
Neural Networks 161 (2023) 228–241

Contents lists available at ScienceDirect

Neural Networks
journal homepage: www.elsevier.com/locate/neunet

Achieving efficient interpretability of reinforcement learning via
policy distillation and selective input gradient regularization
Jinwei Xing a,⇤, Takashi Nagata b, Xinyun Zou b, Emre Neftci a, Jeffrey L. Krichmar a,b

a
Department of Cognitive Sciences, University of California, Irvine, 92697, CA, USA

b
Department of Computer Science, University of California, Irvine, 92697, CA, USA

a r t i c l e i n f o

Article history:

Received 29 May 2022
Received in revised form 18November 2022
Accepted 19 January 2023
Available online 24 January 2023

Keywords:

Efficient interpretability
Interpretable reinforcement learning
Saliency map

a b s t r a c t

Although deep Reinforcement Learning (RL) has proven successful in a wide range of tasks, one
challenge it faces is interpretability when applied to real-world problems. Saliency maps are frequently
used to provide interpretability for deep neural networks. However, in the RL domain, existing
saliency map approaches are either computationally expensive and thus cannot satisfy the real-time
requirement of real-world scenarios or cannot produce interpretable saliency maps for RL policies. In
this work, we propose an approach of Distillation with selective Input Gradient Regularization (DIGR)
which uses policy distillation and input gradient regularization to produce new policies that achieve
both high interpretability and computation efficiency in generating saliency maps. Our approach is
also found to improve the robustness of RL policies to multiple adversarial attacks. We conduct
experiments on three tasks, MiniGrid (Fetch Object), Atari (Breakout) and CARLA Autonomous Driving,
to demonstrate the importance and effectiveness of our approach.

© 2023 Published by Elsevier Ltd.

1. Introduction

Reinforcement learning (RL) systems have achieved impres-
sive performance in a wide range of simulated domains such
as games (Mnih et al., 2015; Silver et al., 2016; Vinyals et al.,
2019; Wang et al., 2020), robotics (Fujimoto, Hoof, & Meger, 2018;
Haarnoja, Zhou, Abbeel, & Levine, 2018; Lillicrap et al., 2015),
automatic control (Li, Liu, & Wang, 2017; Wang, Ha, & Zhao,
2022) and computer vision tasks (Le, Rathour, Yamazaki, Luu,
& Savvides, 2021). However, the interpretability of an agent’s
decision making and robustness to attacks need to be addressed
when applying RL to real-world problems. For instance, in a self-
driving scenario, real-time interpretability could explain how an
RL agent produces a decision in response to its observed states
and enable a safer deployment under real-world conditions and
adversarial attacks (Bojarski et al., 2018; Ferdowsi, Challita, Saad,
& Mandayam, 2018; McAllister, Kahn, Clune, & Levine, 2019).

Saliency maps in deep learning are used to interpret input
features that are believed to be important for the neural net-
work output (Fong & Vedaldi, 2017; Nguyen, Yosinski, & Clune,
2019; Selvaraju et al., 2017; Simonyan, Vedaldi, & Zisserman,

⇤ Correspondence to: 2232 Social & Behavioral Sciences Gateway, University
of California, Irvine, CA 92697, USA.

E-mail addresses: jinweix1@uci.edu (J. Xing), takashin@uci.edu (T. Nagata),
xinyunz5@uci.edu (X. Zou), eneftci@uci.edu (E. Neftci), jkrichma@uci.edu
(J.L. Krichmar).

2013; Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017; Sun-
dararajan, Taly, & Yan, 2017; Zhang et al., 2018). As the issue of
interpretability in RL gets more attention, a number of methods
have been proposed to generate saliency maps to explain the
decision making of RL agents. Existing saliency map methods in
RL either used gradients to estimate the influence of input fea-
tures on the output (Wang et al., 2016) (gradient-based methods)
or computed the saliency of an input feature by perturbing it
and observing the change in output (Greydanus, Koul, Dodge,
& Fern, 2018; Iyer et al., 2018; Puri et al., 2020) (perturbation-
based methods). Gradient-based methods can compute saliency
maps efficiently with backpropagation. However, the quality of
these gradient-based saliency maps was generally poor (Rosynski,
Kirchner, & Valdenegro-Toro, 2020). Perturbation-based methods
are effective in highlighting the important features of the input,
but at a significant computational cost, which can make them
ineffective when deployed on systems with real-time constraints.
As a result, existing RL agents cannot provide high interpretability
in a computation-efficient manner.

Different from previous work proposing new saliency calcula-
tion methods, we focus on improving the natural interpretability
of RL policies. Given an RL policy, we propose an approach of Dis-
tillation with selective Input Gradient Regularization (DIGR) that
uses policy distillation and input gradient regularization to retrain
a new policy. In our approach, input gradient regularization se-
lectively regularizes gradient-based saliency maps of the policy
to imitate its interpretable perturbation-based saliency maps.
This allows the new RL policy to generate high-quality saliency

https://doi.org/10.1016/j.neunet.2023.01.025
0893-6080/© 2023 Published by Elsevier Ltd.

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

maps with gradient-based methods and thus achieve both high
interpretability and computational efficiency. At the same time,
to ensure that input gradient regularization does not cause task
performance degradation, we use policy distillation (Czarnecki
et al., 2019) to constrain the output of the new RL policy to
remain close to the original RL policy.

We evaluate our method in three different tasks, which in-
clude an object fetching task from MiniGrid (Chevalier-Boisvert,
Willems, & Pal, 2018), Breakout from Atari games and CARLA
Autonomous Driving (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun,
2017). The results show that RL policies trained with our ap-
proach are able to achieve efficient interpretability while main-
taining good task performance. Selective input gradient regular-
ization also improves the robustness of RL policies to adversarial
attacks. These two desired properties allow the RL policy to better
adapt to real-world scenarios.

To summarize, we demonstrate a novel approach to improve
the efficient interpretability and robustness on attacks on RL
policies based on the utilization of saliency maps. Our approach
increases the applicability of RL to real-world problems.

