76 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Mapping Spiking Neural Networks to
Neuromorphic Hardware

Adarsha Balaji™, Anup Das

, Senior Member, IEEE, Yuefeng Wu, Khanh Huynh, Francesco G. Dell’ Anna,

Giacomo Indiveri™, Jeffrey L. Krichmar, Senior Member, IEEE, Nikil D. Dutt, Fellow, IEEE,
Siebren Schaafsma, and Francky Catthoor, Fellow, IEEE

Abstract— Neuromorphic hardware implements biological
neurons and synapses to execute a spiking neural network
(SNN)-based machine learning. We present SpiNeMap, a design
methodology to map SNNs to crossbar-based neuromorphic
hardware, minimizing spike latency and energy consumption.
SpiNeMap operates in two steps: SpiNeCluster and SpiNePlacer.
SpiNeCluster is a heuristic-based clustering technique to par-
tition an SNN into clusters of synapses, where intracluster
local synapses are mapped within crossbars of the hardware
and intercluster global synapses are mapped to the shared
interconnect. SpiNeCluster minimizes the number of spikes on
global synapses, which reduces spike congestion and improves
application performance. SpiNePlacer then finds the best place-
ment of local and global synapses on the hardware using a
metaheuristic-based approach to minimize energy consumption
and spike latency. We evaluate SpiNeMap using synthetic and
realistic SNNs on a state-of-the-art neuromorphic hardware.
We show that SpiNeMap reduces average energy consumption by
45% and spike latency by 21%, compared to the best-performing
SNN mapping technique.

Index Terms— Interspike interval (ISI), neuromorphic comput-
ing, spiking neural network (SNN).

I. INTRODUCTION

EUROMORPHIC hardware, such as TrueNorth [1],

Loihi [2], and DYNAP-SE [3], can implement machine
learning tasks [4]-[6] using spiking neural networks
(SNNs) [7]-[9]. A typical neuromorphic hardware consists of
artificial neurons, which generates spikes, when a neuron’s
action potential exceeds a threshold, and crossbars, which
stores synaptic weights.

Manuscript received May 3, 2019; revised August 6, 2019; accepted
September 3, 2019. Date of publication November 26, 2019; date of current
version December 27, 2019. This work was supported by the National Science
Foundation under Award CCF-1937419 (RTML: Small: Design of System
Software to Facilitate Real-Time Neuromorphic Computing). (Corresponding
author: Anup Das.)

A. Balaji and A. Das are with the Department of Electrical and Com-
puter Engineering, Drexel University, Philadelphia, PA 19104 USA (e-mail:
anup.das @drexel.edu).

Y. Wu, K. Huynh, F. G. Dell’Anna, and S. Schaafsma are with Neuromor-
phic Division, Stichting IMEC Nederland, 5656 Eindhoven, The Netherlands.

G. Indiveri is with the Department of Neuroinformatics, University of
Zurich, 8006 Ziirich, Switzerland.

J. L. Krichmar is with the Department of Cognitive Sciences, University of
California at Irvine, Irvine, CA 92697 USA.

N. D. Dutt is with the Department of Computer Science, University of
California at Irvine, Irvine, CA 92697 USA.

F. Catthoor is with the Neuromorphic Division, imec, 3001 Leuven,
Belgium.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI1.2019.2951493

To reduce energy consumption, the size of a crossbar is
constrained, accommodating a limited number of synapses per
neuron. To build a large chip, multiple crossbars are integrated
together using a shared interconnect, such as Networks on
Chip (NoCs) [10]. A large SNN must, therefore, be partitioned
into synapses that are mapped inside crossbars (local synapses)
and those that are mapped on the shared interconnect (global
synapses) of the hardware. Unfortunately, a shared intercon-
nect introduces latency, which distorts interspike intervals
(ISIs) [11]. ISI distortion affects application performance, such
as latency and accuracy (see Section II).

Recent works, such as [12]-[17], uses a single large crossbar
to map SNNs. In Section V, we demonstrate the limitations of
these techniques when used to map SNNs to a multicrossbar
neuromorphic hardware, such as the DYNAP-SE. Techniques
that explicitly address mapping to multicrossbar hardware are
PACMAN [18], NEUTRAMS [19], and PSOPART [20].

Compared to PACMAN and NEUTRAMS that minimize
crossbar usage, PSOPART minimizes the number of spikes
on the shared interconnect. This optimization strategy reduces
spike congestion and ISI distortion, which improves applica-
tion performance. Unfortunately, PSOPART does not address
the placement of local and global synapses to the physical
resources of neuromorphic hardware. PSOPART is, therefore,
limited to crossbars with shared bus interconnect.

A shared bus is a fundamental latency and energy bottle-
neck for large neuromorphic hardware, those that can map
over a million synapses [21]. In recent years, many scalable
interconnects are proposed. Examples include multistage NoC
for TrueNorth [1] and segmented bus for DYNAP-SE [3].
For these emerging interconnects, PSOPART presents two
key limitations. First, the synapse partitioning approach of
PSOPART does not scale to large SNNs. Second, the synapse
placement problem is not addressed in PSOPART, which
contributes significantly to latency and energy consumption.

We present SpiNeMap, a comprehensive design methodol-
ogy to map SNNs to multicrossbar neuromorphic hardware,
minimizing energy consumption and spike latency on the
shared interconnect and improving application performance.

Contributions: Following are our novel contributions.

1) SpiNeCluster: We propose a heuristic-based approach to
partition SNNs into local and global synapses, reducing
the number of spikes on the shared interconnect.

2) SpiNePlacer: We propose a metaheuristic-based appro-
ach to place local and global synapses on physical

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3535-8788
https://orcid.org/0000-0002-5673-2636
https://orcid.org/0000-0002-7109-1689

BALAIJI et al.: MAPPING SNNs TO NEUROMORPHIC HARDWARE

TABLE I
SpiNeMap VERSUS STATE-OF-THE-ART APPROACHES

Techniques [[Partitioning Placement Objective
[12]-[17] X X Maximize single crossbar utilization
NEUTRAMS [19] VA X Minimize number of crossbars
PSOPART [20] v X Minimize spikes on global synapses
SpiNeMap v VA Minimize energy consumption and latency of
neuromorphic hardware

v Optimized x Not optimized

Pre-synaptic ()——| ””” P :I
neurons ‘

Post-synaptic :>

neuron

Pre-synaptic
neurons

T~

crossbar

/ i Post-synaptic

peripheral circuit neuron

Fig. 1. Mapping an SNN to a crossbar.

resources of neuromorphic hardware, reducing energy
consumption and spike latency.

3) We evaluate SpiNeMap on the DYNAP-SE neuromor-
phic hardware using synthetic and realistic SNNs.

4) We evaluate different interconnect topologies and
spike routing algorithms for emerging neuromorphic
hardware.

Table I compares our contributions against state-of-the-art
techniques. We evaluate SpiNeMap with SNN-based applica-
tions on the DYNAP-SE hardware. We show that SpiNeMap
reduces energy consumption by 45% and spike latency by 21%
compared to the best-performing state-of-the-art techniques.

This article is organized as follows. We provide back-
ground in Section II. We describe the design methodology of
SpiNeMap in Section III. We present our evaluation setup in
Section IV and results in Section V. We describe related works
in Section VI. We conclude this article in Section VII with an
outlook on the design of future neuromorphic platforms.

