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CARL Research and  
Related Coursework 

•  Neurorobotics or Brain-Based Robotics 
–  Neuromodulation as a robot controller 
–  Socially Assistive Robot that focuses on touch 

•  Neuromorphic Computing 
–  Spiking Neural Network of Motion Perception and 

Visual Navigation 
•  Courses 

–  Cognitive Robotics 
•  PSYCH 112R/LR 
•  PSYCH 268R 

–  Computational Neuroscience 
•  PSYCH 268A  
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Goals of Neurorobotics 

•  Understanding through building 
–  Building physical systems that demonstrate cognitive abilities could lead 

to a better understanding of the neural machinery that realizes cognitive 
function.  

•  Building more intelligent machines 
–  Constructing physical systems could lead to a system that demonstrates 

capabilities commonly found in the animal kingdom, but rarely found in 
artificial systems.  
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Design Principles for Neurorobots 

•  Engage in a behavioral task. 
•  Behavior controlled by a simulated nervous system 

that reflects the brain’s architecture and dynamics. 
•  The world is an unlabelled place. 

–  Organize the signals from the environment into categories 
without a priori knowledge or instruction. 

•  A value system that signals the salience of 
environmental cues to the robot’s nervous system. 

•  Needs to be situated in the real world. 
•  Behavior and activity of its simulated nervous 

system must allow comparisons with empirical data. 
Krichmar,%J.L.,%and%Edelman,%G.M.%(2005).%Ar#ficial)Life,)Vol.%11,%63?78.%
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It’s called Neurorobotic not Neurotic 
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Scientists at the University of
California, Irvine, are programming
robots to be more 'neurotic' in order to
help them take smarter, human-like
decisions.

Jeff Krichmar, a professor of Cognitive
Science at the University of California,
is experimenting with building neurotic
robots that exhibit signs of obsessive-
compulsive disorder (just like humans)
or who are afraid of open space.

Krichmar is doing this by making a
robot act like a mouse in a cage.

"We're trying to make the robot brain
more like the human brain. The brain
has incredible flexibility and
adaptability. If you look at any artificial
system, it's far more brittle than
biology," said Krichmar.

If you put a rodent in a room that is
open and unfamiliar, it will hug the
walls. The mouse will hide until it
becomes comfortable; then it will move across the room. It will wait until it
feels comfortable, he further commented.

The scientists at the university followed the rodent model with a robot and
made it so anxious that it would never cross the room until the robot felt at
ease.

Krichmar and his team were developing some software that mimics the
behaviour of the laboratory rat that the team experimented with, using brain
hormones dopamine and serotonin. By manipulating the rat's pleasure and
pain centres, the team hoped to learn enough about the rat's behaviour to
turn it into a software programme for their robots. The professor believes
that making a robot exhibit fear or caution may help it take better decisions.

The research was presented at the IEEE (Institute of Electrical and
Electronics Engineers) International Conference on Robotics and
Automation, held in Hong Kong.
(Image: Thinkstock)
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Abstract— The brain’s neuromodulatory systems play a key role 
in regulating decision-making and responding to environmental 
challenges. Attending to the appropriate sensory signal, filtering 
out noise, changing moods, and selecting behavior are all 
influenced by these systems. We introduce a neural network for 
action selection that is based on principles of neuromodulatory 
systems. The algorithm, which was tested on an autonomous 
robot, demonstrates valuable features such as fluid switching of 
behavior, gating in important sensory events, and separating 
signal from noise. 

Keywords – adaptive behavior; computational neuroscience; 
neuromodulation; neurorobots 

I.  INTRODUCTION 
A general purpose algorithm, based on principles of the 

brain’s neuromodulatory systems, is presented for action 
selection in robots. Neuromodulatory systems are present in all 
vertebrates and are critical for an animal to quickly assess the 
context of sensory input and take action [1]. Neuromodulators 
signal environmental changes to the nervous system and alter 
neuronal responses such that the organism can respond quickly 
and accurately to these changes.  

Rather than present a neurobiologically detailed model of 
how the nervous system achieves this function through 
neuromodulation (see for example [2]), a general-purpose, but 
minimal model of neuromodulatory function is developed, 
which can be applied to robot control.  

