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Abstract: Mental imagery and planning are important aspects of cognitive behaviour. Being able to predict outcomes through
mental simulation can increase environmental fitness and reduce uncertainty. Such predictions reduce surprise and fit with
thermodynamically driven theories of brain function by attempting to reduce entropy. In the present work, the authors tested
these ideas in a predator—prey scenario where agents with a limited energy budget had to maximise food intake, while avoiding
a predator. Forward planning agents, with the ability to mentalise, to Actor Critic agents that do not plan beyond the current state
were also compared. The authors show that the ability to mentalise has distinct advantages when in noisy, uncertain stimuli.
These advantages are even more prevalent when tested in the real world on physical robots. The authors’ results highlight the

importance of taking into consideration mental imagery and embodiment when constructing artificial cognitive systems.

1 Introduction

It has been suggested that any self-organising system that is at
equilibrium with its environment must minimise its free energy [1].
In other words, the system must adapt or evolve to resist a natural
tendency towards disorder in an ever-changing environment [2].
Organisms must minimise the long-term average of surprise, which
is the inverse of entropy, by predicting future outcomes, so that
they minimise the expenditures required to deal with unanticipated
events. The idea of minimising free energy has close ties to many
existing brain theories, such as Bayesian brain, predictive coding,
cell assemblies and Infomax, as well as an evolutionary inspired
theory called Neural Darwinism or neuronal group selection [1].
The notion of surprise, in our case, is the unexpected uncertainty of
an event [3].

In the theory of neuronal group selection [4], plasticity is
modulated by value, which is signaled by neuromodulatory
systems such as acetylcholine, dopamine, norepinephrine, and
serotonin [5], and hormonal systems [6, 7]. Value systems control
which neuronal groups are selected and which actions lead to
evolutionary fitness, that is, predicting outcomes that lead to
positive value and avoid negative value. In this sense, predicting
value is inversely proportional to surprise. From a non-equilibrium
thermodynamic perspective, value is associated with those actions
that minimise the increase of entropy (e.g. feeding, predicting
outcomes, gathering information). Such actions include energy-
efficient movement, energy-efficient alert sensory scanning of the
environment, and foresight associated with organisms having
higher cognitive functions.

Inspired by evolution of biological organisms on multiple
timescales, we propose an architecture that is a closed-loop system
in which the control (algorithm) is closely coupled with the body
(robots) and the world (environment). The schematic in Fig. 1
shows the overall architecture for an efficient bio-inspired agent.
The agent has innate values, which can be positive (e.g. food,
rewards, progress) or negative (e.g. energy expenditure, pain,
frustration). These values are derived from the environment and
value systems, such as neuromodulation and hormones, which send
signals to the brain to adapt behaviour. Since the expected value is
thought to be inversely proportional to surprise [1], predicting
value is key to the agent's fitness. Since the world is dynamic, the
agent must adapt its behaviour to survive. Fitness evaluation in
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Fig. 1 is the metric for evolving these algorithms, which can be
how long the system can perform without intervention, how
successful the system is in the task environment, and how energy
efficient the system is in performing a task. These agents must
adapt their computation and resource allocations to survive.

A number of researchers, especially in robotics [8—12], as well
as in neuroscience [13], have stressed the importance of
embodiment when testing models of cognitive behaviour. In some
cases, they have stressed that intelligent behaviour can be observed
without representation or reasoning [14, 15]. Indeed, behaviour-
based robots following these ideas have shown impressive
performance. However, the brain does contain what many call
internal models to predict outcomes and plan [16]. While these are
not necessarily symbolic representations, as in classical artificial
intelligence systems, they are still neural representations. Brain
areas such as the frontoparietal cortex [17], motor cortex [18],
insula cortex [19, 20], are necessary for prediction, planning, and
awareness. Therefore, it is important to examine the effects of
planning in an embodied model.

To demonstrate this idea, we designed a predator—prey scenario,
where the agent of interest wants to maximise positive value (i.e.
acquiring food), while minimising negative value (i.e. being eaten
by a predator or starving). The agent was further constrained by
having a finite energy budget. If the agent wandered around too
long without obtaining food, it starved.

By recursively iterating through possible outcomes and their
value, the predictive engine in our agent has the ability to perform
mental imagery. These predictions take into account the actions the
predator may take in response to an agent action. Mental imagery
has been shown to influence future actions, and is an important
aspect of theory of mind; the ability to understand and predict the
intentions of others [21]. This awareness of self and others would
be critical component for a conscious organism. It is also important
for the development of artificial cognitive systems [22, 23].