2. Background and motivation

2.1. Reinforcement learning

In reinforcement learning, agents learn to take actions in an
environment that maximize their cumulative rewards. The envi-
ronment is typically stated in the form of a Markov Decision Pro-
cess (MDP), which is expressed in terms of the tuple (S, A, T , R)
where S is the state space, A is the action space, T is the transition
function and R is the reward function. At each time step t in the
MDP, the agent takes an action at in the environment based on
the current state st and receives a reward rt+1 and next state st+1.
The goal of the agent is to find a policy ⇡ (s) to select actions that
maximize the discounted cumulative future rewards rt +� rt+1 +
� 2

rt+2 + · · · , where � is the discount factor ranging from 0 to 1.

2.2. Policy distillation

Policy distillation (Czarnecki et al., 2019; Rusu et al., 2015)
transfers knowledge from one teacher policy ⇡t to a student pol-
icy ⇡s by training the student policy to produce the same behavior
as the teacher policy. This is normally achieved by supervised
regression to minimize the following objective:

J = Es⇠⇡c
[D(⇡t (s), ⇡s(s))], (1)

where ⇡c is the control policy that interacts with the environment
to produce states for training, and D is a distance metric. There
are multiple choices for both ⇡c and D. For example, the control
policy ⇡c could take the form of the teacher policy ⇡t or student
policy ⇡s or even a combination of them. Suitable distance metrics
could be mean squared error or Kullback–Leibler divergence (KL
divergence).

2.3. Saliency map in RL

Addressing the interpretability of RL has attracted consider-
able attention in recent years. One common category of methods
used visualization techniques such as saliency maps (Greydanus
et al., 2018; Wang et al., 2016), attention mechanism (Mott,
Zoran, Chrzanowski, Wierstra, & Jimenez Rezende, 2019) and
object detection (Iyer et al., 2018) to explain deep neural net-
work policies. Some other methods aimed to learn intrinsically
interpretable policies in the formats of decision tree (Liu, Sun,
Schulte, & Poupart, 2021; Silva, Gombolay, Killian, Jimenez, &
Son, 2020), programming language (Verma, Murali, Singh, Kohli,

& Chaudhuri, 2018) or logic formulations (Zhang, Li, Wang, & Tian,
2021). Besides the methods above, researchers also enhanced the
understanding of RL decision making by using evidence-driven
interpretation (Dao, Huff, & Lee, 2021; Dao, Mishra, & Lee, 2018),
contrastive explanations (Lin, Lam, & Fern, 2020), counterfactual
analysis (Atrey, Clary, & Jensen, 2020; Rupprecht, Ibrahim, & Pal,
2019) and state abstraction (Topin & Veloso, 2019). In this work,
we focus on saliency map explanations.

Saliency map techniques are popular in computer vision and
RL communities for interpreting deep neural networks. Gradient-
based methods calculate the gradient of some function f with
respect to inputs s based on the chain rule and then use the gra-
dients to estimate the influence of input features on the output.
In RL, one common approach is the Jacobian saliency map (Wang
et al., 2016) which computes the saliency of input feature si as
| @ f (s)

@si
| where function f could be calculated from either the state–

action value Q (s, a) in Q-learning or the action distribution ⇡ (s) in
actor-critic methods. Other gradient-based visualization methods
from the field of image classification are also explored (Greydanus
et al., 2018; Rosynski et al., 2020) but most of them did not work
well in the RL domain.

Perturbation-based methods compute the saliency of an in-
put feature by perturbing (e.g. removing, altering or masking)
the feature and observing the change in output. Given a state
input s, a perturbed state s

0 could be generated by inducing a
perturbation on input feature si. The approach of computing the
change in output caused by the perturbation may vary based on
the form of RL agent. For example, in Q-learning, the network
output is a scalar and thus the saliency of si could be defined
as |Q (s, a) � Q (s0, a)|. In actor-critic methods, the saliency of si

could be defined as DKL(⇡ (s) k ⇡ (s0)) which is the KL divergence
between action distributions before and after the perturbation.
Alternatively, Greydanus et al. (2018) considered the output of
actor as a vector and computed the saliency as 1

2k⇡ (s) � ⇡ (s0)k2.
Puri et al. (2020) further proposed an approach of Specific and
Relevant Feature Attribution (SARFA) to address the specificity
and relevance in perturbation-based saliency maps.

2.4. Motivation

We first introduce a simple fetching-object task in MiniGrid
and demonstrate the results of different saliency map methods
on this task to motivate our method. In the fetching-object task
in MiniGrid, the environment is a room composed of 8 ⇥ 8
grids and 4 entities with unique colors. The red agent needs
to locate and pick up the green object, while the yellow and
blue objects are distractors. Based on the task rule, we name
this task as Red-Fetch-Green. We first use PPO (Schulman, Wol-
ski, Dhariwal, Radford, & Klimov, 2017) to train an RL policy
to solve the task and then investigate the interpretability and
computation efficiency of different saliency map methods to ex-
plain the policy. Examples of gradient-based (Vanilla Gradient
(Simonyan et al., 2013), Guided Backprop (Springenberg, Dosovit-
skiy, Brox, & Riedmiller, 2014), Grad-CAM (Selvaraju et al., 2017),
Integrated Gradient (Sundararajan et al., 2017), Smooth Gradient
(Smilkov et al., 2017)) and perturbation-based (Gaussian-Blur
Perturbation (Greydanus et al., 2018) and SARFA (Puri et al.,
2020)) saliency maps for Red-Fetch-Green are shown in Fig. 1(a).
We also include an example of saliency maps generated by our
DIGR approach for comparison. In general, perturbation-based
saliency maps mainly demonstrate high saliency on task-relevant
features (e.g. red agent and green target object) while gradient-
based saliency maps are noisier and harder to interpret. How-
ever, the high quality of perturbation-based saliency maps is
achieved with an increased cost of computation time. As shown
in Fig. 1(b), perturbation-based saliency map takes more time to