Although there have been great advances in autonomous 
robotics [3-6], the controllers of these machines are still very 
much tailored to specific missions and do not have the 
behavioral repertoire normally associated with that of biological 
organisms. Behavior-based robots neither learn from their 
experience nor adapt to environmental change [7]. Probabilistic 
robot controllers need an accurate model of their sensors and 
actuators [8]. Evolutionary robots are constrained by a fitness 
function specified by the designer [9]. Robots, which are 
controlled by reinforcement learning or machine learning, are 

driven by reward expectation and do not address attention, 
novelty, and risk assessment [10]. 

A design based on principles of the neuromodulatory 
systems would provide a framework that would allow agents to 
operate autonomously, optimally explore their environment, 
and be decisive when environmental conditions call for action.  

The vertebrate neuromodulatory systems play a key role in 
regulating decision-making and responding to environmental 
challenges [1]. In particular, the serotonergic (5-HT) system 
underlies control of stress, social interactions, and risk-taking 
behavior [11, 12]. The dopaminergic (DA) system has been 
implicated in the prediction of rewards and incentive salience or 
“wanting” [13, 14]. In a theory put forth recently by Boureau 
and Dayan [15], the serotonergic (5-HT) and dopaminergic 
(DA) systems oppose each other with respect to predicting 
punishment (5-HT) versus predicting reward (DA) along one 
dimension (labeled valence), and inhibition (5-HT) versus 
invigoration (DA) along another dimension (labeled action). 
Serotonin influences the amount of risk one is willing to take, 
the speed at which decisions are made, the impulsiveness of 
such decisions, and the suppression of actions when they are 
thought to lead toward a punishment or cost [16]. 

The cholinergic (ACh) and noradrenergic (NE) systems are 
thought to play important roles in attention and judging 
uncertainty [17]. Removal of ACh projections to the cortex 
impairs the ability to increase attentional effort [18].  NE 
neurons are sensitive to novel and salient objects in the 
environment [19] and task relevant stimuli that cannot be fully 
predicted, such as recognizing an unreliable or oddball stimulus 
[20]. Each of these neuromodulators triggers the brain’s 
attention system, and depending on the immediacy of an 
environmental cue, can result in the organism concentrating on 
the highest priority challenge. 

The nervous system responds to these high priority events 
through phasic neuromodulation, where sensory information 
and competition through inhibition is amplified relative to 
recurrent or associational information [1, 21, 22]. The result of 
this change in the relative weighting of information is to Supported by the National Science Foundation (Award Nos.: EMT/BSSE-

0829752 & IIS/RI-0910710) and the Office of Naval Research (Award No.: 
N000140910036).  
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The vertebrate neuromodulatory systems are critical for appropriate value-laden responses
to environmental challenges. Whereas changes in the overall level of dopamine (DA) have
an effect on the organism’s reward or curiosity-seeking behavior, changes in the level
of serotonin (5-HT) can affect its level of anxiety or harm aversion. Moreover, top-down
signals from frontal cortex can exert cognitive control on these neuromodulatory systems.
The cholinergic (ACh) and noradrenergic (NE) systems affect the ability to filter out noise
and irrelevant events. We introduce a neural network for action selection that is based on
these principles of neuromodulatory systems. The algorithm tested the hypothesis that
high levels of serotonin lead to withdrawn behavior by suppressing DA action and that high
levels of DA or low levels of 5-HT lead to curious, exploratory behavior. Furthermore, the
algorithm tested the idea that top-down signals from the frontal cortex to neuromodulatory
areas are critical for an organism to cope with both stressful and novel events. The neural
network was implemented on an autonomous robot and tested in an open-field paradigm.
The open-field test is often used to test for models anxiety or exploratory behavior in the
rodent and allows for qualitative comparisons with the neurorobot’s behavior. The present
neurorobotic experiments can lead to a better understanding of how neuromodulatory
signaling affects the balance between anxious and curious behavior. Therefore, this
experimental paradigm may also be informative in exploring a wide range of neurological
diseases such as anxiety, autism, attention deficit disorders, and obsessive-compulsive
disorders.

Keywords: neuromodulation, anxiety, computer simulation, robotics, dopamine, serotonin, acetylcholine,
norepinephrine

INTRODUCTION
The vertebrate neuromodulatory systems are critical for appro-
priate value-laden responses to environmental challenges
(Krichmar, 2008). Whereas changes in the overall level of
dopamine (DA) have an effect on the organism’s reward or
curiosity-seeking behavior (Schultz et al., 1997; Berridge, 2004),
changes in the level of serotonin (5-HT) can affect its level of
anxiety or harm aversion (Millan, 2003; Cools et al., 2008). The
cholinergic (ACh) and noradrenergic (NE) systems affect the
ability to filter out noise and irrelevant events (Vankov et al.,
1995; Bucci et al., 1998; Aston-Jones and Cohen, 2005; Yu and
Dayan, 2005). These neuromodulatory systems have broad and
extensive projections to the central nervous system causing shifts
in behavior and learning.