II. BACKGROUND

Fig. 1 illustrates the mapping of an SNN to a crossbar.
Spikes from a presynaptic neuron inject current into the cross-
bar, which is the product of spike voltage applied (i.e., input
activation x;) along the row with the conductance of the
synaptic element at the cross point (i.e., synaptic weight w;;).
Current summations along columns are performed in paral-
lel and implement the sums > j wijxi, needed for forward
propagation of neuron excitation x;. We focus on supervised
machine learning tasks, where an SNN is first trained with
representative examples and then deployed for inference with
in-field data. Performance is measured using accuracy, which
is assessed using ISIs [22]-[26].

To define ISI, we consider an SNN with N neurons and
S synapses, which are excited with an input over some
finite interval of time [0, T]. Neural activities in this time
interval generate K spikes, which we organize based on their
generation time and the source neuron as

{0} (i1, ... tkz} SAg Y @

77

where /' is the time of the ith spike generated by the nth
neuron and K = le: 1 ki. The ISI of this spike train is [22]
I' =1 —1' . (2)
An application-level simulator, such as CARLsim [27],
allows extracting the precise spike times from neurons and
calculates the ISI using (2). However, such simulators do
not incorporate hardware latencies. When an SNN is mapped
to a neuromorphic hardware, ISI will be affected by: 1) the
fixed latency within a crossbar to propagate current through
synaptic elements and 2) the variable latency of time mul-
tiplexing on the shared interconnect. To incorporate these
hardware latencies, we extract spike times at the synapse level
rather than at the neuron level. This is because a synapse
can encounter different latencies depending on whether it is
mapped inside a crossbar (i.e., local synapse) or on the shared
interconnect (i.e., global synapse). We represent the spike
times on synapses as

Tks}

3)

{Tf,rzl,...,rkll},{rlz,rzz,.. Tkz} {rl,rz,..

where r;. is the jth spike on sth synapse and spike timings in
the set {rj. } are obtained from spike timings in the set {¢]'}.
The ISI of this spike train is
S __ .8 _ S
Ij =T —T7;_y. 4)
We use the notation 55. to represent the latency of the jth spike
on the sth synapse. The new ISI due to these latencies is

Lilhew =7} +0; — 1] — 6} _4. (5)

The change in ISI (called ISI distortion) is

s I A
I'_5j

j ‘distortion - Ij ’new J

5. (6)

For local synapses, which are mapped within crossbars, all
spikes have the same latency, i.e., (55. = 5‘;_1. Thus, the ISI
distortion is zero. For global synapses, different spikes of the
same synapse can have different latencies due to the varying
congestion and routing paths on the shared interconnect. These
are the synapses that contribute to ISI distortion, that is

Sy X
I j |dlstort10n

0, if s is mapped inside a crossbar
N 5; — 5;71 , if s is mapped on the shared interconnect.
(N
ISI distortion leads to unacceptable accuracy loss

(see Section V). By reducing the number of spikes on global
synapses, spike congestion can be lowered, which would
reduce ISI distortion and improve application performance.
This is precisely the intuition behind the optimization strategy
in PSOPART [20] and also this article. The difference is
that this article also addresses the placement problem, which
further improves energy consumption and spike latency.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

SNN-based
application . Minimum
4 Step 2: Assign neurons| number of Step 3: Depl_oy)
Step L: Train and synapses to crossbars SNN-based application
SNN - crossbars of mapped to
Trained neuromorphic neuromorphic
Trai SNN hardware hardware
raining - validation inimi -
data data (minimize #crossbars) In-field data
(a)
SNN-based
application
1SI of
l validation global Step 3: Deplpy)
Stgp 1: S_NN data Step 2 SNN synapses SNN-based application
Simulation \z—rme = paitioning (PSO) mapped to
(CARLsim) _|TEX 9 local neuromorphic
1 T (minimize #global spikes) Synapses hardware
raining - validation In-field data
data data
(b)
SNN-based
application 1S1 of
I neuron and
vallljdauon global synapse Step 4: Deploy
Step 1: SNN ata Step 2: SNN ynapses| Step 3: SNN placement | SNN-based application
Simulation T g Partitioning Pl mapped to
(CARLsim) rsa’\\‘n’\e‘ (SpiNeCluster) local | (gpinePlacer) neuromorphic
Training validation minimize #lobal spikes) " (miimize energy and fatency) |r:]-:r:\;v Z;eta

data data

(©

Fig. 2. High-level overview of our SpiNeMap mechanism and its difference
with state of the art. (a) State-of-the-art approaches, e.g., NEUTRAMS
[19]. (b) Our previous approach PSOPART [20]. (c) Our proposed design
methodology SpiNeMap.

III. SPINEMAP: MAPPING SNNS TO
NEUROMORPHIC HARDWARE

A. High-Level Overview and Difference With State of the Art

Fig. 2(a) illustrates the design methodology of NEU-
TRAMS [19] and PACMAN [18], consisting of three steps:
step 1) training an SNN model; step 2) mapping synapses to
the hardware to minimize the number of crossbars; and step 3)
deploying the SNN for inference.

Fig. 2(b) illustrates PSOPART [20], which minimizes the
number of spikes on the shared interconnect in step 2 using
an instance of the particle swarm optimization (PSO) [28].

Fig. 2(c) illustrates the proposed SpiNeMap methodology.
SpiNeMap extracts the precise times of spikes by simulating
an SNN in CARLsim. This spike information (called spike
trace) is first used by SpiNeCluster to partition the SNN into
local and global synapses, minimizing the number of spikes
on the shared interconnect. The partitioned SNN and the spike
trace are then used in SpiNePlacer to minimize the latency
and energy consumption. Overall, the SNN partitioning and
placement steps jointly improve the application performance,
energy consumption, and spike latency.

B. Detailed Design of SNN Partitioning via SpiNeCluster

Fig. 3 illustrates an SNN partitioned into three clusters:
A, B, and C. The number of spikes communicated between a
pair of neurons is indicated on its synapse. We also indicate the
local synapses in black and the global ones in blue in Fig. 3.
The number of spikes on global synapses is 8.

We introduce the following notations for SpiNeCluster. Let
G(NV,S8) be an SNN with a set N of neurons and a set
S of synapses. A synapse s;; connects neuron n; with n;.

e
C
g

2 synapses
synapses g

Fig. 3. SNN partitioned into local and global synapses.

Algorithm 1 SNN Clustering Algorithm
1 foreach C;,C; € C do

/* iterate over all cluster pairs */
/* begin 2-part procedure */
2 gs = total spikes between C; and C};
3 while True do
4 foreach n; € C; and n; € C; do
5 if n; and nj are not previously selected then
6 Move n; to C; and calculate gs1;
7 Move n; to C; and calculate gsa;
8 Swap n; and n; and calculate gss;
9 Select the option which lowers gs;
10 Return new partitions C;, Cj;
1 end
12 end
13 gs’ = total spikes between C and C;;
14 if gs’ < gs then
15 gs = gs’ and break;
16 end
17 end
/* end 2-part procedure */
18 _end

We partition this SNN into & clusters. Let H(C, &) be the
partitioned SNN with a set C of clusters and a set £ of
global synapses. Transforming G(N,S) — H(C,€E) is a
classical graph partitioning problem [29] and has been applied
in many contexts, including task mapping on multiprocessor
systems [30]. Graph partitioning is an NP-complete prob-
lem [31], [32]; heuristics are typically used to find solutions.
PSOPART [20] uses an instance of PSO [33] to solve this
problem. However, the search space soon becomes intractable
as the size of the SNN increases. To address this limitation,
we propose an alternative greedy approach, roughly based on
the Kernighan—Lin graph partitioning algorithm [29], which
we show to be scalable to large SNNs.