229

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 1. (a). Different saliency maps on Red-Fetch-Green. All gradient-based saliency maps (Vanilla Gradient, Guided Backprop, Grad-CAM, Integrated Gradient and
Smooth Gradient) produced by the PPO policy are noisy and show noticeable saliency on task-unrelated features. Gaussian-Blur Perturbation (GB Perturbation), SARFA
saliency maps and saliency maps produced by DIGR approach demonstrate saliency on the red agent and green target object only. (b). The average time for each
method to explain one action selection for states of Red-Fetch-Green during policy deployment with a CPU of Intel i7-9750H and a GPU of GeForce RTX 2080 Ti.
We mark DIGR with purple and use red and green colors to represent normal gradient-based and perturbation-based saliency map methods. Blue color represents
RAMi which is a decision-tree based policy and added as a baseline for comparing the computation efficiency of decision making explanation.

generate compared to gradient-based saliency maps and counter-
factual analysis of ‘Represent And Mimic’(RAMi) (Liu et al., 2021).
The computation time of perturbation-based saliency maps is
highly affected by the input size and policy network architec-
tures. This makes it incompatible with many real-world tasks that
require real-time interpretability such as autonomous driving.
Thus, based on the result in Fig. 1, we find that normal gradient-
based saliency maps are computationally more efficient but hard
to interpret while perturbation-based saliency maps are more
interpretable but come with a higher computation cost during
deployment. This finding motivates us to think about how we can
keep the computation efficiency of gradient-based methods and
the high interpretability of perturbation-based methods while
avoiding their limitations, and thus propose DIGR.

How does DIGR generate interpretable saliency maps like
perturbation-based methods while only requiring a short genera-
tion time as the most efficient Vanilla Gradient saliency maps? Is
it possible for us to use gradient-based methods such as Vanilla
Gradient method to generate high-quality saliency maps as those
from perturbation-based methods? We answer these questions
in the next section.

3. Method

Our approach to achieving both computational efficiency and
high interpretability in RL is to produce a policy whose gradient-
based saliency maps are comparable to those of perturbation-
based methods. To achieve this, given a trained RL policy, we
set its perturbation-based saliency maps as supervisory signals
and update the weights of the policy so that its gradient-based
saliency maps match the perturbation-based saliency maps. Since
the computations involved in gradient-based saliency maps are
differentiable, we can use stochastic gradient descent to conduct
the training. The idea of optimizing gradient-based saliency maps
has a close connection with input gradient regularization which
imposes constraints on how input gradients behave. For example,
Ross and Doshi-Velez (2018) penalized input gradients based on
an expert annotation to prevent the network from ‘‘attending’’ to
certain parts of the input in an image classification task. Inspired
by this, the training of the gradient-based saliency map in our
approach is conducted by selectively penalizing the gradients of
input features that have low perturbation-based saliency.

One challenge of selective input gradient regularization is
that optimizing gradient-based saliency maps may also affect the
policy output and thus degrade the task performance. To avoid

this, we conduct policy distillation to ensure that the new policy
maintains the same task performance. We give a more formal
introduction of our method below.

Given an RL policy ⇡ and input s, we define the function g as
the method used in generating gradient-based saliency map Mg

and function f as the method used in generating perturbation-
based saliency map Mp. Both Mg and Mp have the same size
as input s. Each element in the saliency map, Mgi

and Mpi
, are

computed as

g(s, i, ⇡) =|
X

a

⇡ (a|s)@⇡ (a|s)
@si

|

Mgi
= g(s, i, ⇡)

max0jN g(s, j, ⇡)

(2)

f (s, i, ⇡) = DKL(⇡ (s) k ⇡ (m(s, i)))

Mpi
= f (s, i, ⇡)

max0jN f (s, j, ⇡)
(3)

where g(s, i, ⇡) and f (s, i, ⇡) compute the gradient-based and
perturbation-based saliency values of input feature si given policy
⇡ . These saliency values are then normalized between 0 and 1 to
form saliency maps that contain N elements in each map. In this
work, perturbation function m induces a Gaussian blur on the in-
put with the input feature of interest si as the center (Greydanus
et al., 2018). It is worth mentioning that, besides perturbation-
based saliency maps, DIGR could be easily extended to utilize
other saliency data (e.g. saliency maps from expert annotation) as
supervisory signals. In this work, we focus on using perturbation-
based saliency maps for input gradient regularization as they
show high interpretability and can be computed as long as we
have access to the policy and states.

After introducing the process of generating two types of
saliency maps given an RL policy and state input, we introduce
how they are used in DIGR. Given a trained RL policy ⇡t , DIGR
aims to produce a new policy ⇡✓ with parameters ✓ that can gen-
erate interpretable saliency maps using a gradient-based method.
Given a state input s, the saliency map could differ based on
the generation method (gradient-based vs perturbation-based)
and the policy (⇡t vs ⇡✓) used to generate them. For clarity,
we define these 4 types of saliency maps as Mg

t , Mg
✓ , Mp

t ,
Mp

✓ where the subscript of g represents gradient-based saliency
maps and p represents perturbation-based saliency maps. The
superscript of t represents the saliency map is generated by the
original teacher policy ⇡t and ✓ represents the saliency map is

230

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 2. Framework of our approach. Policy ⇡✓ is used as the control policy and interacts with the environment. The experienced states are saved into a replay
buffer and then sampled later for policy distillation. The training includes two objectives. The first objective is using input gradient regularization to regularize
gradient-based saliency map M

✓
g
based on the perturbation-based saliency map M

t

p
. The second objective is using policy distillation to make sure the learning policy

⇡✓ has the same behavior as the trained policy ⇡t .

generated by policy trained with DIGR (⇡✓). In DIGR, we use the
perturbation-based saliency maps generated by the teacher policy
(Mp

t) to provide supervisory signals to regularize the gradient-
based saliency maps generated by the DIGR policy (Mg

✓). Then
the loss function for input gradient regularization is

L = Es⇠d⇡✓
[1
N

NX

i=1

1[0,1)(� � Mp
t

i
) ⇥ Mg

✓
i
] (4)

where d⇡✓
is the state distribution following policy ⇡✓ and N is

the number of input features in the saliency map. Mp
t and Mg

✓

have the same size and are both indexed by i. Threshold � is
used in the indicator function 1 to determine whether one input
gradient should be penalized. The indicator function 1 returns 1 if
��Mp

t

i
� 0 and 0 otherwise. In other words, if the perturbation-

based saliency for an input feature is below threshold �, the loss
penalizes its gradient-based saliency. This selective penalization
allows the model to only keep high saliency on task-relevant
features selected by the perturbation-based saliency maps.