In the present work, we will test our planning, value-driven
model against other candidate agents in simulation. Furthermore,
we will test the algorithm in an autonomous robot to show the
advantage of mental simulation in dynamic, real-world situations,
and to test whether different behavioural strategies emerge when
the agent is embodied. The hypothesis is that such predictions can
lead to better performance, especially when information is
unreliable as in noisy physical environments.
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Fig. 1 Architecture for robots and algorithms. The agent must take actions
to maximise fitness in a complex, dynamic environment. It is endowed with
innate values and behavioural primitives. Based on its sensory input, it
must evolve to predict outcomes that maximise positive value and minimise
negative value. The value system can influence predictions by setting
context or dynamically adjusting values

2 Methods

We designed a predator—prey scenario for simulation and robot
experiments. In the scenario, there is a behaving agent, a predator
that chases the agent, a nest area where the agent is safe from the
predator, and a food source that is outside the nest area. The agent
has three behavioural primitives: (i) find food, (ii) find nest, and (3)
avoid a predator. The agent must choose between these three
actions to acquire energy and avoid being eaten. The agent also has
a limited energy budget that decreases with time. This decrease is
faster during exploration than when in the nest. We will first
describe the specifics of the scenario for simulations, and then
describe how this was carried out in the robot experiments.

2.1 Simulation experiments

Simulations were conducted on a 10 x 10 grid environment. The
nest was always in the same corner of the environment, that is,
Cartesian coordinates (1,1). The positions of the agent and the
predator were chosen randomly on the first trial. A trial consisted
of the predator and agent making moves until the agent found food,
was caught, or starved. If the agent found food, its energy level was
replenished and the next trial began with the agent and predator
starting from their last positions on the previous trial. If the agent
was caught by the predator or starved, the positions of the agent
and the predator were chosen randomly for the next trial. The food
location changed on each trial. On a given time step, the agent
would: (i) Seek food by moving closer to the food source, (ii) Seek
its nest by moving closer to the nest location, (iii) Avoid the
predator by moving away from the predator agent. A move, which
could be in any of eight directions, moved the agent one grid
location closer to its desired position. To make sure that as many
configurations as possible were tested, 500 trials were conducted
for 10 random seeds (5000 total trials).

We tested three types of agents: (i) Random — the agent chose
randomly between the three actions. (ii) Actor Critic — an actor
critic model that learned the value of state-action pairs, and (iii)
Planning — a Q-learning-based planning agent that attempted to
predict the value of outcomes by recursively iterating over state-
action pairs. The distances to the food source, nest, and predator
define the state space. Since the longest distance is from one corner
of the grid to the other, the state space is the Euclidean distance
from (1,1) to (10,10), which equals 12.73, rounded up to 13.
Therefore, the total state space is: 13 x 13 x 13. Although this state
space does not capture directionality or occlusions in simulation,
the agents will need to take this into account in the robot
experiments. We ensured that each type of agent encountered the
same configurations by resetting the random number sequence and
storing the 500 game configurations before trials began.

The predator followed a fixed behaviour pattern. In the case of
the simulation, the predator moved at half the speed of the agent.
The predator would move towards the agent if the agent was less
than a Euclidean distance of 6 from the agent (i.e. it could sense the
agent) and >4 from the nest. The predator moved away from the
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nest if it was <4 from the nest. Otherwise, the predator moved in a
random direction.

At the start of a trial, the agent's energy level started at 5. If the
energy level dropped below 0.001, the agent starved. After each
time step, the agent's energy level decreased:

E(t+ 1) = E(t) — 0.05; if agentinnest, distance < 4.0

e , M
(t+1) = E(t) — E(H)0.10;

otherwise

This had the effect of a slower constant drop in energy when in the
nest and a more rapid drop in energy when foraging. The
assumption being that resting in the nest takes less energy than
exploring and avoiding predators in the environment.

2.1.1 Random agent: At every time step in the simulation, the
random agent chose from one of the three actions (find food, find
nest, avoid predator). The action was carried out and then a new
action was chosen randomly at the next time step.