We set k = [(JN])/(n.)], where n. is the average number
of neurons that can be accommodated within a crossbar.
Next, we evenly (and arbitrarily) distribute neurons to these k
clusters. Next, we iteratively swap neurons between clusters
to minimize the number of spikes on global synapses.

We formalize these steps in Algorithm 1. The algorithm
applies a two-part procedure (lines 2—17) to every cluster
pair (with a total of (15) iterations). In the two-part procedure,
we first calculate the total number of the intercluster spike (gs)
with the two clusters (line 2). Next, we select a pair of neurons
n; and n; from the two selected clusters C; and C;, respec-
tively, such that neither n; nor n; is selected in the previous
iterations (lines 4 and 5). We then perform three operations:
1) move n; € C; to cluster C; (if C; can accommodate more
neurons) (line 6); 2) move n; € C; to cluster C; (if C; can
accommodate more neurons) (line 7); and 3) swap n; and n;
(line 8). We calculate the number of intercluster spike for each

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

BALAIJI et al.: MAPPING SNNs TO NEUROMORPHIC HARDWARE

SIF@% B [Ble B B
[s} (s} (s] [s} s} (s]

; . Rl PALGERL AL [
"E" s} s} s] [s} B, (s]
] EEEE | | ECSE| 9@ e

[s—s] s s p—s—s]

Partitioned SNN

Placement Option 1 Placement Option 2

Fig. 4. Illustrating the impact of different placements of clusters of a
partitioned SNN on a neuromorphic hardware.
SoNePI SNN-based
iNePlacer icati
SNN-based . SpiNeCluster P application
e CARLsim N . N — mapped to
application (Algorithm 1) Noxim++ neuromorphic
hardware
pynap-se — 4

Fig. 5. Our design methodology: SpiNeMap.

of these operations and select the option that generates the
maximum reduction of an intercluster spike compared to gs
(line 9). We return the new clusters (line 10). We repeat the
procedure (lines 4—13), while the number of intercluster spike
continues to be reduced (lines 14-16).

1) Time Complexity: Lines 2-17 are executed (%) times,
with lines 4-16 executed at every iteration. Since a cluster can
accommodate n. neurons, the time complexity of Algorithm 1
is O((8) x ne xne) = 0> x n2) = O(NP).

C. Detailed Design of SNN Placement via SpiNePlacer

Fig. 4 illustrates two alternate placements of a partitioned
SNN (from SpiNeCluster) to the hardware. We show nine
crossbars arranged in a 3 x 3 mesh topology. Different place-
ments of clusters lead to different utilizations of intercon-
nect segments, which impacts both energy consumption and
latency. Clearly, cluster placement problem can no longer be
ignored for large neuromorphic hardware (a common limita-
tion of NEUTRAMS [19], PACMAN [18], Eyeriss [34], and
PSOPART [20]).

To perform design-space explorations for cluster placement,
we extend the Noxim [35] simulator to support: 1) sim-
ulation of spike traces from CARLsim; 2) simulation of
current and emerging interconnect topologies of neuromorphic
hardware; 3) simulation of different routing algorithms; and
4) technology-specific energy and latency of interconnect
wires and switches. We call our new framework Noxim++.

Fig. 5 illustrates our design methodology SpiNeMap.
Noxim++- is integrated in the SpiNePlacer and configured to
model the DYNAP-SE neuromorphic hardware [3].

To formalize the optimization problem of SpiNePlacer,
we consider the mapping of a clustered SNN H(C, &) to
the neuromorphic hardware A(V,Z), where V is the set of
crossbars in the hardware and 7 is the set of connections of
these crossbars for a given interconnect topology.

Mapping M : H(C, £) — AV, T) is specified by a logical
matrix (m;;) € {0, l}'C‘XW', where m;; is defined as

1, if cluster ¢; € C is mapped to crossbar v; € V
mi; = . (8)
0, otherwise.

79

The mapping constraints are the following.
1) A cluster can be mapped to only one crossbar, that is

Zm,‘j =1 Vi)
J

2) A crossbar can accommodate at most one cluster,

that is
D miy =1 Vi
i

In our design methodology, Noxim+-+ is used to gen-
erate mapping that minimizes spike latency and energy
consumption on the interconnect. These are computed as
follows.

(10)

1) Average spike latency: This is the average delay experi-
enced by spikes on the interconnect, that is
Ny

L= [(hi — 1) %Ly + h % 5]/ Ns
i=1

(1)

where £; is the number of hops a spike traverses between
the source and destination, [/,, is the interconnect seg-
ment delay, and [is the delay of the hop.

2) Total energy consumption: This is the total energy
consumed by all spikes on the interconnect,
that is

Ny
E = [(hi = 1) ey +hi xe]

i=1

12)

where ¢, and e are the energy consumption on the

wires and hops, respectively.
To minimize the latency and energy consumption, we min-
imize the average number of hops that spikes communicate
before reaching their destination [36]. This is obtained using
Noxim++ for mapping M; as L£; = Noxim++(M;) =
Z;V;lh j/Ns. This is the fitness function of SpiNePlacer,
which finds the mapping with minimum average hop count,
that is

Lmin=La, where a =arg min{Noxim++(M;)|i € 1,2,---}.
(13)

We use an instance of PSO [28] to find the optimum
mapping. We instantiate 7, swarm particles. The positions
of these particles are solutions to the fitness functions, and
they represent cluster mappings, i.e., M’s in (13). Each
particle also has a velocity with which it moves in the
search space to find the optimum solution. During the move-
ment, a particle updates its position and velocity accord-
ing to its own experience (closeness to the optimum) and
also experience of its neighbors. We introduce the following
notations:

D = |C| x |V| = dimensions of the search space
-1 . . .
0 = {9 eRP }7; o = positions of particles in the swarm
-1 . . .
V={veRP? }72 o = velocity of particles in the swarm.

(14)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

> Start

Calculate Fitness
F(6r) <
Equation (15)

!

Initialize Polulation|
Equation (8)

F(et)<F(Ptbest)

Equation (16)

Retain Ppest Update Py

Retain Gpest Update Gpest

multiple Invocations

Equation (16)

Update Velocity (V)

Equation (15)

}

Update Position (0)

Equation (15)

Convergence
criteria
met?

End }«

Fig. 6. Flowchart of our PSO algorithm.

Position and velocity of swarm particles are updated, and
the fitness function is computed as

Ot+1)=0()+VE+1)
V(E+1) = V(@) + o1 - (Poest — O()) + 02 - (Grest — O(2))
F(0)) = L£; = Noxim++(Mj) (15)

where ¢ is the iteration number, ¢; and ¢, are constants,
and Ppest (and Gyeg) is the particles own (and neighbors)
experience. Finally, local and global bests are updated as

Pl = FO) if F) < F(PL)

Gpet = min Pl (16)
np—1

Due to the binary formulation of the mapping problem
[see (8)], we need to binarize the velocity and position of
(14), which we illustrate in the following:

e

6 — 0, 1fran.d() <V a7
1, otherwise .

In finding a new position of a PSO particle, we use the two
constraints: (9) and (10).

