
 

  
Abstract—We present a novel neural architecture based on 

neuromodulated attentional pathways. The neural network 
controlled a robot, which had to perform a reversal learning task 
based on GPS locations. We developed a robotic platform that 
leverages smartphones technology. The behavior of the robot was 
entirely driven by a neural network that ran on an Android 
phone, which handled sensor input from the phone and 
controlled the motor and servo of the robot. The robot managed 
to perform the task successfully by increasing attention to 
relevant locations and decreasing attention to irrelevant ones.  
 

Index Terms—Attention, Android phones, Neuromodulation, 
Robot. 

I. INTRODUCTION 
HE ability to fluidly divert attentional resources toward 
relevant information is critical for successful behavior in 

animals and may be applicable for the control of autonomous 
behavior. Humans, monkeys and rodents, possess a network of 
cholinergic neurons throughout the basal forebrain that project 
to the hippocampus and the cortex. Modulating the release of 
acetylcholine (ACh) in the respective target structures is likely 
responsible for the ability to refine attention for optimal 
performance, resulting in ignoring irrelevant cues in the 
environment and attending to important cues. Experiments 
conducted by Chiba [1] and Baxter [2] showed that the basal 
forebrain, the main source of acetylcholine, has specific and 
separate pathways for decrementing and incrementing 
attentional effort. Whereas ACh projections from the medial 
septum/vertical limb of the diagonal band (MS/VDB) to the 
hippocampus and medial frontal cortex are crucial to reduce 
attention to irrelevant stimuli, ACh projections from the 
substantia innominata/nucleus basalis region (SI/nBM) to the 
neocortex and amygdala are necessary to increase attention to 
relevant stimuli.  

Understanding the principles of neuromodulation, such as 
acetylcholine, dopamine, norepinephrine and serotonin 
functionality, may inform control and action selection 
algorithms for autonomous robots. Recently, Krichmar 
introduced an action selection mechanism for robots based on 
principles of the neuromodulatory system [3, 4]. The neural 
controller, which has been tested on autonomous robots, 
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demonstrated valuable features such as, fluid switching of 
behavior, gating in important sensory events, and separating 
signal from noise.  

In this paper, we present a neurobiologically inspired neural 
model that implements principles of neuromodulation, and in 
particular focuses on how ACh modulates the ability to 
increase attention to relevant stimuli and decrease attention to 
distractions. In addition, we introduce a novel robot that 
combines Android smartphone technology with off-the-shelf 
remote control (R/C) cars. The computing power and sensing 
capabilities of these smartphones affords an inexpensive yet 
highly capable robotic platform. 

II. MOTIVATION 
Attentional set-shifting experiments, such as the Wisconsin 

Card Sorting Task and reversal learning, are often performed 
to study the ability to switch between behavioral strategies. In 
reversal learning, the subject must initially learn a stimulus-
reward association, and then demonstrate the ability to switch 
strategies when the experimenter introduces a new stimulus-
reward association. A common behavior observed in animals 
when a reversal is introduced is perseverative behavior, which 
consists of behavioral responses to the previously reinforced 
stimulus [5-7].  

 We investigated the influences of ACh on both the 
incremental and decremental pathways for regulating attention 
and learning during a reversal task. The role of ACh in 
regulating attention has been investigated by several 
computational models [8-10]. However, there is little 
experimental evidence and few modeling studies that have 
investigated how ACh can decrement or increment attention in 
a reversal task. We previously developed a neural simulation 
to provide insight into how acetylcholine can decrement or 
increment attention using two distinct pathways, and how 
dopamine and noradrenaline influence these pathways [11]. 
This model exhibited behavioral effects such as latent 
inhibition, persisting behavior, habituation to stimuli, and 
increased learning when facing novel or unexpected stimuli 
and reward associations.  

In the present paper, our goal was to use a simplified 
version of this model in order to investigate how the 
incremental and decremental pathway could guide the 
behavior of a robot performing a reversal learning task.  