2.1.2 Actor-critic agent: For the Actor Critic agent, we
implemented a temporal difference learning actor-critic model [24].
The Actor Critic agent was model free and selected actions based
on its past experience. It did not take into account the actions or the
state of the predator agent. The actor critic only used the current
state to dictate an action. Similar to other critic models, the critic
learned expected values for different states, and the actor learned
appropriate mappings for actions given a particular state. The critic
and actor were updated after every move. The delta rule was based
on a reward prediction

8(t) = R(t) + C(s, 1) = C(s, 1 = 1); ©)

where s is the state at time ¢, R =—5 if caught by the predator, —5 is
starved, (5.0 —E(¢)) if food is found, and 0 otherwise. C was
initially set to near zero (i.e. 2.22—16).

The critic was as follows:

Cs,t+ 1) = C(s, 1) + 0.255(); (3)
The actor was updated as follows:
O(s,a,t+ 1) = 0(s,a, t) + 0.255(¢); @

where Q is the actor, and a is the action to be taken at time ¢+ 1.
Each test case had 500 trials with a number of time steps within a
trial. This was thought to be sufficient for the state space to be
learned. To verify, we tested a range of learning rates and number
of trials and found that the learning rate of 0.25 and 500 trials was
sufficient for learning. Values <0.25 resulted in a too little learning
and values >0.25 resulted in overlearning, which led to erroneous,
perseverative action selection. Q was initially set to near zero (i.e.
2.22-16).

A Softmax function with a temperature, /5, equal to 5 was used
to select an action based on the expected values Q. A range of
temperatures from 0.1 (exploration) to 10.0 (exploitation) was
tested. The overall performance was similar between 2 and 10

e PQs.a)

pi= W )

where p; is the probability of taking action i out of the three
possible actions and f is the temperature.

2.1.3 Planning agent: The planning agent simulated mental
imagery by iterating through the cause and effect of its actions,
taking into account what it predicted the predator would do in
response to its actions. The Planning agent searched a tree of
potential actions by itself and the predator to predict the best course
of action. This was a recursive algorithm, but since the state space
was small, all possible outcomes were predicted in a tractable
number of steps. Unlike the Actor Critic agent, the Planning agent
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Fig. 2 Robots used in the experiments. Both robots had a Samsung Galaxy
5 smartphone, an 1010 interface board, and 4 IR sensors mounted on a
Plexiglas base. The Plexiglas was attached to a Rover 5 robot. The
smartphones could send motor commands and read IR sensors via a
Bluetooth connection with the 10I0. The orange balloons on the robots
allowed them to be seen in the arena

(A) Agent. The agent had a panoramic mirror attached to its smartphone camera. The
camera was facing downward to provide a 290° view of the environment, (B) Predator.

The predator used the camera on a forward facing smartphone to locate objects
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Fig. 3 Localisation of agent and object positions in robot arena

(A) Camera view of the smartphone after attaching the panoramic camera. The agent
had a 290° view of the environment. It used color blob detection to locate markers in
the arena, the predator, and the food source, (B) Once objects were located, the agent
(A) could estimate its own position and the distance to food (F), nest (N), and predator
(P). The arrows show the agent's heading and it's bearing to the corners of the
environment

does not learn the state space. Rather, it makes estimates of
possible outcomes. An expected value Q is calculated for each
action

O(@s,a,t+ 1) = H (T(s,a,s")*[R(s") + 0.99* max (Q(s’,a’)]);
(6)

where 7{(s,a,s’) is the probability of transitioning from state s to
state s’ for action a, R is the same as in the Actor Critic agent, and
QO(s',a) is the max expected value at state s’. The equation iterates
recursively until an end condition is met (i.e. food, predator,
starve). For each iteration, both the agent and the predator simulate
an action. The transition probability, 7, is derived from the
corresponding Q values for each action using the Softmax function
given in (5). Equation (6) is similar to the Forward model in [25],
however, rather than the sum we used the product, discounted to
get the overall expected values of different actions from a given
state. After the expected value for each action from the current
state is calculated, an action is selected using the Softmax function
given in (5).

2.1.4 Testing under certain and uncertain conditions: Both the
Actor Critic and the Planning agents were tested under certain and
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uncertain conditions. In the certain conditions, the positions of the
food and predator (i.e. the current state) were known. The uncertain
condition simulated unreliable sensory information. In the
uncertain condition, the position of an object (i.e. food or predator)
was known if it was within a distance of 3, in which case the mean
of the object was the object's current position, and the standard
deviation, s, was set to 0.25. Otherwise, the mean was set to the
last known position and s increased by 0.25, which in effect,
increased the uncertainty of the object's position. The standard
deviation was not allowed to be > 13. Every time step, the
positions of the food source and the predator were drawn from a
normal distribution with the mean and standard deviation as
described above. It was assumed that the agent knew its position
and the position of the nest.