1) PSO Algorithm: Fig. 6 illustrates the PSO algorithm.
The algorithm first initializes positions of the PSO particles (8)
satisfying constraints (9) and (10). Next, the algorithm runs for
niso iterations. At each iteration, the PSO algorithm evaluates
the fitness function (F) and updates its position based on the
local and global best positions [see (15)], binarizing these
updates using (17). The time complexity of the PSO algorithm
is, therefore, O(niso X operations in each iteration), where
the operations in each iteration are proportional to the PSO

[time-multiplexing latency 431 67.8
| w151 distortion 188110 225 225
8x I drop in accuracy - -
6.2

(3
2 6x 1 55
©
g 4.9
s
£ 4xX
Q 3.2

2x 1.9

13 1.6
1.0 1.0.
1.92M 2.13M 2.27M 2.32M 2.34M
Total number of spikes on the shared interconnect

Fig. 7. Latency, ISI distortion, and accuracy as a function of the number

of spikes on the shared interconnect for the handwritten digit-recognition
example.

dimension D = |C| x |V| and the number of particles n,. The
overall time complexity is O(niso x n, x [C| x [V]).

D. Justification of SpiNeMap’s Design Choices

In this section, we motivate SpiNeMap’s design choices.

1) Minimize Spike Count at the Partitioning Stage:
SpiNeMap minimizes the number of spikes at the partitioning
stage. To motivate this optimization objective, Fig. 7 plots the
latency, ISI distortion, and drop in accuracy of the handwritten
digit-recognition application for different mapping strategies
generating a different number of spikes on the shared inter-
connect. The baseline hardware is the DYNAP-SE, with four
crossbars organized in a 2 x 2 mesh with the XY routing
algorithm. Each crossbar can accommodate 256 neurons.

We observe that as the number of spikes on the shared
interconnect increases, the latency increases, increasing the ISI
distortion. This lowers the application accuracy. We observe
similar behavior for other applications as well.

2) Integration of Noxim++ Within PSO: The average spike
hop count depends on: 1) the cluster mapping M and 2) the
routing algorithm that dynamically routes spikes on the inter-
connect to avoid the congestion of interconnect links. Our
PSO incorporates cluster mapping in the fitness function.
Due to the dynamic nature of spike routing for congestion
avoidance, we need to simulate the cycle-accurate behavior of
interconnect for every mapping with the spike trace generated
from CARLsim. This allows us to accurately compute the
hop distance that each spike traverses before reaching its
destination. This motivates our strategy to integrate Noxim++
within PSO to minimize the average hop count.

3) Using PSO Only for SpiNePlacer: PSOPART uses PSO
for SNN partitioning (equivalent of SpiNeCluster). In this
article, we use PSO only for SpiNePlacer and a greedy
approach for SpiNeCluster. The rationale behind this is as
follows. Had PSO been used for SpiNeCluster, the total
number of dimensions for each particle in the PSO would be
D = |N'|x|C|. The total number of dimensions of each particle
in the PSO of SpiNePlacer is D = |C| x |V|. In Table II,
we compare these dimensions for different SNN sizes, with a
fixed neuromorphic hardware (16 256-neuron crossbars).

As we can clearly see from Table II, the PSO problem of
partitioning soon becomes intractable for a modest-sized SNN

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

BALAIJI et al.: MAPPING SNNs TO NEUROMORPHIC HARDWARE

TABLE II

DIMENSIONS OF PSO TO SOLVE PARTITIONING AND PLACEMENT
PROBLEMS FOR DIFFERENT SNN S1ZES ON A FIXED
NEUROMORPHIC HARDWARE WITH 16 CROSSBARS

AND 256 NEURONS EACH

of PSO dimensions (D) for

SNN neurons || SNN partitioning | SNN placement
1,000 16,000 64
2,000 32,000 128
3,000 48,000 192
4,000 64,000 256

even if we restrict to 1000 particles (each with dimensions D)
in the swarm. To keep the solution time reasonable, we,
therefore, use PSO only for the placement problem (namely,
SpiNePlacer) and greedy approach instead of the partitioning
problem (namely, SpiNeCluster).

1V. EVALUATION METHODOLOGY

We build SpiNeMap with the following system components.

1) CARLsim [27]: A GPU-accelerated simulator used to
train and test SNN-based applications. CARLsim reports
spike times for every synapse in the SNN.

2) Noxim+-+ [35]: A trace-driven and cycle-accurate
interconnect simulator for multiprocessor systems.
We extend it: 1) to incorporate crossbar-based archi-
tectures; 2) to communicate spikes packets; and 3) to
generate key performance statistics, such as energy,
latency, and ISI distortion. Noxim++ uses spike traces
from CARLsim to compute these statistics.

3) DYNAP-SE [3]: We use Noxim++ to model
DYNAP-SE, with 256-neuron crossbars interconnected
using the multistage NoCs. Technology parameters are
obtained from [37] for 45-nm technology node [38].

A. Simulation Environment

We conduct all experiments on a system with eight CPUs,
32-GB RAM, and NVIDIA Tesla GPU, running Ubuntu 16.04.

B. Evaluated Applications

Table IIT reports seven synthetic and eight realistic SNN
applications used for evaluation. The synthetic applications
are indicated with the letter “S” followed by a number
(e.g., S_1000), where the number represents the total num-
ber of neurons in the application. Column 3 reports the number
of synapses in these applications. Column 4 reports the SNN
topology.

The realistic applications are image smoothing (ImgSm-
ooth) [27] on 64 x 64 images, edge detection (EdgeDet) [27]
on 64 x 64 images using the difference-of-Gaussian,
multilayer perceptron (MLP)-based handwritten digit recog-
nition (MLP-MNIST) [9] on 28 x 28 images of handwrit-
ten digits, ECG-based heart-rate estimation (HeartEstm) [39],
ECG-based heart-beat classification (HeartClass) [40], CNN-
based digit classification (CNN-MNIST) [41], [42], CNN-
based digit classification with LeNet (LeNet-MNIST) [42], and

81

TABLE III
APPLICATIONS USED FOR EVALUATING SPINEMAP

Category Applications Synapses Topology Spikes
S_1000 240,000 FeedForward (400, 400, 100) 5,948,200
S_1500 300,000 FeedForward (500, 500, 500) 7,208,000
S_2000 640,000 FeedForward (800, 400, 800) 45,807,200
synthetic S_2500 1,440,000 FeedForward (900, 900, 700) 66,972,600
S_3000 2,000,000 FeedForward (1000, 1000, 1000) 155,123,000
S_3500 2,500,000 FeedForward (1000, 1000, 1500) 46,476,000
S_4000 3,750,000 FeedForward (1500, 1500, 1000) 149,580,500
ImgSmooth [27] 136,314 FeedForward (4096, 1024) 17,600
EdgeDet [27] 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780
MLP-MNIST [9] 79,400 FeedForward (784, 100, 10) 2,395,300
L. HeartEstm [39] 636,578 Recurrent 3,002,223
realistic) rClass [40] | 2.396.521 CNN! 1,036,485
CNN-MNIST [41] | 159,553 CNN? 97,585
LeNet-MNIST [41] | 1,029,286 CNN? 165,997
LeNet-CIFAR [41] | 2,136,560 CNN* 589,953

I Input(82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6

2 Input(24x24) - [Conv, Pool]*16 - FC*150 - FC*10

3 Input(32x32) - [Conv, Pool]#6 - [Conv, Pool]*16 - Conv*120 - FC*84 - FC*10
4 Input(32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10

CNN-based CIFAR image classification with LeNet (LeNet-
CIFAR) [42]. The last three applications are part of the
MLPerf benchmark suite [42] and developed for analog
computation model. We converted these applications into
spike-based model using the CNN-to-SNN conversion tool
N2D2 [43], [44].

C. Evaluated State-of-the-Art Techniques

We evaluate the following four approaches.