The final loss function in our approach is a weighted combi-
nation of selective input gradient regularization and policy distil-
lation. In practice, generating perturbation-based saliency maps
online for input gradient regularization could be time-consuming
and slow down the overall training. To address this, we build an
offline perturbation saliency dataset Dwhich contains states sam-
pled from d⇡t

and the corresponding perturbation-based saliency
maps generated in advance. Because of the policy similarity
brought by policy distillation, we use D to approximate d⇡✓

for
input gradient regularization. As a result, the loss function for
DIGR is

LDIGR = Es⇠D[
1
N

NX

i=1

1[0,1)(� � Mp
t

i
) ⇥ Mg

✓
i

| {z }
Input Gradient Regularization

]

+↵Es⇠d⇡✓
[DKL(⇡t (s) k ⇡✓ (s))

| {z }
Policy Distillation

]
(5)

where ↵ is a weighting parameter used to balance the loss of
input gradient regularization and policy distillation. We show the
complete architecture of our approach in Fig. 2.

4. Experimental results

We conduct experiments on three tasks including Red-Fetch-
Green in MiniGrid, Breakout in Atari games and CARLA Au-
tonomous Driving to demonstrate the effectiveness of our ap-
proach. In Red-Fetch-Green, the red agent needs to locate and
pick up the green object while avoiding picking up other distrac-
tors in a room composed of 8 ⇥ 8 grids. In Breakout, the paddle is
controlled to move at the bottom to ricochet the ball against the
bricks and eliminate them for rewards. Besides these two tasks,
we designed a CARLA Autonomous Driving task in which the
agent needs to control an autonomous car driving on a highway
while avoiding collisions. Since CARLA’s simulation clock can be
matched with the real time, we use it to show how the high qual-
ity and computation efficiency of our approach in interpreting RL
policies could be important in real-world scenarios.

4.1. Setup

4.1.1. RL training

In our experiments, we first use PPO algorithm to train RL
policies on Red-Fetch-Green, Breakout and CARLA Autonomous
Driving. The trained RL policies, which are used to generate offline
perturbation saliency datasets for input gradient regularization,
also serve as the teacher policy in policy distillation and generate
saliency maps for comparison. In all three tasks, we used similar
network architectures composed of 3 convolutional layers and 2
linear layers but with different layer sizes. The trained RL policies
achieved reasonably good performance in each task: The policy in
Red-Fetch-Green solves the task with a success rate of 100%; the
policy in Breakout achieves an average score of 320; the policy
in CARLA Autonomous Driving could drive smoothly and learned
to steer to avoid collision with other vehicles. We include more
details of RL training in the Appendix.

4.1.2. Offline perturbation saliency dataset

To conduct selective input gradient regularization, we gener-
ate an offline perturbation saliency dataset by sampling states
experienced by the trained RL policy ⇡t and generating the corre-
sponding Gaussian-Blur perturbation saliency maps (Greydanus
et al., 2018). The perturbation saliency datasets of Red-Fetch-
Green, Breakout, and CARLA Autonomous Driving 1k, 10k, and
2.5k pairs of states and saliency maps. Although our method still

231

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 3. Demonstration of our approach on Red-Fetch-Green. There are four sets of examples and each set includes a state, a Vanilla Gradient saliency map generated
by the original policy (Original VG), a Gaussian-Blur perturbation-based saliency map (GB Perturbation) generated by the original policy and a Vanilla Gradient
saliency map generated by the policy trained with DIGR. The annotation of DIGR on the figure refers to Vanilla Gradient saliency maps generated by the policy
trained with DIGR. In all examples, GB Perturbation and DIGR saliency maps show high saliency on the red agent and green target while Original VG saliency maps
are noisy and hard to interpret.

Fig. 4. Demonstration of our approach on Breakout. VG and GB Perturbation stand for Vanilla Gradient and Gaussian-Blur Perturbation. Both DIGR and Gaussian-Blur
perturbation-based saliency maps demonstrate high saliency mainly on the paddle and ball while the Vanilla Gradient saliency maps generated by the original policy
(Original VG) are noisier.

needs to generate perturbation-based saliency maps, the compu-
tation happens in the training stage without affecting the compu-
tation efficiency during deployment. Also, the computation prob-
lem could be mitigated by the limited size of the dataset (e.g. 1k,
10k, and 2.5k states in Red-Fetch-Green, Breakout, and CARLA
respectively) and the potential utilization of parallel computing
with multiple machines.

4.1.3. DIGR training

DIGR uses selective input gradient regularization and policy
distillation to produce a new policy that achieves efficient in-
terpretability while maintaining task performance. In all three
experiments, we randomly initiate the new policy ⇡✓ . To further
stabilize the training, we consider the training of selective input
gradient regularization and policy distillation as a multi-objective
optimization problem and used the technique of projecting con-
flicting gradients (PCGrad) (Yu et al., 2020) to mitigate gradient
interference. More hyperparameters of training are included in
the Appendix.

4.2. Effectiveness via visual illustrative examples

The main goal of our approach is to allow RL policies to gen-
erate interpretable saliency maps with computationally efficient
gradient-based methods. To demonstrate the effectiveness of our

approach, we provide examples of the most computationally-
efficient Vanilla Gradient saliency maps before and after our
method, and Gaussian-Blur perturbation saliency maps that work
as supervisory guidance in Figs. 3, 4, and 5.

Our results show that Vanilla Gradient saliency maps gener-
ated by original RL policies are noisy and hard to interpret. How-
ever, after the optimization with our approach, we can use the
same saliency map method to generate much more interpretable
saliency maps which reduces a large amount of unexplainable
saliency and demonstrate high saliency on task-relevant features
only. The saliency maps generated by our approach also have
a close similarity to Gaussian-Blur perturbation-based saliency
maps which demonstrates the successful saliency guidance. We
provide more visual examples containing saliency maps produced
by other gradient-based methods for comparison in the Appendix.