The frontal cortex, which projects to all the neuromodula-
tory systems (Briand et al., 2007), may be carrying a level of
cognitive control through modulating the neuromodulators. For
example, the medial prefrontal cortex (mPFC) can control the
stress response by its interaction with the raphe nucleus, the
main source of 5-HT in the central nervous system (Jasinska
et al., 2012), and the orbitofrontal cortex (OFC) may exert con-
trol on the DA reward system (Frank and Claus, 2006). Empirical

evidence and theoretical modeling have suggested that the mPFC,
the anterior cingulate cortex, and the OFC control decision-
making in the face of reward-cost tradeoffs (Rudebeck et al., 2006;
Rushworth et al., 2007; Chelian et al., 2012). That is, the OFC’s
interaction with the DA system is monitoring the expected reward
of an action, and the mPFC’s interaction with the 5-HT system is
monitoring the expected cost of an action (Zaldivar et al., 2010;
Asher et al., 2012).

Previously, a general-purpose algorithm, based on principles
of the brain’s neuromodulatory systems, was presented for action
selection in robots (Krichmar, 2012). Rather than presenting
a neurobiologically detailed model of how the nervous system
achieves this function through neuromodulation [see for exam-
ple (Cox and Krichmar, 2009)], a general-purpose, but minimal
model of neuromodulatory function was developed, which could
be applied to robot control. Similar to classic robot control algo-
rithms, such as subsumption architecture (Brooks, 1991) and
behavior-based schemas (Arkin, 1998), the algorithm automati-
cally arbitrated between actions based on current sensory input.
The algorithm demonstrated the ability to adapt to changes in
the environment by: (1) increasing sensitivity to sensory inputs,
(2) responding to unexpected or rare events, and (3) habituating

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 1
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Agent Design Principle: Value 
•  Intelligent agents are equipped with a 

value system that constitutes a basic 
assumption of what is good and bad for an 
agent. 

Pfeifer%&%Bongard,%“How%the%body%shapes%the%way%we%think.”%The%MIT%Press,%2007%
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Organisms Adapt Their Behavior 
Through Value Systems 

•  Non-specific, modulatory signals to the rest of the brain. 
•  Biases the outcome of synaptic efficacy in the direction 

needed to satisfy global needs. 

Vertebrate'Neuromodulatory'Systems'

Noradrenergic% Cholinergic% Dopaminergic% Serotonergic%
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Motivation 
•  Understand principles of the brain’s neuromodulatory 

systems through building a neurorobotic system. 
–  Neuromodulatory systems are present in all vertebrates 

and are critical for an animal to quickly assess the context 
of sensory input and take action. 

–  Neuromodulators signal environmental changes to the 
nervous system and alter neuronal responses such that 
the organism can respond quickly and accurately to these 
changes. 

•  Present a minimal neural model that captures the 
aspects of neuromodulation with the goal of 
developing a biologically inspired controller for robots. 

•  Develop a model of social disorders and test the 
model in both an animal model and in human robot 
interaction experiments. 

10 
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Open Field Test 
Typical Mouse Behavior when Free to Explore 

Fonio,%E.,%Benjamini,%Y.,%and%Golani,%I.%(2009).%Proc%Natl%Acad%Sci)106,%21335?21340.%
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Model Architecture based on  
Principles of Neuromodulation 
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Typical CARL-Roomba Behavior 
when Free to Explore  
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Neural Response During Open 
Field Test 

Krichmar Influence of neuromodulatory signaling on neurorobot behavior

FIGURE 3 | Behavioral and neural responses in the intact model. The
time constants τDA and τ5−HT were both set at 50. (A) Behavioral and
neural responses in a representative trial. The x-axis for all charts shows
the time of the trial in seconds. The chart labeled “Behavioral State”
denotes the state of the robot at a given time. The charts labeled “State
Neurons,” “Events,” “ACh/NE,” and “Neuromodulatory Neurons” show the
neural activity over the trial, where dark blue equates to no activity and

bright red equates to maximal activity. Note that Event neurons were
binary. The chart labeled “Tonic Neuromodulation” denotes the level of
tonic activation contributing to DA and 5-HT neurons. (B) The proportion of
Curious (ExploreObject and OpenField) and Anxious (FindHome and
WallFollow) behavior averaged over 5 trials. The error bars denote the
standard error. The histogram binned the behavior in 10 s windows. (C)
Similar to (B) except the behaviors were time-locked to the Light event.