1) The baseline [19] minimizes the use of crossbars.

2) The SCO [15] balances crossbar occupancy.

3) The PSOPART minimizes the total number of spikes on
the shared interconnect.

4) The SpiNeMap uses: 1) SpiNeCluster to partition SNNs
into clusters and 2) SpiNePlacer to place these clusters to
crossbars of the hardware. SpiNeMap minimizes energy
consumption and latency on the shared interconnect.

D. Evaluated Metrics

We evaluate the following metrics.

1) Total number of spikes: This is the number of
spikes (Ng) on the shared interconnect post crossbar
placement.

2) Spike latency: This is computed using (11).

3) Energy consumption: This is computed using (12).

4) Average ISI distortion: This is computed using (7),
averaged over all spikes, that is

N
I = Z I; |distortion/Ns-

i=1

(18)

V. RESULTS AND DISCUSSION
A. Summary of Results
Table IV summarizes our results.

B. Energy Consumption on the Shared Interconnect

Fig. 8 reports the energy consumption of each of our
applications for each of our evaluated systems normalized to
the baseline. We make the following three observations.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

TABLE IV
SUMMARY OF RESULTS

Energy Spike ISI Application
SpiNeMap Consumption| Latency |Distortion| Accuracy
(Sec. V-B) |(Sec. V-C)|(Sec. V-D)| (Sec. V-E)
vs. Baseline [19] 45% 21% 36% 12%
vs. SCO [15] 40% 27% 39% 20%
vs. PSOPART [20] 20% 13% 23% 5%

== Baseline
=3 sco

[PSOPART
Il SpiNeMap

Energy consumption
normalized to the Baseline

Fig. 8.

== Baseline
£33 sco

[PSOPART
N SpiNeMap

Spike latency
normalized to the Baseline

$
~N

S
Y
7 o o

o/ 9

Fig. 9. Spike latency normalized to the baseline.

First, the average energy consumption of SCO is similar
to the baseline. Second, PSOPART has an average 31%
lower energy consumption than the baseline. This reduction
is because PSOPART minimizes the total number of global
spikes, which reduces the energy consumption on the shared
interconnect [see (12)]. Third, SpiNeMap has the lowest
energy consumption of all our evaluated systems (on average,
45% lower than baseline, 40% lower than SCO, and 20%
lower than PSOPART). These improvements are because
of SpiNeMap’s optimization policies: 1) SpiNeCluster that
reduces the total number of spikes on the shared interconnect
and 2) SpiNePlacer that places these clusters on crossbars to
minimize energy consumption.

C. Spike Latency on the Shared Interconnect

Fig. 9 reports the spike latency of each of our applications
for each of our evaluated systems normalized to the baseline.
We make the following three observations.

First, the average spike latency of SCO is 14% higher than
the baseline. Second, PSOPART has 9% lower average spike
latency than baseline. This improvement is because PSOPART
reduces the total number of spikes on the shared interconnect,
which reduces spike congestion and latency. Third, SpiNeMap
has the lowest average spike latency among all our evaluated

[PSOPART
I SpiNeMap

ISI distortion
normalized to the Baseline

Fig. 10. ISI distortion normalized to the baseline.
1.4
] == Baselne 32 SCO [PSOPART M SpiNeMap
5m
c o
52
el
S8
EY
<E
o
{=
S)) =))) &) L ¥ A 9 N A o
ST TS FTEFTEESSE
SO ¥ F SOy
%/%/%/%/%/%/%/&qué}”béq’f@‘é
& FIEsF 55
RN
Fig. 11. Application accuracy normalized to the baseline.

systems (21% lower than baseline, 27% lower than SCO,
and 13% lower than PSOPART). These improvements are
due to SpiNeMap’s optimization policies: 1) SpiNeCluster
that reduces the number of spikes and 2) SpiNeCluster that
minimizes the average number of hop counts [see (11)].

D. ISI Distortion on the Shared Interconnect

Fig. 10 compares the ISI distortion of each of our appli-
cations for each of our evaluated systems normalized to the
baseline. We make the following three observations.

First, ISI distortion of SCO is, on average, 12% higher than
the baseline. Second, PSOPART has 21% lower average ISI
distortion than baseline. This reduction is due to the reduction
of the number of spikes (see Section V-F). Third, SpiNeMap
has the lowest ISI distortion of all our evaluated systems (36%
lower than baseline, 39% lower than SCO, and 23% lower
than PSOPART). The improvement with respect to PSOPART
is because of our new SpiNePlacer step (see Fig. 2), which
reduces ISI distortion by reducing spike latency.

E. Application Accuracy

Fig. 11 reports the accuracy of each of our applications
for each of our evaluated systems normalized to the baseline.
We observe that the accuracy results directly correlate with
ISI distortion (see Section V-D). Accuracy of SCO is lower
than baseline by an average 6%. PSOPART has an average
7% higher accuracy than baseline due to the 17% reduction in
ISI distortion. SpiNeMap has the highest accuracy among all
our evaluated systems (on average, 12% higher than baseline,
20% higher than SCO, and 5% higher than PSOPART).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

BALAIJI et al.: MAPPING SNNs TO NEUROMORPHIC HARDWARE

== Baseline

[PSOPART

Q
2
29 73 sco N SpiNeMap
38
Sm
[
g5
]
VT
oo
oN
[
<E
o
2
S
KNS
Fig. 12. Spike count normalized to the baseline.
g 2.0 == Baseline [PSOPART HEE SpiNeMap
£
08 151
3 1
gg@
c5g
228 1.04tH-H
3o e
g8=
w g 4
g 0.5
o
=
0.0-
Q S S 2 Q Q S S & A & o AN AN o
SST S STSS 9 8FLELELH
SNV NP 00 SEITSSSS
@/@/h/%/oy/%/%/&@q,f,z;‘éé&é
NG J
&£ FI IS Fs
< v
Fig. 13. Execution time normalized to the baseline.

F. Spike Count on the Shared Interconnect

Fig. 12 reports the total number of spikes communicated on
the shared interconnect of each of our applications for each
of our evaluated systems normalized to the baseline. We make
the following three observations.

First, SCO has an average 6% higher spike count compared
to baseline. These extra spikes increases energy consumption
(see Section V-B). Second, PSOPART has, on average, 23%
lower spikes than baseline due to its PSO-based clustering.
Third, SpiNeMap generates the lowest number of spikes
(26% lower than baseline, 24% lower than SCO, and 9% lower
than PSOPART) The improvement over PSOPART is due to
the greedy approach of Algorithm 1, which outperforms PSO
for large application use cases.

G. Optimization Time

Fig. 13 compares execution time of our new clustering
algorithm (see Algorithm 1) against the PSO-based clustering
of PSOPART normalized to the baseline. We observe that
SpiNeCluster has an average 3x lower execution time than
PSOPART. Moreover, SpiNeCluster generates lower spikes on
the interconnect and reduces energy consumption and latency.
We conclude that SpiNeCluster is scalable and better than PSO
for solving the clustering problem.

H. Interconnect Design-Space Explorations

Fig. 14 illustrates explorations of interconnect for neuro-
morphic hardware. We compare the NoC interconnect with
XY (used in DYNAP-SE), NorthLast, and WestFirst routing
and the segmented bus [45] interconnect (used in the next
generation of DYNAP-SE) for all our evaluated workloads.

83

[Z3 NorthLast [WestFirst

BN SegmentedBus

Spike latency
normalized to SpiNeMap
with XY routing

Fig. 14. Interconnect exploration using SpiNeMap.