4.3. Importance of computational efficiency

In this section, we further show the importance of our ap-
proach by demonstrating that missing either computation effi-
ciency or high interpretability makes it difficult to achieve inter-
pretable RL in real-world scenarios. We take Autonomous Driving
as an example and show the results of utilizing different saliency
maps to explain a sequence of RL decision making in Fig. 6. In
our experiments, the state of CARLA Autonomous Driving is a
128 ⇥ 128 RGB image taken every 0.05 s by a camera attached

232

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 5. Demonstration of our approach on CARLA Autonomous Driving. VG and GB Perturbation stand for Vanilla Gradient and Gaussian-Blur Perturbation. In the left
two sets of examples, DIGR and GB Perturbation methods demonstrate high saliency on the vehicles that got close to the controlled vehicle. In the top-right example,
DIGR and GB perturbation methods show high saliency on the vehicle and road curb. In the bottom-right example, DIGR and GB perturbation methods show high
saliency on two vehicles ahead. DIGR and GB perturbation methods did not show saliency on the controlled vehicle because the controlled vehicle is always at the
same region of the images for all states and is not salient to the performance. The saliency is demonstrated on other features that may lead to a collision and affect
the performance. In all four sets of examples, Vanilla Gradient saliency maps generated by the original policy (Original VG) are very similar and hard to distinguish.

Fig. 6. Different types of saliency maps on a sequence of states in CARLA Driving.
Vanilla Gradient saliency maps generated by the policy trained with DIGR always
demonstrate high saliency on the traffic vehicles while Vanilla Gradient saliency
maps generated by the original policy (original VG) are noisy and just show
saliency in the center region of all states. Gaussian-Blur perturbation-based
saliency maps show saliency behind the vehicle because of the computation
delay. The bar on the right represents the mapping between saliency values
and colors.

to the ego vehicle. Although Gaussian-Blur perturbation-based
saliency maps show high interpretability as seen in Fig. 5, it
takes 0.97 ± 0.02 s to generate one saliency map with a GPU
of RTX 2080Ti. This means there is a delay of almost one second
between meeting the state and the availability of the correspond-
ing saliency map and all saliency maps for states experienced
during the delay will be missed. In contrast to Gaussian-Blur
perturbation-based saliency maps each takes 0.97 s to generate
on average, Vanilla Gradient saliency maps are much more ef-
ficient to compute and take only 0.0021 ± 0.0001 s for each
state with the same machine. However, Vanilla Gradient saliency
maps generated by normal RL policies are hard to interpret and

Fig. 7. a. An example state in the saliency dataset of Red-Fetch-Green. b. Regions
whose saliency is important. c. Regions whose saliency is unimportant.

only our approach achieves both computation efficiency and high
interpretability.

4.4. Saliency dataset and evaluation

Besides illustrative examples, we also aim to provide a quan-
titative evaluation of saliency maps generated by different ap-
proaches and thus introduce a new saliency dataset based on
Red-Fetch-Green. Different from previous work that relies on
expert annotations and classifies each state element as either an
important or unimportant feature (Puri et al., 2020), we focus on
features whose saliency importance is certain. There are six types
of objects in Red-Fetch-Green including the red agent, the green
target object, the blue and yellow distractors, gray walls, and
black empty grids. Based on the roles of objects, we assume the
red agent and green target are important features as they have
the most important information required for optimal decision
making and assume the empty tiles as unimportant features since
they do not provide any information. The two distractors and gray
walls are not included in the dataset because their influence on
decision making is either uncertain or only exists in a small subset
of state space. We collected 10k states in the saliency dataset and
provide an example in Fig. 7.

To evaluate the quality of different saliency maps, we com-
pute the average amount of important saliency and unimportant
saliency in each saliency map. Furthermore, we also compare
different saliency maps with Area under the Receiver Operating
Characteristic Curve (AUC), which is a popular metric used to
evaluate saliency maps (Iyer et al., 2018; Puri et al., 2020). As
shown in Table 1, our approach keeps a comparable amount of

233

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 8. The performance of DIGR policy could match the performance of the original policy.

Fig. 9. Policies trained with DIGR achieve much stronger robustness to all four types of adversarial attacks (FGSM, PGD, MI-FGSM and MAD) compared to the policies
trained with normal RL algorithms. Although policy distillation also helps robustness slightly, selective input gradient regularization makes the most contribution
to the improved robustness. All results are averaged over 50 runs in Red-Fetch-Green and 20 runs in CARLA Autonomous Driving. The shaded area represents one
standard deviation.

Table 1
Saliency results of Vanilla Gradient (VG), Guided Backpropagation (Guided BP),
Grad-CAM, Smooth Gradient (Smooth G), Integrated Gradient (Integrated G),
Gaussian-Blur Perturbation (GB Perturbation), SARFA of the original policy and
Vanilla Gradient of DIGR policy on Red-Fetch-Green. Our method keeps a
comparable amount of important saliency, reduces all unimportant saliency, and
achieves the highest AUC.

Saliency on Red-Fetch-Green
Important Unimportant AUC

VG 56.04 278.10 0.840
Guided BP 82.84 35.67 0.993
Grad-CAM 43.12 364.97 0.686
Smooth G 83.05 84.76 0.991
Integrated G 67.79 232.09 0.900
GB Perturbation 86.11 77.81 0.989
SARFA 58.40 42.17 0.895
DIGR 72.52 0.00 0.997

important saliency, reduces all unimportant saliency and achieves
the highest AUC compared with other approaches. The decreased
amount of unimportant saliency is in line with our expecta-
tion since our approach works by penalizing the saliency that is
not helpful for interpretation. As a result, our approach utilizes
gradient-based and perturbation-based saliency maps for training
and finally achieves even better saliency maps.

4.5. Policy performance maintenance

The objective of optimizing gradient-based saliency maps may
change the action selection of the original policy and thus cause
the policy performance to degrade. In DIGR, we use policy dis-
tillation to constrain the output of the new RL policy to remain
close to the original policy. To verify its effectiveness, we plot
the performance of DIGR policy during training and compare it
with the results of the original policy. As seen in Fig. 8, the policy
trained with our approach could achieve similar performance as
the original policy.