2.2 Robot experiments

Even though we introduced uncertainty in the simulations, the
noise does not reflect the unreliability of real sensors in physical
environments. Moreover, the simulation experiments had a ‘God's
eye’ view of the world, and agents made omnidirectional
movements without consideration of the cost and time of
movements.

Therefore, we ran the model with autonomous mobile robots,
where the prey robot ran either the planning or random agent
model. It would have taken too long for the Actor Critic to learn
the state space in a robot experiment. The predator robot followed
the same fixed strategy as in the simulations. The robot
experiments were conducted in an indoor arena that was 3 m by 3
m. Camera vision was used to recognise landmarks, agents, and
localisation in the arena. The robot experiments were important to
test the model with local sensing and movement constrained by
physics.

Objects of interest were colour coded. The predator and agent
had orange balloons attached to the robots (see Fig. 2), and the
food source was a purple balloon. A colored marker in the corner
identified the nest area. Another colored marker was used to
estimate position in the room (Fig. 3). For both the predator and the
agent, we used our Android-based Robots [26]. These robots are
constructed from an Android phone, an input output interface
board called 1010, which is connected to the smartphone via
Bluetooth or USB, an off-the-shelf robot base (Rover 5 Robot
Platform with Tank Treads), and infrared sensors (Sharp
Microelectronics IR Sensor) for distance sensing. The robot takes
advantage of the sensors on the phone (e.g. camera, compass), as
well as additional sensors external to the phone (e.g. IR sensors)
via the IOIO. The Android phone interacts with the base's motor
controller via the IOIO. The cameras on the robot's smartphones
were used for object recognition and IR sensors for collision
detection and obstacle avoidance (see Fig. 2). The software
application, which computed the algorithm and controlled the
robot, was written in Java using Android Studio and deployed on
Samsung Galaxy S5 smartphones (The Android application
software for the agent robot can be found at: https://gitlab.com/
fitany/ABR_FoodPredator, and the software for the predator robot
can be found at: https://github.com/UCI-ABR/ABR_predator).
OpenCV libraries for Android were used to handle image
processing.

The prey agent had a panoramic mirror attached to the
smartphone camera to give it a 290° view of the environment (see
Figs. 24 and 34). Although this gave the agent a wide-angle view,
the image resolution was poor due to warping. The distance to
objects was estimated as an inverse power function of the size of
the minimum enclosing circles for the food, nest, and predator
blobs in its field of view. The mirror limited the resolution and
accuracy of these estimates. The nest was marked with a blue piece
of construction paper, and a corner of the arena was marked with a
green piece of construction paper (see Fig. 3). These were used to
triangulate the agent's position and its distance to other objects.
From the nest's and corner's absolute positions and their distances
and angles relative to the agent, the agent could estimate its current
location in one of the 10 x 10 grid cells (see Fig. 3B). If an object
was occluded, the last known distance to the object was used for
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Fig. 4 Layouts used for robot experiments. The letters denote the initial
positions of the nest (‘N’), agent (‘A’°), predator (‘P’), and food ‘F’)
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Fig. 5 Behavioral sequences from the simulations
(A) Sequence where the gets to the food source, (B) Sequence where the agent is
caught, (C) Sequence where the agent starves

the state table entry. Each grid corresponded to 30 cm2. The
positions of food and predator were also estimated from their
distances and angles relative to the agent and the agent's position.
If the agent found food (within 60 cm of estimated distance) or
starved, it sent a WiFi message to the predator indicating the trial
was over. The random agent algorithm and the planning algorithm,
which were described above, guided the agent's behaviour. The
state space in the model corresponded to the distance to food, nest
and predator in the arena. To allow for the robots to occasionally
starve, the initial energy level was reduced to 3. Due to its long
training time, the Actor Critic agent was not used in the robot
experiments.