We observe that NorthLast and WestFirst routings have an
average 7% and 4% higher latency than XY routing, respec-
tively. The segmented bus has the lowest spike latency among
all (average 54% lower than NoC with XY routing). Lower
spike latency leads to lower energy consumption and higher
application performance. We have open-sourced SpiNeMap
to allow design-space explorations on emerging interconnect
strategies and routing algorithms for neuromorphic hardware.

VI. RELATED WORKS

This is the first work that jointly addresses the partition-
ing and placement of SNNs on crossbar-based neuromorphic
hardware, minimizing the energy consumption, spike latency,
and ISI distortion and improving application accuracy.

A. SNN-Based Machine Learning

Recently, machine learning tasks are designed using SNNs
to improve energy efficiency. Verstraeten et al. [46] pro-
pose reservoir computing with SNNs for speech recognition.
Grzyb et al. [47] use spiking liquid-state machine for facial
recognition. Diehl and Cook [9] propose handwritten digit
recognition using SNNs. Das et al. [39] propose spiking liquid-
state machine for heart-rate estimation. We evaluate SpiNeMap
using these applications.

Analog neural networks, such as convolutional neural net-
works (CNNs), have been immensely successful in computer
vision tasks. The machine learning database MLPerf [42]
provides a comprehensive collection of these applications.
We converted these applications to spike model using
N2D2 [43] and use them to evaluate SpiNeMap.

B. Neuromorphic Hardware

Recently, several research groups are investigating crossbar-
based neuromorphic hardware with nonvolatile memory tech-
nologies. Ramasubramanian et al. [48] use spin-transfer torque
magnetic RAM (STT MRAM), Burr et al. [49] use phase-
change memories (PCMs), while Mallik er al. [50] use
oxide-based resistive RAM (OxRAM) to design neuromorphic
crossbars. While all these orthogonal works focus on the
design of a crossbar, we focus on the architecture of a neuro-
morphic chip integrating multiple such crossbars. Examples of
commercial neuromorphic chips include TrueNorth [1],
Loihi [2], and DYNAP-SE [3]. We evaluate SpiNeMap on
DYNAP-SE. Khan et al. [51] propose SNN mapping strat-
egy for SpiNNaker. Ji et al. [19] propose NEUTRAMS for

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

crossbar-based neuromorphic hardware. In Section V, we com-
pare SpiNeMap against NEUTRAMS (i.e., the baseline) and
found that SpiNeMap is significantly better in terms of energy,
latency, and application accuracy.

C. SNN Simulators

SpiNeMap uses CARLsim [27] due to its detailed STDP and
homeostasis models, parameter tuning, and multiGPU support
to accelerate the simulation. SpiNeMap can be combined with
any other SNN simulators [52]-[56].

D. Related Concepts in the Domain of Embedded Systems

Graph partitioning problem has been extensively used for
embedded multiprocessor systems, where an application task
graph is partitioned to map tasks on the processing cores
[57]-[59]. These mapping techniques cannot be directly used
for clustering because of the new metric ISI distortion that
is specific to SNN. We chose the clustering technique in
SpiNeCluster because it is scalable and generates a good
starting solution for the SpiNePlacer.

VII. CONCLUSION

We introduced SpiNeMap, a design methodology to map
SNN-based applications to crossbar-based neuromorphic hard-
ware. SpiNeMap completed the mapping in two steps. In step 1
(SpiNeCluster), we used a heuristic-based clustering algorithm
to partition SNNs into local and global synapses, with local
synapses mapped within crossbars and global synapses to
the shared interconnect. SpiNeCluster minimized spikes on
the shared interconnect, reducing spike congestion and ISI
distortion. In step 2 (SpiNePlacer), we used an instance of the
PSO to place clusters on physical crossbars in the hardware,
optimizing energy consumption and spike latency on the
shared interconnect.

We evaluated SpiNeMap using synthetic and realistic SNN
applications. We have shown that SpiNeMap reduces energy
consumption by 45% and spike latency by 21%, compared
to the best of state-of-the-art techniques. These improvements
reduced ISI distortion by 36%, improving application accuracy
by 12%.

We have open-sourced our framework to enable future work
based on SpiNeMap [60].

A. Future Outlook

We now describe how SpiNeMap can be used to advance
the field of neuromorphic computing.

Mapping New Machine Learning Approaches to Hardware:
In this article, we used supervised machine learning tasks to
evaluate SpiNeMap. Emerging machine learning approaches,
such as [61]-[66], can also be mapped to the neuromorphic
hardware using SpiNeMap by first simulating the application
in CARLsim and then using the spike trace to partition and
place clusters to hardware.

We demonstrated SpiNeMap for spike-based model.
Machine learning tasks designed with analog model, such as
CNN or MLP, can also be used in our design methodology by
first converting them to spike-based model before presenting

to SpiNeMap. In this article, we demonstrated this using
three analog CNN-based applications. We converted these
applications to spike-based model using the N2D2 framework.

For rate model, information is encoded as an average
firing rate of neurons. ISI distortion due to congestion on
the interconnect does not always lead to performance loss as
long as the average number of spikes received within a given
time interval remains the same. A relevant metric for the rate
model is the spike disorder. We provide a proper intuition
behind spike disorder as follows. We consider a source neuron
generating spikes at time ¢ = 0, 5, and 25 ns. Spike rates
of the source neuron are 200 and 50 MHz, respectively.
These three spikes need to be communicated to a destina-
tion neuron. We consider a scenario where spikes 0 and 2
are received at time r = 5 and 30 ns and spike 1 is
rerouted due to congestion, reaching the destination neuron
at t = 35 ns. Spike rates observed at the destination neuron is
40 and 200 MHz, respectively. This is spike disorder, which
can lead to performance loss. We formulate spike disorder as
follows. Let F! = {F!, ..., F,’;l,} be the expected spike arrival
rate at neuron i (from CARLsim) and F' = {F!,. .., I:“,’;[} be
the actual spike rate considering hardware latencies. The spike
disorder is computed as

nj
spike disorder = z [(Fj’ - F})z]/ni.
j=1

SpiNeCluster can be extended to support spike disorder.

Using SpiNeMap for Other Neuromorphic Hardware:
SpiNeMap is a general-purpose design methodology for map-
ping SNN-based applications to crossbar-based neuromorphic
hardware. We evaluated SpiNeMap for DYNAP-SE. Our
future work will demonstrate integration of SpiNeMap with
Loihi and TrueNorth.

In this article, we use Noxim [35] for cycle-accurate simu-
lation of neuromorphic interconnect. Noxim allows significant
advantage in terms of trace-driven simulations, extensions to
other interconnect types. SpiNeMap can be used with other
interconnect simulators, such as [67]-[69], which also supports
cycle-accurate and trace-driven simulation.

19)

REFERENCES

[1] M. V. DeBole et al., “TrueNorth: Accelerating from zero to 64 million
neurons in 10 years,” Computer, vol. 52, no. 5, pp. 20-29, 2019.

[2] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.

[3] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed.
Circuits Syst., vol. 12, no. 1, pp. 106-122, Feb. 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 2818-2826.

[6] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. Conf. Acoust., Speech Signal
Process., 2013, pp. 6645-6649.

[71 W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671, 1997.

[8] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” Int. J. Comput. Vis.,
vol. 113, no. 1, pp. 54-66, 2015.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

BALAIJI et al.: MAPPING SNNs TO NEUROMORPHIC HARDWARE

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

P. U. Diehl and M. Cook, “Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity,” Front. Comput. Neurosci.,
vol. 9, p. 99, Aug. 2015.