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 6
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Population Response to Light Flash 

Krichmar Influence of neuromodulatory signaling on neurorobot behavior

FIGURE 3 | Behavioral and neural responses in the intact model. The
time constants τDA and τ5−HT were both set at 50. (A) Behavioral and
neural responses in a representative trial. The x-axis for all charts shows
the time of the trial in seconds. The chart labeled “Behavioral State”
denotes the state of the robot at a given time. The charts labeled “State
Neurons,” “Events,” “ACh/NE,” and “Neuromodulatory Neurons” show the
neural activity over the trial, where dark blue equates to no activity and

bright red equates to maximal activity. Note that Event neurons were
binary. The chart labeled “Tonic Neuromodulation” denotes the level of
tonic activation contributing to DA and 5-HT neurons. (B) The proportion of
Curious (ExploreObject and OpenField) and Anxious (FindHome and
WallFollow) behavior averaged over 5 trials. The error bars denote the
standard error. The histogram binned the behavior in 10 s windows. (C)
Similar to (B) except the behaviors were time-locked to the Light event.

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 6
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Serotonin Levels Affect Risk-Taking 
16 



11/16/15%

9%

CARL Roomba and Cognitive Control 
•  Model for animal 

behavior and neurological 
diseases: 
–  Anxious states, attention 

deficits, autism spectrum 
disorder 

•  Action selection module:  
–  Fluidly switching between 

behavioral states. 
–  Could be added onto 

conventional control 
systems.  
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Neuromorphic Engineering 

•  Building Hardware and Applications Based 
on the Brain’s Structure and Dynamics 

18 
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Brains by the Numbers 
Species' Neurons' Synapses'

Nematode% 302% 103%

%

Fruit%Fly% 100,000% 107%

%

Honeybee% 960,000% 109%
%

%

Mouse% 75,000,000% 1011%

%

Cat% 1,000,000,000% 1013%
%

%

Human% 85,000,000,000% 1015%
%

%

Source%–%hbp://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons%
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Brain Computations 

•  Massive parallelism (1011 neurons) 
•  Massive connectivity (1015 synapses) 
•  Excellent power-efficiency  

–   ~ 20 W for 1016 flops 

•  Low-performance components (~100 Hz) 
•  Low-speed comm. (~meters/sec) 
•  Low-precision synaptic connections 
•  Probabilistic responses and fault-tolerant  
•  Autonomous learning 

20 
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Examples of Neuromorphic Hardware Devices 

Hardware'Project:'
Hardware'Group'

Hardware'Descrip:on' Neuron'Models' Synap:c'
Plas:city'

Max'Neurons' Max'Synapses'

SpiNNaker:'
Industry%and%UK%

universiges%

?%Completely%digital%%

?%Consists%of%array%of%nodes%%

?%Each%node%has%18%ARM9%cores%

?%Final%goal:%1,036,800%cores%

Spiking:'
Izhikevich'

and'nonKspiking'

%

Yes:%STDP%

1,000%neurons%

per%ARM9%

core%

10k%synapses%

per%ARM9%core%

%

Neurogrid:%Stanford%
University%

?%Analog/digital%hybrid%

?%Full%board%has%16%neurochips%

?%Operates%on%only%5%W%

Spiking:'TwoK
compartment'

neurons'

%

No%

65,536%

neurons%per%

neurochip%

375M%

synapses%per%

neurochip%

True'North%Cog.%
Architecture:%

IBM%SyNAPSE%Team%

?%Completely%digital%%

?%Consists%of%hierarchical%design%

?%Neurosynapgc%core%is%basic%

%%building%block%

Spiking:'many'
behaviors'

including'LIF'

%

No%

256%neurons%

per%neuro?

synapgc%core%

256K%binary%

synapses%per%

neuro?synapgc%

core%

HRL'neural'chip:%
HRL%Labs,%SyNAPSE%

Team%

?%Analog/digital%hybrid%

?%Synapgc%weights%stored%in%%

%%memristors%

'
Spiking:'
Izhikevich'