III. ANDROID ROBOTIC PLATFORM 
The computational power of handheld devices, such as 

mobile phones and tablets, increases every year at a 
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remarkable rate. Even though smartphones have compact form 
factors, they are currently equipped with powerful dual-core 
processors and graphical processing units, video cameras, 
location providers (GPS, Wi-Fi, Cell-ID), and a multitude of 
sensors such as acceleration and orientation sensors. They also 
have an impressive suite of connectivity options (USB, 
Bluetooth, Wi-Fi, 3G, 4G), are powered by small, but long-
lasting batteries, run modern operating systems (OS), and are 
reasonably priced. For software development, many 
smartphone OS’s provide a Software Development Kit (SDK) 
that enables programmers to create applications relatively 
easily. For these reasons, we believe that Android phones are 
ideal candidates for onboard computing in autonomous robots. 
By using a smartphone as an onboard computer, the size of a 
robot can be kept relatively small and still have great 
computational features. Its cost can also be minimal since the 
phone itself can handle computation and sensing, and the 
actuating platform can be kept relatively cheap and small by 
using an off-the-shelf remote control (R/C) car as a robot 
chassis. These R/C cars typically provide a speed controller to 
regulate forward velocity and a servomotor (servo) for 
steering.  

Therefore, we created the Android Robotic Platform 
characterized by its low cost, robustness, flexibility, 
modularity and facility to use. In order to control a R/C car 
from an Android phone, we used the IOIO (pronounced yo-
yo) board (http://www.sparkfun.com/products /10748) to link 
the phone to the car’s motor and servo. The IOIO serves as a 
communication bridge between the Android Smartphone and 
the device, using USB or Bluetooth. In our case, commands 
(PWM signals) are sent from the Smartphone to the R/C car’s 
speed controller and steering servo through the IOIO, and the 
IOIO sends the values of infrared sensors (IR) mounted on the 
robot, which are necessary for obstacle avoidance, to the 
Smartphone. The platform consists of the chassis of a R/C car 
(HP Vertex RTR 4WD 1/10 scale), a base (perforated steel) 
that supports the IOIO, IR sensors, a phone holder 
(polystyrene foam) and an Android phone (HTC Incredible 1). 
The perforated base allows roboticists to add, remove or 
relocate sensors easily on the robot. We named the first robot 
created using this platform “Le CARL” (Fig. 1, left). For more 
details on the construction of our robotic platform, see [12]. 

IV. METHODS 

A. Task 
We used our Android controlled robot to perform a task 
involving reversal learning. The robot had an energy level that 
decreased over time, with a value comprised between zero and 
one. When the robot found resources (reward) in the 
environment, its energy level increased. The robot had to learn 
to go to the reward location when its energy level was low. 
The experiment was conducted outdoors on an open grass 
field where two GPS locations were chosen (L1 and L2) and 
only one location contained resources (see Fig. 1, right). A 
location (L1 or L2) was defined as a circular area with a radius 
of 5m. The center of L1 was 15m away from the center of L2. 
The robot would “consume” resources when it was inside the 
radius of a location with resources. Once the agent 

“consumed” all the resources present at one location, a 
reversal was introduced by placing the resources at the other 
location. We chose a value for the amount of resources such 
that it would fully replenish the robot’s energy by visiting the 
location three times.  

The agent’s basic behavior was to explore its environment. 
The resources were initially located at L1. The robot was 
initially placed at the non-rewarding location L2 facing in the 
opposite direction of the rewarding location L1. This was to 
ensure that the robot would learn about L2 before learning 
about L1, allowing reversal learning once the resources of L1 
were consumed. The experiment consisted of ten trials and the 
locations were selected at different places on the open field for 
each trial. 

 

      
Fig. 1. Left - “Le CARL” robot constructed from the chassis of a R/C car. A 
base consisting of a sheet of perforated steel was mounted onto the chassis. 
Four infrared sensors, a phone holder, an Android smartphone, and the IOIO 
were mounted onto the base. Right - open grass field with both locations L1 
and L2, where the experiment was conducted. 

B. Neural Architecture 
A neural network (NN) running on the Android phone 

controlled the robot and received inputs from the phone such 
as the GPS location, compass reading (azimuth) and the values 
of the IR sensors connected to the IOIO. The network 
processed the sensory information in order to learn where the 
reward was located and select a location to attend to, and 
outputted the signals controlling the motor and servo of the 
robot. 