The predator robot was an Android-based robot whose actions
were governed by a fixed strategy based on its distance to the
agent, as well as the agent's distance to the nest (see Table 1). The
predator had a forward-facing smartphone and used OpenCV blob
detection to locate the prey agent (see Fig. 2B). When the prey
agent was detected, the predator chased the agent by
simultaneously moving forward and turning to center the orange
agent blob in its field of view. To match the conditions of the
simulation, the predator did not chase the agent when it was far
away. That is, when the size of the orange blob detector, which
denoted the prey agent, was <8% of the frame width.

The predator and prey robots communicated information
between them using the WiFi on the Android smartphones. The
prey messages told the predator that it found food, was in the nest,
or was away from the nest. The predator messages told the prey
when it was caught. Table 1 describes how these messages were
handled by the robots.

Additionally, when the agent calculated that it was within 60 cm
of the nest, it would send a WiFi signal to the predator to cease
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Table 1 Predator actions
Prey distance Predator blob Prey action Predator
to nest or food detection of action
prey
dfood <60 cm N/A ‘Found Food’  terminate trial
message to
predator terminate
trial
dnest <60 cm N/A ‘At Nest' message random
to predator select search
action from model
dnest> =60 cm blob<8% of  ‘Away From Nest’ random
frame width message to search

predator select
action from model

dnest> =60 cm blob>=8% of ‘Away From Nest' chase agent

frame width message to
predator select
action from model
dnest >=60cm  blob>30% of N/A terminate trial ‘Caught’
frame width message to
agent

terminate trial

chasing behaviour (see Table 1). Another WiFi signal was sent
when the agent was >60 cm from home, which caused the predator
to resume chasing the agent (see Table 1). When the predator was
not chasing the agent, it alternated between turning for a random
amount of time and moving forward for a random amount of time.
If at any point the size of the orange blob detector was >30% of the
camera frame width, the predator sent a signal to the agent
indicating that it had been caught, thus ending the simulation (see
Table 1).

We used six layouts, which had different starting positions for
the food, agent, and predator (see Fig. 4). Both the Planning agent
and the Random agent conducted five trials per layout. It should be
noted that the algorithms operated in real time and computation
was not a factor in slowing down the agent's behaviour in the robot
experiments. The robots and food source were placed in their initial
positions prior to every trial.

3 Results
3.1 Behaviour in simulation experiments

The simulation environment was dynamic enough for interesting
behaviours to emerge between the predator and agent. Fig. 5 shows
screenshots from simulation sequences with the Planning agent
with uncertainty. In Fig. 54, the agent escapes the predator and gets
to the food source. In Fig. 5B, the agent is trying to avoid the
predator. As its energy level depletes, the agent tries to find the
food source. A bad estimate of the food location leads the agent to
the predator, which results in the agent being caught. In Fig. 5C,
the agent cannot get around the predator and towards the food
source. Eventually, the agent depletes its energy and starves.

In general, the Planning agent outperformed the other agents by
obtaining more food, avoiding the predator and not starving (see
Table 2 and Fig. 6). With the exception of the ActorCritic-
Uncertain agent compared to the Random agent, and the
ActorCritic-Uncertain agent compared to the ActorCritic-Certain
agent, all comparisons were highly significant (p <0.00001; two-
sample Kolmogorov—Smirnov goodness-of-fit test with Bonferroni
correction).

The ability to plan ahead and predict outcomes through mental
simulation was advantageous in this environment. Specifically,
Planning agent always outperformed the Actor Critic agent. When
the positions of the objects were known (Planning-Certain in
Fig. 6), the Planning agent was near perfect; that is, it rarely was
caught or starved, and was able to plan strategies that got the agent
to food sources. The Planning agent under uncertain conditions
was significantly better than the Actor Critic agent, even when the
Actor Critic agent knew the position of objects (compare Planning-
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Outcomes in Simulation Experiments
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Proportion

Fig. 6 Behavioural outcomes in the simulations. For every trial, an
outcome for the agent could be found food, starved, or caught by predator.
The proportions of these three outcomes are shown in the figure. Each
agent ran for 500 trials with 10 random sequences for a total of 5000 trials

Fig. 7 Behavioural sequences from the robot experiments. The agent and
predator had orange balloons attached to the robot. The food source was a
purple balloon

(A) Sequence where the robot avoided the predator and found food, (B) Sequence
where the predator caught the robot

Uncertain to ActorCritic-Certain). This suggests that the ability to
plan ahead outweighs perfect knowledge of sensory surroundings.