%

Yes:%STDP%

%

576%neurons%

per%chip%

70k%virtual%

synapses%per%

chip%

%

HiCANN:%BrainScaleS%
Team%

?%Analog/digital%hybrid%

?%Each%wafer%has%384%chips%

?%Neurons%are%analog%

?%Synapses%are%digital%

'
Spiking:'AdExp'

and'I&F'

%

Yes:%STDP%

%

512%neurons%

per%chip%

%

16k%synapses%

per%chip%
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Spiking Neural Networks (SNNs) 
•  What are SNNs? 

–  Neural Networks that model neuronal/synaptic temporal 
dynamics 

–  Spike only when the membrane voltage exceeds a threshold 

•  Why use SNNs? 
–  Spike events are rare: average brain activity 1-10 Hz 

•  More energy efficient than sending an analog rate. 
–  Event-driven nature of SNNs fits well with neuromorphic 

hardware 
•  Use “Address Event Representation” (AER) to minimize 

communication. 
•  Provides a common language for neuromorphic systems. 

–  SNNs provide temporal coding but can still use rate coding 
–  SNNs support biologically plausible learning rules 

•  Spike Timing-Dependent Plasticity (STDP) 
•  Short-term Plasticity. 
•  Neuromodulation. 

22 



11/16/15%

12%

Components of a SNN 
23 

CARLsim  
A User-Friendly and Highly Optimized Library for the Creation of 

Neurobiologically Detailed Spiking Neural Networks  

•  GPU-accelerated, user-friendly, well documented. 
–  Runs on Linux, Mac OS, Windows systems with CUDA SDK. 

•  Capable of simulating biological detailed neural models. 
–  Runs 104 to 105 neurons with ~107 plastic synapses in real-time on a 

single GPU card. 
•  Tactile Processing and Hedonic Touch in the Cortex 

–  Chou, T.-S., Bucci, L.D., and Krichmar, J.L. (2015). Learning Touch 
Preferences with a Tactile Robot Using Dopamine Modulated STDP in a 
Model of Insular Cortex. Frontiers in Neurorobotics 9. 

•  Visual Cortical Processing 
–  M. Beyeler, M. Richert, N. D. Dutt, J. L. Krichmar, Efficient Spiking 

Neural Network Model of Pattern Motion Selectivity in Visual Cortex. 
Neuroinformatics, 2014.   

•  Freely available at: 
–  http://www.socsci.uci.edu/~jkrichma/CARLsim/ 

24 
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Learning Touch Preferences With A 
Tactile Robot Using Dopamine Modulated 

STDP In A Model Of Insular Cortex 

25 

Introduction 
•  Humans and other animals respond preferentially to 

different types of touches.  
–  For example cats prefer to be petted from head to tail. 
–  What neural areas respond to hedonic touch? 

•  Insular cortex responds to hedonic touch. 
•  Dopaminergic neurons respond to reward and pleasure. 

•  Designed a neurorobot that has a surface designed for 
petting.  
–  Tactile sensors project to a model of somatosensory cortex and 

insular cortex. 
–  Signals its preferences through coloration of its surface and 

auditory signals.  

•  Use this neurorobot and its simulated nervous system to 
explore learning preferences in uncertain, real-world 
environments.  

26 
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CARL-SJR 
Cognitive Anteater Robotics Laboratory – Spike Judgment Robot 

•  Because hedonic touch 
requires a caresser 
and a caressee, we 
developed a human 
robot interaction study 
that required mutual 
reinforcement learning.  

•  To achieve these goals, 
we built a robot, named 
CARL-SJR, with a 
large tactile sensory 
area and a surface 
capable of displaying 
bright colors.  

27 

Reinforcement Learning Paradigm 

•  The user has to learn how to reward CARL-SJR 
–  CARL-SJR has innate tactile preferences. 
–  CARL-SJR gives the user feedback in response to a 

touch. 
•  CARL-SJR can learn the user’s preferences  

–  Conditioning task: learn to associate conditioned 
stimulus (CS) and unconditioned stimulus (US). 

•  CS is a color pattern and US is a touch.  
•  Conditioned response (CR) is bright color.  
•  Unconditioned response (UR) is a high tone. 