The neural network driving the behavior of the robot was 
composed of three main groups (see Fig. 2): sensory input, 
action selection and motor output. Every neuron in these 
groups were modeled as mean firing rate neurons defined by: 

! 

si(t) =
1

1+ exp Gi " i # Ii(t)( )( )
                   (1) 

where t is the current time step, si is the activation level of 
neuron i, Gi is the neuronal gain, θi is a threshold and Ii is the 
total synaptic input. For each neuron, the default value of Gi 
was set to 10 and θi to 0.5 in order to have neural activities 
ranging from zero to one when stimulated by a single neuron. 

The synaptic input of a neuron was based on pre-synaptic 
neural activity, and the connection strength of the synapse: 

€ 

Ii(t) = wij (t −1)s j (t −1)
j
∑                             (2) 

where wij is the synaptic weight from neuron j to neuron i. The 
default value of the weights for all non-plastic projections was 
set to 1 for excitatory and -1 for inhibitory connections. 
 



 

 

1) Sensory input 
The robot received its current location in GPS coordinates 
(latitude and longitude) at approximately 1Hz. The magnetic 
compass of the phone was used to give the robot’s orientation 
(azimuth) in degrees East of magnetic North at approximately 
10Hz. The locations were encoded neurally by a locations area 
that consisted of two neurons, one for each location (L1 and 
L2). The neural activity of this area was based on the distances 
between the actual location and the recorded ones (L1 and L2). 
The input of these neurons was calculated using the following 
equation: 

! 

Ii(t) =1" di
K d

                           (3)  

where di is the distance in meters between the actual GPS 
location and the location Li, and Kd is a constant set to 10. The 
activity of the Locations neurons was then calculated using 
Equation 1 with Gi = 50 to model a Heaviside step function 
causing the neurons to be activated and saturate only when the 
robot was within 5m of the center of the location. The distance 
di was calculated using the Android API. Four infrared sensors 
were connected to the IOIO and were used to detect obstacles. 
Four neurons were used to encode the value of these IR 
sensors. The activity of these neurons was calculated using 
Equation 1 with the input I being the IR sensor’s analog value 
scaled between 0 and 1, Gi = 20 and θi = 0.3. These values 
were chosen to filter out low values (mostly noise) and cause 
the neurons to saturate for an input value I of ~0.6. 

2) Action selection  
The action selection group was based on the known functional 
neuroanatomy for attentional pathways. It consisted of a 
decremental and an incremental attention area, and a location 
selection area. These areas had two neurons, one for each 
location (L1 and L2). The decremental area roughly 
corresponded to the hippocampus and anterior cingulate cortex 

(septo-cingulate pathway), and the incremental area roughly 
corresponded to the amygdala combined with the OFC. We 
also modeled three neuromodulatory areas (MS/VDB, 
SI/nBM, and the ventral tegmental area - VTA) consisting of 
one neuron each. Finally, we included a neuron representing 
the energy deficit of the robot (deficit = 1 - energy). The 
decremental, incremental and location selection areas received 
one-to-one connections. The incremental area also received 
one-to-all connections from the energy deficit neuron. The 
incremental and location selection areas had lateral inhibitory 
connections (with wij = -0.8 causing a strong inhibition). The 
MS/VDB and SI/nBM received all-to-one connections from 
the decremental and incremental (for SI only) areas. The main 
function of the action selection group was to learn that a 
location was predictive of a reward, and to choose a location 
to attend to, causing the robot to stop at a novel location, or to 
go back to the reward location when the robot’s energy was 
low.   

The role of dopamine in reinforcement learning has been 
clearly established over the last decades [13]. Experiments 
have highlighted a role for D1 dopamine receptors in synaptic 
potentiation [14], and for D2 dopamine receptors in synaptic 
depression [15]. Therefore, we included Hebbian learning 
modulated by dopamine in the model (see purple neuron and 
triangle in Fig. 2). The amount of dopamine emitted from the 
VTA (DA(t)) was calculated based on the reward received and 
the energy level of the robot: 
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"(t) = reward(t) # energy(t)                     (4) 

! 