Planning ahead and mental simulation were beneficial in
uncertain situations. In the simulations, uncertainty is defined as a
noisy estimation of object positions in the environment (i.e. food
and predator). The Planning agent under these uncertain conditions
performed well, finding food on 87% of the trials (Planning-
Uncertain in Fig. 6). Interestingly, this agent starved only 3% of the
time, meaning that the agent would rather take the chance of being
caught to find food, than starve. The Actor Critic agent did not
perform as well in these uncertain conditions. In fact, it was not
significantly better than the Random agent (compare ActorCritic-
Uncertain to Random in Fig. 6). Taken together, these simulations
demonstrate that the ability to predict outcomes can be
advantageous in dynamic, uncertain environments.

Table 2 Simulation behaviour under different model conditions

3.2 Behavior in robot experiments

The robot experiments added new dimensions because the agents
needed to physically move in a real environment and use noisy
sensors to locate objects of interest. Fig. 7 shows screenshots from
the robot experiments. In Fig. 74, the agent avoids the predator and
goes to the nest. While in the nest, the predator turns away from the
agent. The agent takes advantage of this opportunity by heading
straight to the food source. In Fig. 7B, the agent is avoiding the
predator and moving towards the food source. However, as it nears
the food source, the agent makes a bad decision, either due to the
stochastic action selection rule or a noisy sensor, and the predator
is able to catch the agent.

Similar to the simulation results, planning ahead was beneficial
in the robot experiments (see Table 3 and Fig. 8). The Planning
robot found food on 77% of the trials compared to 33% for the
Random robot (p<0.005; two-sample Kolmogorov—Smirnov
goodness-of-fit test). Interestingly, the Planning robot never
starved, whereas the Random robot starved on 50% of the trials.
Since the Random robot was incapable of putting together
sequences of goal-driven actions, it tended to wander or stay in one
region of the environment too long. Moreover, this suggests the
Planning robot was planning paths towards food before its energy
reached a critically low level. However, these actions put the robot
at risk for being caught by a predator.

The robot experiments also emphasised differences between a
virtual simulation and a physical experiment. In the simulations,
the agent can instantly move in any direction. For a robot,
especially one with a scrub steering mechanism, turning and
moving takes time. In the present experiments, this allowed the
predator to approach while the agent was carrying out an action.
Sensing in a real environment, even in a constrained environment,
is noisy. Oftentimes the robots would sense an object of interest on
one time step, only to lose it on the next. Interestingly, the food
source was large enough to occlude the robots from seeing each
other. This not only led to the agent being able to hide behind the
food source, but also resulted in the agent not knowing the predator
was near. These types of unforeseen situations emerge from
running algorithms on embodied agents (Pfeifer et al., 2014).

3.3 Effect of value on behaviour

Value for the agents had positive and negative valence, as well as a
degree of dynamics. There was a static negative value of being
caught by a predator. Starvation depended on how much time was
spent away from a food source. The positive value from food
depended on how much energy was depleted, since the reward is
the difference between 5.0 and the current energy level.

We wondered how value levels in the model affected behaviour,
and if these effects were different when comparing a real to a
simulated environment. Therefore, we looked at the relationship
between energy level and behaviour. We looked at actions in two
ways: expected value of actions, and the likelihood of choosing an

Random Planning certain Planning uncertain ActorCritic certain ActorCritic uncertain
food 232.5+44.3 494.9+3.1 433.0+7.9 325.1+£43.2 272.3+43.4
starve 95.4+235 3.0+2.2 15.1+6.9 73.1+254 88.2+29.42
caught 172.1+23.9 21+29 51.9+3.2 101.8+20.0 139.5+22.2
Mean + standard deviation of number of outcomes.

Table 3 Robot behaviour in the different layouts (planning vs. random model)

Layout A Layout B Layout C Layout D Layout E Layout F
Plan Rand Plan Rand Plan Rand Plan Rand Plan Rand Plan Rand
F S F C F S F F F S F S

F S C C F C F S F S C S

F S F C F S C F F S F S

F S F C C F C F F F C S

F F C F F F F F F F F ]

C = Caught by predator, F = Found food, S = Starved.
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Outcomes in Robot Experiments
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Fig. 8 Behavioural outcomes in the robot experiments. For every trial, an
outcome for the robot could be found food, starved, or caught by predator.
The proportions of these three outcomes are shown in the figure. Robot
experiments were conducted in 6 different layouts with 5 trials per layout