L. Benini and G. De Micheli, “Networks on chip: A new paradigm for
systems on chip design,” in Proc. Conf. Design, Autom. Test Eur., 2002,
pp. 418-419.

T. Sauer, “Interspike interval embedding of chaotic signals,” Chaos,
Interdiscipl. J. Nonlinear Sci., vol. 5, no. 1, pp. 127-132, 1995.

A. Ankit, A. Sengupta, and K. Roy, “Neuromorphic computing across
the stack: Devices, circuits and architectures,” in Proc. Workshop Signal
Process. Syst., 2018, pp. 1-6.

X. Zhang, A. Huang, Q. Hu, Z. Xiao, and P. K. Chu, “Neuromorphic
computing with memristor crossbar,” Phys. Status Solidi A, vol. 215,
no. 13, 2018, Art. no. 1700875.

Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired
computing,” Nature Mater., vol. 18, no. 4, pp. 309-323, 2019.

M. K. F. Lee et al, “A system-level simulator for RRAM-based
neuromorphic computing chips,” Trans. Archit. Code Optim., vol. 15,
no. 4, 2019, Art. no. 64.

P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor
deep spiking neural computing system: A step toward realizing the low-
power stochastic brain,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 5, pp. 345-358, Oct. 2018.

W. Wen et al., “An EDA framework for large scale hybrid neuromorphic
computing systems,” in Proc. Design Autom. Conf., 2015, pp. 1-6.

F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber,
“A hierachical configuration system for a massively parallel neural
hardware platform,” in Proc. Conf. Comput. Frontiers, 2012,
pp. 183-192.

Y. Ji et al., “NEUTRAMS: Neural network transformation and co-design
under neuromorphic hardware constraints,” in Proc. Symp. Microarchit.,
2016, pp. 1-13.

A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma,
“Mapping of local and global synapses on spiking neuromorphic hard-
ware,” in Proc. Conf. Design, Autom. Test Eur., 2018, pp. 1217-1222.

Y. Orii et al., “Advanced interconnect technologies in the era of cognitive
computing,” in Proc. Pan Pacific Microelectron. Symp., 2016, pp. 1-6.
S. Griin and S. Rotter, Analysis of Parallel Spike Trains, vol. 7. New
York, NY, USA: Springer, 2010.

R. P. N. Rao and T. J. Sejnowski, “Spike-timing-dependent Hebbian
plasticity as temporal difference learning,” Neural Comput., vol. 13,
no. 10, pp. 2221-2237, 2001.

D. P. Phillips and S. A. Sark, “Separate mechanisms control spike
numbers and inter-spike intervals in transient responses of cat auditory
cortex neurons,” Hearing Res., vol. 53, no. 1, pp. 17-27, 1991.

R. Brette, “Philosophy of the spike: Rate-based vs. spike-based theories
of the brain,” Frontiers Syst. Neurosci., vol. 9, p. 151, Nov. 2015.

Y. Dan and M.-M. Poo, “Spike timing-dependent plasticity of neural
circuits,” Neuron, vol. 44, no. 1, pp. 23-30, 2004.

T.-S. Chou et al., “CARLsim 4: An open source library for large
scale, biologically detailed spiking neural network simulation using
heterogeneous clusters,” in Proc. Int. Joint Conf. Neural Netw., 2018,
pp- 1-8.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. Symp. Micro Mach. Hum. Sci., 1995, pp. 39-43.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307,
Feb. 1970.

A. Das, A. Kumar, and B. Veeravalli, “Communication and migration
energy aware task mapping for reliable multiprocessor systems,” Future
Gener. Comput. Syst., vol. 30, pp. 216-228, Jan. 2014.

M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-
complete problems,” in Proc. Symp. Theory Comput., 1974, pp. 47-63.
C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. Design Autom. Conf., 1982,
pp. 175-181.

J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine
Learning. New York, NY, USA: Springer, 2010, pp. 760-766.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,” in
Proc. Conf. Appl.-Specific Syst., Archit. Process., 2015, pp. 162—163.

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

85

H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip com-
munication architecture exploration: A quantitative evaluation of point-
to-point, bus, and network-on-chip approaches,” ACM Trans. Design
Autom. Electron. Syst., vol. 12, no. 3, p. 23, Aug. 2007.

G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for
spiking deep neural networks,” in Proc. Int. Electron Devices Meeting,
2015, pp. 2-4.

W. Zhao and Y. Cao, “New generation of predictive technology
model for sub-45 nm early design exploration,” IEEE Trans. Electron
Devices, vol. 53, no. 11, pp. 2816-2823, Nov. 2006.

A. Das et al., “Unsupervised heart-rate estimation in wearables with
liquid states and a probabilistic readout,” Neural Netw., vol. 99,
pp. 134-147, Mar. 2018.

A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor,
“Power-accuracy trade-offs for heartbeat classification on neural net-
works hardware,” J. Low Power Electron., vol. 14, no. 4, pp. 508-519,
2018.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striv-
ing for simplicity: The all convolutional net,” 2014. arXiv:1412.6806.
[Online]. Available: https://arxiv.org/abs/1412.6806

MLPerf: Fair and Useful Benchmarks for Measuring Training
and Inference Performance of ML Hardware, Software, and Ser-
vices. Accessed: 2019. [Online]. Available: https://mlperf.org/training-
overview/#overview

N2D2: Neural Network Design and Deployment. Accessed: 2017.
[Online]. Available: https://github.com/CEA-LIST/N2D2

P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci,
“Conversion of artificial recurrent neural networks to spiking neural net-
works for low-power neuromorphic hardware,” in Proc. Conf. Rebooting
Comput., 2016, pp. 1-8.

A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration
of segmented bus as scalable global interconnect for neuromorphic
computing,” in Proc. Great Lakes Symp. VLSI, 2019, pp. 495-499.

D. Verstraecten, B. Schrauwen, and D. Stroobandt, “Reservoir-based
techniques for speech recognition,” in Proc. Int. Joint Conf. Neural
Netw., 2006, pp. 1050-1053.

B. J. Grzyb, E. Chinellato, G. M. Wojcik, and W. A. Kaminski,
“Facial expression recognition based on liquid state machines built of
alternative neuron models,” in Proc. Int. Joint Conf. Neural Netw., 2009,
pp. 1011-1017.

S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “SPINDLE: Spintronic deep learning engine for large-
scale neuromorphic computing,” in Proc. Int. Symp. Low Power Electron.
Design, 2014, pp. 15-20.

G. W. Burr et al., “Neuromorphic computing using non-volatile mem-
ory,” Adv. Phys. X, vol. 2, no. 1, pp. 89-124, 2017.

A. Mallik et al., “Design-technology co-optimization for OXRRAM-
based synaptic processing unit,” in Proc. Symp. VLSI Technol., 2017,
pp. T178-T179.

M. M. Khan et al., “SpiNNaker: Mapping neural networks onto a
massively-parallel chip multiprocessor,” in Proc. Int. Joint Conf. Neural
Netw., 2008, pp. 2849-2856.

D. F. M. Goodman and R. Brette, “The Brian simulator,” Front.
Neurosci., vol. 3, p. 26, Sep. 2009.

A. P. Davison et al., “PyNN: A common interface for neuronal network
simulators,” Frontiers Neuroinform., vol. 2, p. 11, Jan. 2009.

E. Yavuz, J. Turner, and T. Nowotny, “GeNN: A code generation frame-
work for accelerated brain simulations,” Sci. Rep., vol. 6, Jan. 2016,
Art. no. 18854.