4.6. Improved robustness to attacks

Due to the importance of robustness of neural networks (Car-
lini & Wagner, 2017; Cheney, Schrimpf, & Kreiman, 2017; Zheng,
Song, Leung, & Goodfellow, 2016) and recent research findings
of a deep entanglement between adversarial attacks and inter-
pretability of deep neural network (DNN) models (Ignatiev, Nar-
odytska, & Marques-Silva, 2019; Tao, Ma, Liu, & Zhang, 2018), we
are also interested in DIGR’s influence on policy’s robustness to
attacks. To study that, we evaluate the robustness of RL policies
before and after applying DIGR to four types of adversarial attacks
including Fast Gradient Sign Method (FGSM) (Huang, Papernot,
Goodfellow, Duan, & Abbeel, 2017), Projected Gradient Descent

234

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. 10. (a). Average saliency amount in each DIGR saliency map. As � increases, the average saliency amount decreases. (b). No-Penalization masks and DIGR saliency
maps generated by choosing � of 0.1, 0.3, 0.5, 0.7 and 0.9. In No-Penalization Masks, white pixels represent the region of input features whose input gradients will
not be penalized. As � increases, more input gradients will be penalized while the DIGR saliency maps generated with different � still demonstrate high similarity.

Table A.2
PPO training hyperparameters for three tasks.
Hyperparameters Red-Fetch-Green Breakout CARLA driving
� 0.99 0.99 0.999
� in GAE 0.95 0.95 0.95
Entropy bonus coefficient 0.01 0.01 0.01
Value loss coefficient 0.5 0.5 0.5
Gradient clipping 0.5 0.5 0.5
PPO clip range 0.2 0.2 0.2
Learning rate 0.001 0.0002 0.0002
Total timesteps 10M 20M 1M
environments 16 8 1
timesteps per rollout 128 128 1000
epochs per rollout 4 4 4
minibatches per rollout 8 4 4
Frame stack 1 2 1

Table A.3
DIGR hyperparameters for three tasks.
Hyperparameters Red-Fetch-Green Breakout CARLA driving
Saliency threshold 0.1 0.1 0.1
Weighting parameter ↵ 0.01 0.01 0.01
Learning rate 0.001 0.001 0.0002
Optimizer Adam Adam RMSprop
Online state buffer size 10k 10k 10k
perturbation-based
saliency maps

1k 10k 2.5k

(PGD) (Madry, Makelov, Schmidt, Tsipras, & Vladu, 2018), Mo-
mentum Iterative Fast Gradient Sign Method (MI-FGSM) (Dong
et al., 2018) and Maximum Action Difference (MAD) (Zhang et al.,
2020) in Red-Fetch-Green and CARLA Autonomous Driving tasks.
Since both policy distillation and input gradient regularization in
our approach could affect the robustness of RL policies, we further
include an ablation study by conducting policy distillation only to
understand their own influence on robustness. As shown in Fig. 9,
our approach significantly improves the robustness of RL policies.
Although policy distillation also improves the robustness slightly,
selective input gradient regularization contributes the most to the
significant robustness gains.

4.7. Sensitivity to saliency threshold

The choice of a saliency threshold is an important hyper-
parameter that determines which input features the gradients
should penalize. To investigate the sensitivity of DIGR to saliency
threshold �, we conduct a comparison analysis on the Atari game
of Breakout by choosing different � of 0.1, 0.3, 0.5, 0.7 and 0.9.
As shown in Fig. 10(a), the average amount of saliency in each
saliency map decreases as � increases. This is because increasing
� will cause more input gradients to be penalized as shown
by the No-Penalization Masks in Fig. 10(b). DIGR saliency maps
generated by different � demonstrate high structural similarity.
We conjecture the reason is that although more input gradients
are penalized as � increases, the input gradients on the ball
and paddle are not completely affected when choosing � of 0.1,
0.3, 0.5 and 0.7. When increasing � to 0.9, the input gradients
on the paddle is completely penalized and thus the resulting
DIGR saliency map shows less saliency on the paddle compared
to other DIGR saliency maps. Also, policy distillation could play
a role in restoring input gradients on input features that are
essential for action selection. This could mitigate the influence
of penalizing too many input gradients with a very high �. As a
result, as shown in Fig. 10, DIGR is robust to the hyperparameter
of saliency threshold.

5. Conclusion

We propose an approach called DIGR to improve the efficient
interpretability of RL by retraining a policy with selective input
gradient regularization and policy distillation. Our approach al-
lows RL policies to generate highly interpretable saliency maps
with computationally efficient gradient-based methods. We fur-
ther show that our approach is able to improve the robustness of
RL policies to multiple adversarial attacks. Interpretable decision-
making and robustness to attacks are two challenges in deploying
RL to real-world systems. We believe our approach could help
to build trustworthy agents and benefit the deployment of RL
policies in practice.

235

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. B.11. Examples of states, perturbation-based saliency maps and DIGR saliency maps with original and deep policy architectures. GB Perturbation stand for
Gaussian-Blur perturbation. DIGR represent the saliency maps generated by the original policy architecture. Deep DIGR represent the saliency maps generated by the
policy with deep architecture.

Table B.4
Architecture details of the original policy and deeper policy in Breakout.
Layers Original policy Deep policy
Convolutional layers
(kernel_size, stride, padding,
dilation)

(8,4,0,1)
(4,2,0,1)
(3,1,0,1)

(4,2,0,1)
(4,2,0,1)
(4,2,0,1)
(3,1,0,1)
(3,1,0,1)

Linear layers
(input_size, output_size)

(22 528, 512)
(512, 1)

(17 920, 1024)
(1024, 512)
(512, 1)

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This material is partially based upon work supported by the
United States Air Force and DARPA under Contract No. FA8750-
18-C-0103, and Air Force Office of Scientific Research under Con-
tract No. FA9550-19-1-0306. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
United States Air Force and DARPA. Authors are also thankful to
computing resources provided by CHASE-CI under NSF, USA Grant
CNS-1730158.