Simulation Experiments
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Fig. 9 Relationship between actions and energy level for the Planning
with Uncertainty agent in simulations. The bar graphs are based on
correlations between 56,878 actions and energy level data points. Left.
Correlations with the energy level are shown for the expected value of each
potential action. Right. Correlations with the energy level are shown for the
likelihood of taking an action. All correlations shown are significantly
different from 0.0 (p < 0.00001)

Robot Experiments
Correlation Between Correlation Between
Action Value and Energy Level Action Likelihood and Energy Level

0.2 0.2
0.1 0.1

Pearsons R
Pearsons R
o

FindFood GoToNest AvoidPred FindFood GoToNest AvoidPred

Fig. 10 Relationship between actions and energy level for the Planning
with Uncertainty agent in robot experiments. The bar graphs are based on
correlations between 446 actions and energy level data points. The
FindFood and AvoidPred correlations were significantly different from 0.0
(p < 0.00001). The GoToNest correlations were not statistically significant.
Left. Correlations with the energy level are shown for the expected value of
each potential action. Right. Correlations with the energy level are shown
for the likelihood of taking an action

action. In our Planning agents, the expected values for each were
the Q values from (6), and the likelihood of those actions being
taken were the probabilities of selecting each action, which was
derived from (5).

In the simulations, there were strong negative correlations
between finding food and energy level, which meant that the

6

expected value and likelihood of seeking food increased when the
agent's energy level was low (see Fig. 9). Although the expected
value of avoiding a predator was not strongly correlated energy
levels, the likelihood of avoiding a predator tended to be higher
when energy levels were high. This is most likely due to the effect
of the Softmax equation. When the expected value of food is high,
the Softmax will amplify the likelihood of seeking food, and
dampen the likelihood of going to the nest or avoiding a predator. It
should be noted that small correlations (i.e. <0.1) were still
statistically different from O due to the very large number of data
points (i.e. 56,878) in the simulations.

Compared to the simulations, the value relationship differed in
the robot experiments (see Fig. 10). The expected values of finding
food and avoiding the predator were strongly negatively correlated
with energy level. However, the likelihood of seeking food was
positively correlated with energy level and the likelihood of
avoiding a predator was negatively correlated with energy level. A
more careful analysis of the data and observing the robots in action
sheds light on this dichotomy. Compared to the simulations, the
robot took more time to orient and move towards a goal. This may
have given the predator more opportunities to locate and approach
the agent. As the predator closes the gap between itself and the
agent, the need to avoid the predator increases, at the expense of
seeking food. In addition, by the time the predator chased the agent
in earnest, the agent's energy level was low, and it tended to be on a
path towards food. Oftentimes, a choice of avoiding the predator
moved the agent closer to food in these situations. These
observations further support the benefit of testing algorithms in
embodied models.

4 Conclusion

In a set of simulation and robot experiments, we highlighted the
advantage of planning ahead before taking actions in dynamic,
noisy environments. This form of mental simulation predicted
outcomes and overcame uncertainty. Indeed, mental imagery has
been shown to influence future actions [21]. Mentalising, which is
the ability to understand another's state and planning accordingly,
is an important aspect of cognitive and social behaviour, and
interestingly, mentalising is impaired in subjects with autism or
autistic traits [27-29]. Although our Planning algorithm was
simple, it was able to recursively ‘imagine’ how the effects of its
own actions would affect another's actions. This is, in effect, a form
of mental imagery or mental simulation. Mental simulation or
imagery is thought to be an important component for developing
artificial systems that are cognitive or conscious [22, 23]. However,
such mental imagery can take time and can increase cognitive load.

Prediction is crucial for fitness in a complex world and a
fundamental computation in cortical systems [16, 30, 31]. This
requires the construction and maintenance of an internal model.
Model-based reinforcement learning algorithms require the
presence of an internal model and ability to represent transitions
between states, which is the main difference from model-free
reinforcement learning [32]. These algorithms have been used in
predictive controllers for robots. For example, in a set of humanoid
robot experiments, it was shown that having a proactive predictive
model helped in predictive appropriate movements [33]. A
combination of model based and model-free reinforcement learning
was used in a sorting task [34]. The robot had to push cubes on a
conveyor belt. The model-based system improved performance by
maintaining a plan from one decision to the next. However, they
suggested that the model-free system scales better under certain
conditions and may be better in the face of uncertainty.
Interestingly neural correlates of both model-based reinforcement
learning and model-free reinforcement learning have been
observed in the brain [25, 35]. In general, the brain maintains
internal models for a wide range of behaviours; from motor control
to language processing [17, 18].