M.-O. Gewaltig and M. Diesmann, “NEST (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration
methodology for memristor-based spiking neuromorphic architectures
with the Xnet event-driven simulator,” in Proc. Symp. Nanosc. Archit.,
2013, pp. 7-12.

A. Das, A. K. Singh, and A. Kumar, “Energy-aware dynamic recon-
figuration of communication-centric applications for reliable MPSoCs,”
in Proc. Workshop Reconfigurable Commun.-Centric Syst.-Chip, 2013,
pp- 1-7.

A. Das, M. Walker, A. Hansson, B. Al-Hashimi, and G. Merrett,
“Hardware-software interaction for run-time power optimization: A case
study of embedded Linux on multicore smartphones,” in Proc. Int. Symp.
Low Power Electron. Design, 2015, pp. 165-170.

A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Proc. Design Autom. Conf., 2013, pp. 1-10.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

[60] A. Balaji. (2019). SpiNeMap: Mapping Spiking Neural Networks to
Neuromorphic Hardware. [Online]. Available: https://github.com/drexel-
DISCO/SpiNeMap

R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning
through cross-modal transfer,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 935-943.

L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594-611, Apr. 2006.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

W. Maass, T. Natschldger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, pp. 2531-2560, Nov. 2002.
D. L. Silver, Q. Yang, and L. Li, “Lifelong machine learning systems:
Beyond learning algorithms,” in Proc. AAAI Spring Symp. Ser., 2013.
N. Jiang et al., “A detailed and flexible cycle-accurate network-on-
chip simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), 2013, pp. 86-96.

L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan,
“NIRGAM: A simulator for NoC interconnect routing and application
modeling,” in Proc. Conf. Design, Autom. Test Eur., 2007, pp. 16-20.
K. Huynh, “Exploration of dynamic communication networks for neuro-
morphic computing,” M.S. thesis, Eindhoven Univ. Technol., Eindhoven,
The Netherlands, 2016.

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

Adarsha Balaji received the bachelor’s degree from
Visvesvaraya Technological University, Bengaluru,
India, in 2012, and the master’s degree from Drexel
University, Philadelphia, PA, USA, in 2017, where
he is currently working toward the Ph.D. degree
at the Department of Electrical and Computer
Engineering.

His current research interests include the design
of neuromorphic computing systems, particularly
data flow and power optimization of spiking neural
networks (SNN) hardware.

Anup Das (SM’18) received the Ph.D. degree in
embedded systems from the National University of
Singapore, Singapore, in 2014.

He was a Postdoctoral Fellow with the Univer-
sity of Southampton, Southampton, U.K., and a
Researcher with imec, Leuven, Belgium. He is cur-
rently an Assistant Professor with Drexel University,
Philadelphia, PA, USA. His research focuses on neu-
romorphic computing and architectural exploration.

Yuefeng Wu receiving the bachelor’s degree from Tianjin University, Tianjin,
China. He is currently working toward the joint master’s degree with the
KTH Royal Institute of Technology, Stockholm, Sweden, and the Eindhoven
University of Technology, Eindhoven, The Netherlands.

He worked at imec The Netherlands, Eindhoven, for his master’s thesis and
researched on the communication mechanisms of neuromorphic computing.

Khanh Huynh, photograph and biography not available at the time of
publication.

Francesco G. Dell’Anna received the B.E. degree
in computer engineering and the M.E. degree in
embedded systems from Polytechnic University of
Turin, Turin, Italy, in 2014 and 2016, respectively.
He is currently working toward the Ph.D. degree
with the Department of Micro- and Nanotechnol-
ogy Systems, University of South-Eastern Norway,
Notodden, Norway.

In 2016, he attended the Electrical Engineering
Master Program at KU Leuven, Leuven, Belgium,
working on a neuromorphic simulator at imec, Leu-
ven. He is currently a Researcher with the Department of Micro- and
Nanotechnology Systems, University of South-Eastern Norway.

Giacomo Indiveri is currently a Professor with the
Faculty of Science, University of Zurich, Ziirich,
Switzerland, the Director of the Institute of Neu-
roinformatics (INI), University of Zurich, and ETH
Zurich, Ziirich, and the Head of the Neuromorphic
Cognitive Systems Group, INI. He is interested in
the study of real and artificial neural processing
systems and is building hardware neuromorphic cog-
nitive systems, using full-custom analog and digital
VLSI technologies.

Dr. Indiveri was awarded an ERC Starting Grant
in 2011 and an ERC Consolidator Grant in 2017.

Jeffrey L. Krichmar (SM’17) received the B.S.
degree in computer science from the University
of Massachusetts at Amherst, Amherst, MA, USA,
in 1983, the M.S. degree in computer science from
The George Washington University, Washington,
DC, USA, in 1991, and the Ph.D. degree in computa-
tional sciences and informatics from George Mason
University, Fairfax, VA, USA, in 1997.

He spent 15 years as a Software Engineer on
projects ranging from the PATRIOT Missile System
at Raytheon Corporation, Bedford, MA, USA, to
Air Traffic Control for the Federal Systems Division, IBM, Gaithersburg,
MD, USA. From 1999 to 2007, he was a Senior Fellow in Theoretical
Neurobiology with The Neurosciences Institute. He is currently a Professor
with the Department of Cognitive Sciences and the Department of Computer
Science, University of California at Irvine, Irvine, CA, USA.

Dr. Krichmar is a Senior Member of the Society for Neuroscience.

Nikil D. Dutt (F’08) received the Ph.D. degree in
computer science from the University of Illinois at
Urbana—Champaign, Champaign, IL, USA, in 1989.

He is currently a Distinguished Professor of Com-
puter Science, Cognitive Sciences, and Electrical
Engineering and Computer Sciences (EECS) with
the University of California at Irvine, Irvine, CA,
USA. He is also a Distinguished Visiting Professor
with the Department of Computer Science and Engi-
neering (CSE), IIT Bombay, Mumbai, India. His
research interests are in embedded systems, elec-
tronic design automation (EDA), computer systems architecture and software,
healthcare 10T, and brain-inspired architectures and computing.

Dr. Dutt is a Fellow of the ACM. He was a recipient of the IFIP Silver
Core Award.

Siebren Schaafsma received the two master’s
degrees in nuclear physics and in computer sci-
ence from the Rijks Universiteit Groningen (RUG),
Groningen, The Netherlands, in 1988 and 1989,
respectively, and the Ph.D. (Dr.) degree from the
Biophysics Department, University of Nijmegen,
Nijmegen, The Netherlands. His second master’s
degree dissertation addresses the neural networks’
implementation on a transputer cluster.

He is currently an Research and Development
Manager with the IoT Unit, imec The Netherlands
(Imec-nl), Eindhoven, The Netherlands.

Francky Catthoor (F’05) received the Ph.D. degree
in electrical engineering from Katholieke Uni-
versiteit Leuven (KU Leuven), Leuven, Belgium,
in 1987.

From 1987 to 2000, he headed several research
domains in the area of synthesis techniques and
architectural methodologies. Since 2000, he has been
strongly involved in other activities at imec, Leuven,
including deep submicrometer technology aspects,
IoT and biomedical platforms, and smart photo-
voltaic modules. He is currently an imec Fellow.
He is also a part-time Full Professor with the Department of Electrical
Engineering, KU Leuven.

Dr. Catthoor has been an associate editor for several IEEE and ACM
journals.

:

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 22,2020 at 23:02:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

