic antagonists, leads to
impairments in behavioral flexibility (Caetano et al., 2013).
This model assesses reliability in a broader context than the
cholinergic encoding of expected uncertainty, which assigns
reliability values to individual cues.

In order to understand how Bayesian computations of
expected and unexpected uncertainty are realized in the brain,
we developed a neural network model (Avery et al., 2012)
that incorporated cholinergic and noradrenergic modulation
(Figure 9). In particular, we were interested in identifying a
mechanism that supports the generation of the noradrenergic
surprise response from afferent inputs to the LC and expected
uncertainty response through afferent inputs to the BF.
Moreover, we hoped to gain insight into how noradrenaline and
acetylcholine influence downstream targets to perform Bayesian
computations (Avery et al., 2012).

We found that the response of locus coeruleus neurons to
novel stimuli and BF neurons to expected uncertainty could be
realized in the brain through short-term synaptic depression
(Figures 9B,C, blue connections). Short-term plasticity was
incorporated into prefrontal projections to the LC and BF. The
LC neurons in turn enhanced feedforward input and updated
priors by modulating the learning rate of plastic afferent and
efferent prefrontal projections. LC neurons also increased the
gain of BF neurons as has been shown experimentally (Zaborszky
and Duque, 2003). BF neurons, on the other hand, balanced the
weight of sensory and prefrontal inputs on decision neurons
such that high BF responses favored sensory information.
This computational model is unique from many other models
of neuromodulation in that it attempts to model both the
downstream effects of neuromodulatory input as well as the
afferent projections that shape the responses of neurons within
neuromodulatory brain regions.

The Bayesian model discussed above suggests that
acetylholine computes expected uncertainty in the brain
and therefore plays a central role in balancing sensory and
prior information. Although we know a great deal about the

effects of acetylcholine at the cellular and synaptic levels, this
balance of information is likely realized in cortical circuits
composed of many neurons of different types in multple brain
regions. Deco and Thiele offer insight into this by developing a
spiking neural network model that proposes several important
mechanisms that mediate the muscarinic enhancement of
top-down attention (Deco and Thiele, 2011). Their model
incorporated key cellular and synaptic changes resulting from
cholinergic modulation including reduction in firing rate
adaptation, enhanced thalamocortical input, reduction in lateral
connectivity strength, and an increase in inhibitory drive. They
show that muscarinic enhancement of attention is mediated
by suppression of intracortical connections and an increase
in inhibitory drive. Again, this highlights the importance of
acetylcholine in suppressing a very specific set of connections
(intracortical) and potentially enhancing a broader class of
behaviorally relevant inputs, which may include emotional,
cognitive or memory.

More recently, we developed a model (Avery et al., 2014)
that took a slightly different approach from Deco and Thiele
and suggested that local and global activation of the cholinergic
system might account for attentional and sensory enhancement,
respectively. In this model, stimulation of the basal forebrain
has a global effect on the brain and enhances sensory input
by disinhibiting the sensory thalamus via inhibitory projections
from the basal forebrain to the thalamic reticular nucleus.
The model dissociates this enhancement of sensory input
from the cholinergic enhancement of top-down input, which
suggests that sensory enhancement is mediated by a local
release of acetylcholine and activation of muscarinic receptors on
inhibitory neurons in the visual cortex. Similar to the Deco and
Thiele model, this model stresses the importance of muscarinic
receptors on inhibitory neurons. The model demonstrates that
activation of muscarinic receptors is primarily involved in
reducing noise correlations between neurons, which have been
shown to influence information processing capabilities in the
cortex. Whether there is local acetylcholine release with attention
is still not known. However, (Chen N. et al., 2015) has recently
shown the importance of cholinergic activation of somatostatin
inhibitory neurons for improving information processing.

The models discussed above aim to understand how sensory
and prior knowledge are integrated in the brain. These
models, however, do not incorporate learning, which is a
key component of cholinergic function and Bayesian models.
As discussed earlier, learning to attend toward an object
of interest (incrementing attention) and attend away from
another stimulus (decrementing attention) is thought to be
realized through cholinergic projections to the neocortex and
hippocampus/cingulate, respectively. In a neural network model,
Oros and colleagues tested the different contributions made by
the ACh projections from the substantia innominata/nucleus
basalis region (SI/nBM) to the neocortex and the medial
septum/vertical limb of the diagonal band (MS/VDB) in
incrementing and decrementing attention. The neural simulation
was tested in a range of behavioral paradigms that require both
attending to a salient stimuli and ignoring an irrelevant stimuli
(Oros et al., 2014). The model exhibited behavioral effects such
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FIGURE 9 | Neural network model incorporating noradrenergic and cholinergic systems that adapt to uncertainty. (A) The visual input group drives activity in the VC

(visual cortex). VC and PFC (prefrontal cortex) provide input to the PPC (posterior parietal cortex). The noradrenergic system, LC (locus coeruleus), enhances the

depression of weights (“forgetting”) between VC and PFC, and PFC and PPC [indicated by NA(−)]. The noradrenergic system increases the gain in the BF (basal

forebrain) and the input to the PPC from VC [shown by NA(+)] and suppresses input to the PPC from the PFC [shown by the NA(−)]. The cholinergic system, BF,

enhances input to VC and PPC [indicated by the ACh(+)] and suppresses recurrent activity in the PFC and input to the PPC from the PFC [indicated by the ACh(−)].