DA(t) =
0 if" (t) < 0

5" (t) otherwise
# 
$ 
% 

                (5) 

where reward(t) represents the presence (0 or 1) of a 
reward/resources at a particular location, and energy(t) is the 
energy level of the robot. The value of reward(t) was set to 
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Fig. 2. Neural architecture driving the behavior of the robot. It was composed of three main groups:  sensory input, action selection and motor output. 
Solid line items represent neural implementation (neurons and connections). 



 

one when the robot was inside the radius of a location 
containing resources. 
 The weights from the energy deficit neuron to the incremental 
area were plastic and modulated by dopamine: 

! 

"wij (t) = # wij (0) $ wij (t $1)( ) +DA(t) % si(t)s j (t $1)          (6) 
The maximum value of wij was capped at one, its initial value 
was 0.1, and the decay and learning rates were set to ε=0.001, 
and δ=0.8, respectively. These values were chosen to allow 
fast learning in the presence of dopamine, and slow forgetting. 
The effect of dopaminergic D1 receptors was modeled here by 
having DA levels increase synaptic weights. Reinforcement 
learning modulated by dopamine caused the robot to 
remember the location where the reward was located in order 
to go back to it when its energy level decreased.  

In our model, connections from the locations area to the 
decremental area were also subject to Hebbian learning 
modulated by dopamine where the change of synaptic strength 
was defined by: 

! 

"wij (t) = DA(t)si(t)# wij (0) $ wij (t $1)( ) +% si(t)s j (t $1)   (7) 
where Δwij(t) is the change of weight,  ε is the decay rate, δ is 
the learning rate. The maximum value of wij was capped at 
one, its initial value was 0.01, and the decay and learning rates 
were set to ε=0.8, and δ=0.1, respectively. These values were 
chosen to allow fast learning, but faster forgetting in the 
presence of dopamine. The effect of dopaminergic D2 
receptors was modeled here by having DA levels cause 
synaptic depression through the decay term. Functionally, the 
decremental area learned about locations that were or became 
irrelevant (no reward received) in order to decrease the robot’s 
attention to these locations. However, the decremental area 
would unlearn, or not learn, about locations when the robot 
received a reward. 

The neural activity of the MS/VDB was calculated using 
Equation 1 with Gi=40 and θi=0.2 causing the MS to rapidly 
saturate when stimulated. The cholinergic neuron of the 
MS/VDB gated the inhibitory signal coming from the 
decremental area to the location selection area using the 
following equations: 

! 

Ii
DEC (t) = sMS (t "1)wij (t "1)s j (t "1)

j
#                 (8) 

where 

! 

Ii
DEC (t)  is the input from the decremental to the location 

selection area, sMS is the activity of the MS/VDB cholinergic 
neuron. Functionally, neuromodulation from MS/VDB 
activated the decremental attentional pathway resulting in the 
inhibition of the location selection area (see green neuron and 
triangle in Fig. 2). 

The neural activity of the SI/nBM neuron modulating the 
synaptic input of the incremental area was given by: 

! 

Ii(t) = 1+ sSI (t "1)( )wij (t "1)s j (t "1)
j
#                    (9) 

where sSI is the activity of the cholinergic neuron in the 
SI/nBM. Functionally, ACh increased the gain on target 
neurons [16, 17] (see orange neuron and triangle in Fig. 2). 

3) Motor output  
The motor output group consisted of a pre-motor/speed area 

composed of one neuron for each location (L1 and L2), a pre-
motor/bearing error area composed of 37 neurons (10 degree 
resolution), and three motor neurons: one to move forward, 

one to turn right and one to turn left.  
The neural activity of the pre-motor/speed area was 

calculated using Equation 1 with Gi = 30 and a high threshold 
θi = 1.2. This area received inputs from both the locations and 
the location selection areas with one-to-one connections. Due 
to the high threshold and gain values, a neuron in the pre-
motor/speed area only fired when both input neurons encoding 
the same location fired at the same time. This would cause an 
inhibition of the forward motor neuron and stop the robot. 
Therefore, the robot would only stop when it reached the 
location it wanted to attend to (output of the location selection 
area). The neural activity of the motor neuron (forward) was 
calculated using the following equation:  

! 

si(t) = "isi(t #1) + (1# "i)
1

1+ exp Gi $ i # Ii(t)( )( )
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' 