Appendix A. Experiment details and hyperparameters

We conduct experiments on three tasks including Red-Fetch-
Green in MiniGrid, Breakout in Atari games and CARLA Au-
tonomous Driving to demonstrate the effectiveness of our
approach. To generate the trained reinforcement learning (RL)
policies, we use Proximal Policy Optimization (PPO) as the train-
ing algorithm and list hyperparameters in Table A.2.

When applying our approach, we need to choose the saliency
threshold to select saliency that will be penalized, weighting
parameter ↵ to balance selective input gradient regularization

and policy distillation, learning rate and online state buffer size.
Furthermore, in practice, since we conduct input gradient reg-
ularization based on perturbation-based saliency maps collected
in advance instead of producing them from the state buffer, we
also need to choose the number of perturbation-based saliency
maps in the offline perturbation saliency dataset. We list these
hyperparameters in Table A.3.

In this work, we use multiple saliency map methods includ-
ing Vanilla Gradient, Guided Backpropagation, Grad-CAM, Inte-
grated Gradient, Smooth Gradient, Gaussian-Blur Perturbation
and SARFA. For Grad-CAM, we report the saliency maps extracted
from the last convolutional layer. For Integrated Gradient method,
we use 50 interpolation steps to calculate the saliency maps. In
our experiments, Smooth Gradient saliency maps are produced
by applying SmoothGrad on Guided Backprop saliency maps. For
SmoothGrad, we set the noise scale � as 0.15 and the number of
samples as 20. One important hyperparameter in Gaussian-Blur
perturbation-based method is the radius size of the perturbation.
Based on the size of the state images and features, we set the
radius as 4, 8, 5 in Red-Fetch-Green, Breakout and CARLA Au-
tonomous Driving. SARFA is based on Gaussian-Blur perturbation
and thus shares the same hyperparameters.

Appendix B. Deeper RL policies

To verify the effectiveness of DIGR on deeper RL policies, we
test to use a deeper neural network architecture for DIGR policy
in Breakout. The teacher policy ⇡t trained with PPO is still com-
posed of 3 convolutional layers and 2 linear layers while the DIGR
policy ⇡✓ consists of 5 convolutional layers and 3 linear layers
(Table B.4). As shown in Fig. B.11, DIGR saliency maps generated
by original policy and deeper policy have high similarity. This
demonstrates that DIGR works with deeper policy architectures.
We also find that saliency maps generated by deeper policy have
more fine-grained saliency which could be caused by the smaller
convolutional kernel size.

Appendix C. Additional experiment results

In this section, we provide more examples to demonstrate
the effectiveness of DIGR. Besides Vanilla Gradient and Gaussian-
Blur perturbation-based saliency maps, we also provide Guided
Backprop, Grad-CAM, Integrated Gradient and Smooth Gradient
saliency maps for comparison. All these saliency maps except
DIGR are produced by the policy trained with PPO algorithm. The
results on Red-Fetch-Green, Breakout and CARLA Autonomous
Driving are shown in Figs. C.12–C.14.

236

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. C.12. Supplementary saliency map examples on Red-Fetch-Green.

237

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. C.13. Supplementary saliency map examples on Breakout.

238

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Fig. C.14. Supplementary saliency map examples on CARLA Autonomous Driving.

239

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

References

Atrey, A., Clary, K., & Jensen, D. (2020). Exploratory not explanatory: Coun-
terfactual analysis of saliency maps for deep reinforcement learning. In
International conference on learning representations. URL: https://openreview.
net/forum?id=rkl3m1BFDB.

Bojarski, M., Choromanska, A., Choromanski, K., Firner, B., Ackel, L. J., Muller, U.,
et al. (2018). Visualbackprop: Efficient visualization of cnns for autonomous
driving. In 2018 IEEE international conference on robotics and automation (pp.
4701–4708). IEEE.

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural
networks. In 2017 IEEE symposium on security and privacy (Sp) (pp. 39–57).
IEEE.

Cheney, N., Schrimpf, M., & Kreiman, G. (2017). On the robustness of convo-
lutional neural networks to internal architecture and weight perturbations.
arXiv preprint arXiv:1703.08245.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Minimalistic gridworld
environment for openai gym. https://github.com/maximecb/gym-minigrid.

Czarnecki, W. M., Pascanu, R., Osindero, S., Jayakumar, S., Swirszcz, G., &
Jaderberg, M. (2019). Distilling policy distillation. In The 22nd international

conference on artificial intelligence and statistics (pp. 1331–1340). PMLR.
Dao, G., Huff, W. H., & Lee, M. (2021). Learning sparse evidence-driven inter-

pretation to understand deep reinforcement learning agents. In 2021 IEEE

symposium series on computational intelligence (pp. 1–7). IEEE.
Dao, G., Mishra, I., & Lee, M. (2018). Deep reinforcement learning monitor for

snapshot recording. In 2018 17th IEEE international conference on machine

learning and applications (pp. 591–598). IEEE.
Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., et al. (2018). Boosting adversarial

attacks with momentum. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 9185–9193).
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An

open urban driving simulator. In Conference on robot learning (pp. 1–16).
PMLR.

Ferdowsi, A., Challita, U., Saad, W., & Mandayam, N. B. (2018). Robust deep re-
inforcement learning for security and safety in autonomous vehicle systems.
In 2018 21st international conference on intelligent transportation systems (pp.
307–312). IEEE.

Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by
meaningful perturbation. In Proceedings of the IEEE international conference

on computer vision (pp. 3429–3437).
Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation

error in actor-critic methods. In International conference on machine learning

(pp. 1587–1596). PMLR.
Greydanus, S., Koul, A., Dodge, J., & Fern, A. (2018). Visualizing and understanding

atari agents. In International conference on machine learning (pp. 1792–1801).
PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning (pp. 1861–1870). PMLR.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., & Abbeel, P. (2017). Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284.

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2019). On relating explanations
and adversarial examples. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information

processing systems, Vol. 32. Curran Associates, Inc., URL: https://proceedings.
neurips.cc/paper/2019/file/7392ea4ca76ad2fb4c9c3b6a5c6e31e3-Paper.pdf.