In our experiments, the utilisation of an internal model was
advantageous for predicting outcomes in uncertain conditions. The
internal model not only maintained transitions between states, but
also had a model of another's intentions. In both simulations and
robot experiments, being able to mentalise sequences of actions led
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to better decisions. In simulations, the Actor Critic approach had
difficulties handling uncertainty. It may be the case that our
Planning approach was able to make better predictions by making
multiple draws from distributions estimating object locations,
similar to bootstrapping and sampling. Our Planning approach did
not attempt to construct its internal model from scratch. The
predator's actions and the safety of the nest were given, rather than
learned. If these relationships changed, our present algorithm
would not be able to adapt. In these cases, having a system that can
fluidly switch between model based and model-free learning would
be advantageous [33, 34], especially when conditions change, or
circumstances require immediate action. In the future, it would be
interesting to use this approach in a predator—prey scenario where
the predator's strategy can change over time.

Our robot experiments highlight the importance of using
embodied models to test cognitive hypotheses [36, 37]. Interesting
strategies emerged in the robot trials that were due to interaction
with the environment and the use of local sensing in the real world.
For example, the agent robot's ability to locate objects was limited
by the panoramic camera. Although this provided a 290° view, the
reflection and warping led to poor resolution. In addition, objects
were sometimes occluded (e.g. the predator sometimes blocked the
view of the food, and vice versa). The Planning agent, by
maintaining estimations of objects and predicting outcomes, was
able to overcome this unreliability. It should be noted that because
the state space was small, the robot planning agent could exhaust
all possible outcomes in real-time. This may not be possible in a
larger state space, especially if the robot must have onboard
computation, as was the case in the present experiments. In a real-
world setting, a fast-acting model-free algorithm, such as the Actor
Critic, may have an advantage when there is time pressure to make
a decision.

Noisy sensing was a factor in the predator robot's behaviour.
The predator had a higher resolution image with its forward-facing
camera, but a limited field of view. The robot agent could take
advantage of this. At times, when the predator was moving
randomly (e.g. when the agent was in the nest or out of view), the
agent could get a head start towards a goal, such as food. Another
interesting factor to emerge in the robot experiments was if the
agent had a head start towards a goal, with the predator in pursuit,
both finding food and avoiding predator actions led to the goal. Not
all emergent properties were advantageous. A major difference
between simulation and robot experiments was the physical
properties of the robot's motor system, which used scrub steering
tank treads. For the robot to take an action, such as find food, it
needed to orient toward the goal and then move forward. During
this time, the predator could close the gap between itself and the
agent. Moreover, one incorrect decision could lead to the agent
being caught, because physically correcting that action on the next
decision takes time. It should be noted that these strategies and
behaviours were not observed when the same model was used in
the simulations. All of these observations provide support for using
physical systems when designing and testing cognitive
architectures [38].

Pertinent to the development of artificial cognitive systems,
Karl Friston developed a thermodynamically motivated theory,
which he called the ‘Free Energy Principle’, to describe brain
processing and adaptive behaviour in biological organisms [1]. The
underlying premise is that a biological system must maintain
homeostasis to survive. To do so, it has to minimise its long-term
average surprise, which relates to reducing the entropy experienced
on its inputs. In our model, surprise was related to a value
prediction error or unexpected uncertainty [3]. In the Planning
agent, uncertainty due to sensor noise and occlusion (in the robot
trials) led to surprise. In neuroscience, this implies that the brain
constructs a model of the world in order to make predictions about
sensory input and action outcomes, thus minimising surprise, and
adapting when these predictions are erroneous. Agents, biological
or otherwise, evolve a policy that minimises surprise by
minimising the difference between likely and desired outcomes,
which involves both pursuing the goal-state that has the highest
expected utility (exploitation) and visiting a number of different
goal-states (exploration). In this way, novelty seeking and curiosity
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reduces entropy in the long run [39]. Since dynamics are the result
of energy flow, learning by prediction can be viewed as also
learning the thermodynamics of the environment. For a system
embedded within a dynamic ‘real’ world, knowledge of the physics
of the environment is an absolute necessity, as every roboticist
knows. In the context of the present work, our experiments were
designed to underscore some of these ideas, and take a step
towards the creation of a physically grounded cognitive system.
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