( 
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         (10) 

where ρ is the persistence of neural activity.  
We chose a high value for ρ (0.9) that would cause the 

activity of the motor neuron to increase and decrease gradually 
so the robot would not change its speed too abruptly. The 
forward motor neuron received a bias input causing the robot 
to move forward by default. The activity of this neuron was 
then mapped to the pulse width of the PWM signal controlling 
the robot’s motor using the following equation: 

! 

pwmmotor(t) =1500 + Kmotors forward( )            (11) 
where Kmotor is a constant set to 100 to limit the maximum 
pulse width of the PWM signal to 1600, and sforward is the 
activity of the forward neuron. We limited the value of the 
pulse width in order to have a maximum speed of 
approximately 8mph. 

The steering of the robot was based on the activity of the 
right and left motor neurons that received inputs from the pre-
motor/bearing error area. The activity of this area 
corresponded to the bearing error between the orientation of 
the robot and the bearing to the target location, and was 
calculated in the following steps. If the activity of a neuron 
in the location selection area reached 0.5, the bearing (ϕGPS) 
from the actual GPS location to the chosen GPS location was 
calculated using a function provided by the Android API, 
which outputted an angle in degrees East of the true North. 
We then read the azimuth from the compass (angle East of 
magnetic North), and had to correct this value in order to have 
the orientation of the robot East of the true North (ϕrobot). This 
was performed by adding to the angle the declination of the 
magnetic field from the true North at the actual GPS location 
(using the Android API), and the orientation of the phone on 
the robot (+90 degrees, see Fig. 1, left). We could then 
calculate the bearing error (ϕerror): 
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" error(t) = " robot (t) #"GPS (t)                 (12) 
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" error(t) =
" error (t) # 360 if >180
" error (t) + 360 if < #180

$ 
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                (13) 

The value of ϕerror was then mapped into the neural activity of 
the pre-motor/bearing error area with a resolution of 10 
degrees per neuron (see Fig. 2). The higher the value of ϕerror 
was, the more neurons would fire. For example, a bearing 



 

error of +40 degrees would mean that the robot was 40 
degrees East of the target location, and would cause the 
activation of four pre-motor neurons (+10, +20, +30 and +40). 
All the neurons encoding a negative ϕerror projected to the right 
motor neuron, whereas the ones encoding a positive value 
projected to the left motor neuron. If the activity of any neuron 
in the location selection area did not reach 0.5, ϕerror was set to 
zero so the robot would move forward by default, except when 
the agent was more than 5m away from the closest location, 
where the value of ϕGPS was set using a location randomly 
selected (L1 or L2).  

The neural activity of each motor neurons (left and right) 
was calculated using Equation 1 with Gi=2 and θi = 2.5. These 
values were chosen to cause a saturation of the motor neurons 
only when stimulated by four pre-motor neurons or more. The 
two motor neurons inhibited strongly each other (wij = -20), 
and received strong projections from the neurons encoding the 
values of the IR sensors (wij = 20). In order to implement a 
simple obstacle avoidance mechanism, the left IR neurons 
projected to the right motor neuron whereas the right IR 
neurons projected to the left motor neuron. The activity of the 
left and right motor neurons was mapped into the pulse width 
of the PWM signal controlling the robot’s servo in order to 
turn the front wheels using the following equation: 

! 

pwmservo(t) =1500 +Kservo sright " sleft( )          (14) 
where Kservo is a constant set to 500, sright is the activity of the 
right motor neuron, and sleft is the activity of the left motor 
neuron. Therefore, the range of values used for pwmservo(t) was 
between 1000 and 2000. 

V. RESULTS 

A. Behavior 
The robot successfully performed the task in 8.5 minutes on 

average (Fig. 3). Experimental trials are described below and 
can be seen on a video online [12]. We set up the experiment 
so that the robot always started at the second location L2. The 
robot initially learned that no resources were present at this 
location and started to move. If the robot went back to this 
location again, it would not stop since it knew that L2 did not 
contain a reward. During this time, the robot’s energy level 
kept decreasing. Once the robot found location L1 where the 
reward was located, it stopped and stayed still until its energy 
level was fully replenished. During this time, the robot learned 
to associate resources with the location L1. Once its energy 
level was full, the robot started to move again and explore its 
environment.  When its energy level was low, the robot would 
go back to the location L1 associated with the reward. The 
robot consumed all the resources present at L1, by visiting L1 
three times, in 3.1 minutes on average (Fig. 3). A reversal was 
then introduced by placing resources at location L2. However, 
the robot persisted in going back to L1 for ~2 minutes (Fig. 3) 
until it finally switched back to an explorative behavior. The 
robot then found and learned that the resources were now at 
the second location L2. As before, when its energy level was 
low, the robot would go back to the location L2. The robot 
consumed all the resources present at L2 in 3.3 minutes on 
average (Fig. 3). These results show that the robot managed to 