Iyer, R., Li, Y., Li, H., Lewis, M., Sundar, R., & Sycara, K. (2018). Transparency and
explanation in deep reinforcement learning neural networks. In Proceedings

of the 2018 AAAI/ACM conference on AI, ethics, and society (pp. 144–150).
Le, N., Rathour, V. S., Yamazaki, K., Luu, K., & Savvides, M. (2021). Deep

reinforcement learning in computer vision: a comprehensive survey. Artificial
Intelligence Review, 1–87.

Li, H., Liu, D., & Wang, D. (2017). Manifold regularized reinforcement learning.
IEEE Transactions on Neural Networks and Learning Systems, 29(4), 932–943.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:
1509.02971.

Lin, Z., Lam, K.-H., & Fern, A. (2020). Contrastive explanations for reinforcement
learning via embedded self predictions. arXiv preprint arXiv:2010.05180.

Liu, G., Sun, X., Schulte, O., & Poupart, P. (2021). Learning tree interpretation from
object representation for deep reinforcement learning. Advances in Neural

Information Processing Systems, 34, 19622–19636.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep

learning models resistant to adversarial attacks. In International conference on

learning representations. URL: https://openreview.net/forum?id=rJzIBfZAb.
McAllister, R., Kahn, G., Clune, J., & Levine, S. (2019). Robustness to out-

of-distribution inputs via task-aware generative uncertainty. In 2019

international conference on robotics and automation (pp. 2083–2089). IEEE.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et

al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., & Jimenez Rezende, D. (2019).
Towards interpretable reinforcement learning using attention augmented
agents. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
& R. Garnett (Eds.), Advances in neural information processing systems, Vol.

32. Curran Associates, Inc., URL: https://proceedings.neurips.cc/paper/2019/
file/e9510081ac30ffa83f10b68cde1cac07-Paper.pdf.

Nguyen, A., Yosinski, J., & Clune, J. (2019). Understanding neural networks via
feature visualization: A survey. In Explainable AI: Interpreting, explaining and

visualizing deep learning (pp. 55–76). Springer.
Puri, N., Verma, S., Gupta, P., Kayastha, D., Deshmukh, S., Krishnamurthy, B., et

al. (2020). Explain your move: Understanding agent actions using specific
and relevant feature attribution. In International conference on learning

representations. URL: https://openreview.net/forum?id=SJgzLkBKPB.
Ross, A., & Doshi-Velez, F. (2018). Improving the adversarial robustness and

interpretability of deep neural networks by regularizing their input gradients.
In Proceedings of the AAAI conference on artificial intelligence.

Rosynski, M., Kirchner, F., & Valdenegro-Toro, M. (2020). Are gradient-based
saliency maps useful in deep reinforcement learning? In ‘‘I Can’T Believe

It’s Not Better!’’neurIPS 2020 workshop. URL: https://openreview.net/forum?
id=ZF4KyC2zz6x.

Rupprecht, C., Ibrahim, C., & Pal, C. J. (2019). Finding and visualizing weaknesses
of deep reinforcement learning agents. arXiv preprint arXiv:1904.01318.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J.,
Pascanu, R., et al. (2015). Policy distillation. arXiv preprint arXiv:1511.06295.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D.
(2017). Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on

computer vision (pp. 618–626).
Silva, A., Gombolay, M., Killian, T., Jimenez, I., & Son, S.-H. (2020). Optimization

methods for interpretable differentiable decision trees applied to reinforce-
ment learning. In International conference on artificial intelligence and statistics

(pp. 1855–1865). PMLR.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

et al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587), 484–489.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep
networks. In International conference on machine learning (pp. 3319–3328).
PMLR.

Tao, G., Ma, S., Liu, Y., & Zhang, X. (2018). Attacks meet interpretabil-
ity: Attribute-steered detection of adversarial samples. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Gar-
nett (Eds.), Advances in neural information processing systems, Vol. 31.
Curran Associates, Inc., URL: https://proceedings.neurips.cc/paper/2018/file/
b994697479c5716eda77e8e9713e5f0f-Paper.pdf.

Topin, N., & Veloso, M. (2019). Generation of policy-level explanations for
reinforcement learning. In Proceedings of the AAAI conference on artificial

intelligence (pp. 2514–2521).
Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S. (2018). Program-

matically interpretable reinforcement learning. In International conference on

machine learning (pp. 5045–5054). PMLR.
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., et

al. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782), 350–354.

Wang, D., Ha, M., & Zhao, M. (2022). The intelligent critic framework for
advanced optimal control. Artificial Intelligence Review, 55(1), 1–22.

Wang, R., Lehman, J., Rawal, A., Zhi, J., Li, Y., Clune, J., et al. (2020). Enhanced
poet: Open-ended reinforcement learning through unbounded invention of
learning challenges and their solutions. In International conference on machine

learning (pp. 9940–9951). PMLR.
Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Du-

eling network architectures for deep reinforcement learning. In International

conference on machine learning (pp. 1995–2003). PMLR.
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., & Finn, C. (2020). Gradient

surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.
F. Balcan, & H. Lin (Eds.), Advances in neural information processing systems,

Vol. 33 (pp. 5824–5836). Curran Associates, Inc., URL: https://proceedings.
neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

Zhang, J., Bargal, S. A., Lin, Z., Brandt, J., Shen, X., & Sclaroff, S. (2018). Top-down
neural attention by excitation backprop. International Journal of Computer

Vision, 126(10), 1084–1102.

240

J. Xing, T. Nagata, X. Zou et al. Neural Networks 161 (2023) 228–241

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning, D., et al. (2020). Robust
deep reinforcement learning against adversarial perturbations on state ob-
servations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin
(Eds.), Advances in neural information processing systems (pp. 21024–21037).
Curran Associates, Inc., URL: https://proceedings.neurips.cc/paper/2020/file/
f0eb6568ea114ba6e293f903c34d7488-Paper.pdf.

Zhang, L., Li, X., Wang, M., & Tian, A. (2021). Off-policy differentiable logic
reinforcement learning. In Joint european conference on machine learning and

knowledge discovery in databases (pp. 617–632). Springer.
Zheng, S., Song, Y., Leung, T., & Goodfellow, I. (2016). Improving the robustness

of deep neural networks via stability training. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 4480–4488).

241