(B) In Experiment 1, the uncertainty level was constant and a surprising stimulus was occasionally presented. NA levels rapidly increased in response to the

unexpected stimulus (green), whereas ACh levels rose more gradually. (C) In Experiment 2, surprise was kept constant, but expected uncertainty gradually increased.

The figure shows that ACh levels increase as expected uncertainty increases (red). Reproduced from Avery et al. (2012) with permission.

as associative learning, latent inhibition, and persistent behavior.
The model suggests that the neuronal projection from the
MS/VDB to the hippocampus and cingulate is important for: (1)
Decreasing attention to a cue that previously predicted a reward.
(2) Preventing perseverative behavior when reward contingencies
change (e.g., in extinction or reversal learning tasks). (3) Showing
latent inhibition to previously uninteresting cues. Lesioning the
MS/VDB disrupted latent inhibition, and drastically increased
perseverative behavior. Taken together, the model demonstrated
that the ACh decremental pathway originating in the MS/VDB is
necessary for appropriate learning and attention under dynamic
circumstances and suggests a canonical neural architecture for
attention that includes both an incremental and a decremental
pathway.

CONCLUSIONS

The present article reviewed experimental evidence, as well as
computational and theoretical models of neuromodulation. It is

difficult to pinpoint a specific function for each neuromodulator.
It has been suggested that dopamine is related to positive
value, serotonin to risk aversion, noradrenaline to vigilance, and
acetylcholine to attentional effort (Krichmar, 2008). Another
theory posits that dopamine is related to reward prediction,
while serotonin is related to temporal discounting, and that
noradrenaline regulates the exploration/exploitation tradeoff,
while acetylcholine controls learning rate (Doya, 2002, 2008).
These functions can be mapped to elements of temporal
difference learning. However, in neither case are things this
simple. The same neuromodulator can have different effects on
their target brain areas. For example, dopamine has different
functional implications depending on whether it targets D1 or D2
receptors (Durstewitz and Seamans, 2008; Avery and Krichmar,
2015). Acetylcholine increments attention in sensory cortex,
but decrements attention in the cingulate and hippocampus
(Chiba et al., 1995; Baxter and Chiba, 1999; Oros et al., 2014).
Interestingly, all neuromodulators are involved to some degree
in attention and novelty detection. This suggests that no matter
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what the specific function, neuromodulators in all cases signal
important events for the organism and shape behavior.

In this review, we highlight studies that focus on the
interactions within and between neuromodulatory systems. Still,
most of the experiments, computational models and theoretical
models described here focused on one or two neuromodulators.
There are strong interactions between all of these systems. An
exploratory survey of cholinergic, dopaminergic, noradrenergic,
and serotonergic receptor expression using the Allen Mouse
Brain Atlas showed that the substantia innominata of the
basal forebrain, which is a source of cholinergic innervation,
and the VTA, which is a source of dopaminergic innervation,
displayed high receptor expression of all four neuromodulators
(Zaldivar and Krichmar, 2013). Since the nuclei of these
neuromodulatory systems are thought to be the source of
specific neurotransmitters, the projections from these nuclei
to target regions may be inferred by receptor expression and
suggest that neuromodulatory systems are highly interactive.
It should be noted that many of these nuclei, in which
neuromodulatory neurons originate, also have GABA-ergic and
glutamatergic neurons (Zaborszky, 2002; Barker et al., 2016).
Moreover, there is evidence that multiple neurotransmitters and
neuromodulators are co-released at the axon terminals of these
neurons (Trudeau, 2004; Sarter et al., 2005; Zhou et al., 2005).
We have a limited understanding of how these interactions
affect the functionality of the nervous system. Therefore, more
computational, theoretical and disease models that focus on these
interactions are needed. Theoretical models are important and
can help us reduce and simplify these complex interactions in
terms of a single overarching computation, such as computing
uncertainty.

Computational models of neuromodulation and its effects can
contribute to our understanding of a number of neurological
diseases and disorders. Dopamine’s involvement in schizophrenia
has been modeled many times (Braver and Cohen, 1999; Loh
et al., 2007; Durstewitz and Seamans, 2008; Rolls et al., 2008;
Arnsten et al., 2012; Avery et al., 2012), as well as Parkinson’s

disease (Moustafa and Gluck, 2011; Moustafa et al., 2013).
Serotonin is thought to be involved in anxiety disorders (Millan,
2003; Tops et al., 2009; Jasinska et al., 2012) and depression
(Deakin, 2003; Weisstaub et al., 2006; Gold et al., 2015). Models
of anhedonia, anxiety, and withdrawal can provide mechanistic
underpinnings for these disorders (Wong-Lin et al., 2012; Huys
et al., 2013; Krichmar, 2013). The cholinergic and noradrenergic
systems play a significant role in allocating attention, and models
of these systems may have implications on how imbalances
in these neuromodulators can contribute to ADHD (Yu and
Dayan, 2005; Cohen et al., 2007; Deco and Thiele, 2011; Avery
et al., 2013, 2014). Many of the current drug treatments for
these disorders target neuromodulators. Thus, understanding
how these drugs can disrupt the fine balance in neural circuits
through computational modeling is of the utmost importance.

Detailed computational models will be important for
understanding the complexity of neuromodulation including
how neuromodulatory responses are generated (e.g., short-term
plasticity Avery et al., 2012), the result of influencing multiple
targets simultaneously, how neuromodulatory systems interact
with each other directly, and how these systems interact in target
sites. We hope that computational and theoretical models may
work hand in hand with experimental research to drive discovery
of the underlying mechanisms a large set of multifaceted and
complex disorders.
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