perform the task in a short amount of time during which it 
initially learned a stimulus-reward association, and then 
demonstrated the ability to switch strategy when a reversal 
was introduced. The robot also exhibited perseverative 
behavior in accordance with the behavior observed in rats [6, 
7] and monkeys [5] performing a reversal learning task. 

 

 
Fig. 3. Average duration in minutes necessary for the robot to perform the 
task, and consume all the resources contained at locations L1 and L2. The 
duration of the robot’s persisting behavior after a reversal is also shown. The 
mean and standard deviation (error bars) were calculated over ten trials. The 
values were normally distributed. 

B. Neural Activity 
We recorded the neural activity of the robot while 

performing the task. Fig. 4 shows the activity of the NN in a 
representative trial when the robot was low on energy and was 
going back towards the learned location that contained the 
reward. Looking at Fig. 4, we can see that the energy deficit of 
the robot was high during the first 11s, causing the neuron 1 in 
the incremental area to fire. Consequently, the activity of 
neuron 1 of the location selection area was above 0.5 meaning 
that location L1 was selected. The bearing error was then 
calculated, which caused the left and right neuron to fire 
accordingly, setting the value of the PWM servo signal 
allowing the robot to turn towards the location L1. During this 
time, the robot was in motion as shown by the activity of the 
forward neuron and the value of the PWM motor signal. Once 
the robot reached location L1, the robot started to receive a 
reward, increasing the VTA dopamine signal (DA) and slowly 
replenishing the robot’s energy level. Neuron 1 of the 
locations area was highly active, causing a strong excitation of 
the incremental neuron. Neuron 1 of the decremental area also 
was active but the strong depressing effect of DA on the 
synapses between the locations and decremental area caused it 
to stop rapidly. With both neurons 1 of the locations and 
location selection area firing, the pre-motor/speed neuron 
saturated, causing a strong inhibition on the forward neuron 
and thereby, stopping the robot. The robot could then consume 
the resources and its energy deficit decreased as well as the 
amount of DA. With no more dopamine, the decremental area 
started to learn again and its activity increased after 40s (Fig. 
4). The MS was then stimulated and gated the inhibitory signal 
to the location selection area that stopped firing. The pre-
motor/speed area did not receive enough stimulation and 
therefore ceased activity. With no inhibition coming from the 
pre-motor area, the activity of the forward neuron kept 
increasing and the robot started moving again. The energy of 
the robot was replenished and it was now able to continue 
exploring its environment. 



 

VI. DISCUSSION 
We presented a neural architecture based on 

neuromodulated attentional pathways that controlled an 
autonomous robot carrying out a reversal task. The 
decremental pathway, modulated by ACh from the MS and 
DA from the VTA, learned to decrease attention to irrelevant 
locations. Whereas the incremental pathway, modulated by 
ACh from the SI and DA from the VTA, increased attention to 
relevant locations and learned which location contained a 
reward. The behavior of the robot was entirely driven by its 
neural network and the robot managed to perform a reversal 
learning task successfully by increasing its attention to 
relevant location and decrease its attention to irrelevant ones. 
We observed that the robot was always able to find the two 
locations even though the accuracy of the GPS was quite low 
and could vary over time. We also presented a novel robotic 
platform that can utilize the numerous features of Android 
phones.  

Using a robotic platform composed of an Android phone, an 
IOIO board and a R/C car is a promising approach for 
inexpensive robotics research and for education. Furthermore, 
the incremental and decremental attention pathways presented 
in this paper can be used for practical applications in search 
and exploration domains.  
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Fig. 4. Activity of the neural network when the robot was low on energy and was going back towards the location associated with a reward. 