28 
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Experimental Paradigm 

•  CARL-SJR initiated a trial by displaying a color (CS). 
•  The user must choose to reward CARL-SJR with a touch 

pattern (US) within a 2 second window. 

29 

FeedMe 
Learning CARL-SJR’s Preferences  
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SNN Network Architecture 

•  The neural architecture based on the dual-pathway model: 
–  CS input to both the decremental and incremental pathways.  
–  US input to the incremental pathway.  
–  Incremental and decremental pathways balance each other out when a 

reward predicted by the CS and arrives at the expected time of the US.  
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Trackballs as a Biomimetic 
Tactile Sensor 

•  Generates spikes 
naturally: 
–  Neuromorphic sensor 
–  Directly compatible with 

simulated spiking 
neurons. 

•  Emulates first-order 
directionally tuned 
tactile neurons. 

N% S%

N%S%

S%

N%

N%

S%

Magnegc%Sensor%

V%

t%

N% S%S%

Pruszynski et al, (2014), Nature Neuronscience 

spike%

t%
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CARL-SJR Learned User’s 
Color Preference 

•  Top: DA response to the 
CS (colored lines) and US 
(gray lines). 

•  Middle: Synaptic weight 
changes during trials. 
–  User reinforced Blue and 

Yellow. 
•  Bottom: Probability of CR 

and UR during trials.  
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Conclusions 
•  We demonstrated a neurorobot which was 

capable of: 
–  Sensing noisy, real-world tactile inputs 
–  Learning to associate user preferences with touch 

patterns.  
•  A detailed model cortical and subcortical brain 

areas controlled CARL-SJR’s behavior.  
•  CARL-SJR may have applications as a tactile 

socially assistive robots with a long-term goal of 
standardizing and automating therapy for 
children with developmental disorders and adults 
with dementia.  
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A Cortical Neural Network Model For 
Visually Guided Robot Navigation 

35 

Navigating a Cluttered Scene Using Vision 

hbps://www.youtube.com/watch?v=UEIn8GJIg0E%

Crossing a busy  
intersection in Ethiopia 

Walking through a crowd at  
the San Diego County Fair 
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Visual Motion Pathway 
Dorsal Stream (Macaque) 

Spatial Localization and Action 

  
 

•  Primary visual cortex (V1) 
–  Tuned to simple attributes of shape, motion, 

color, texture, depth. 

•  Middle temporal (MT) area 
–  Tuned to coherent local motion (retinal flow) 

•  Medial Superior Temporal (MST) area 
and Ventral Intra-Parietal (VIP) 
–  Tuned to global, complex motion. 
–  Self-motion and object motion. 
–  Multimodal. 

(Britten,)2008))
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V1 and MT Model 
•  Spatiotemporal-energy model of V1 

–  Bank of linear space-time oriented 
filters (rate-based). 

•  Adapted from Simoncelli & Heeger, 1998. 

–  Direction-selective cells. 
–  Fully realized in CUDA. 

•  Two-stage spiking model of MT 
–  Izhikevich spiking neurons: regular-

spiking / fast-spiking 
•  153,216 neurons. 
•  ~40 million synapses. 
•  Runs in real-time with video.  

–  Component Direction Selective cells. 
–  Pattern Direction Selective cells: 

•  Direction pooling + opponent 
inhibition. 

•  Signals the global pattern of motion. 
•  Solves the aperture problem 

 
original image (and time) resolution. The other two scales were
achieved by successively blurring the image with a Gaussian
kernel. The three stimuli Ir(x,y,t) can thus be expressed as:

I0 x; y; tð Þ ¼ I x; y; tð Þ

I1 x; y; tð Þ ¼ exp
− x2 þ y2 þ t2ð Þ

2

! "
*I0 x; y; tð Þ

I2 x; y; tð Þ ¼ exp
− x2 þ y2 þ t2ð Þ

2

! "
*I1 x; y; tð Þ;

ð6Þ

where * denotes convolution. In order to circumvent the non-
causality of these convolutions (the response depends both on
past and future stimulus intensities), a time delay of four
frames was introduced (see (Simoncelli and Heeger 1998)).

V1 Simple Cells A large body of research has found that
neurons located in V1 that project to MT are directionally
selective and may be regarded as local motion energy filters
(Adelson and Bergen 1985; DeAngelis et al. 1993; Movshon
and Newsome 1996). In our network, V1 simple cells are
modeled as linear space-time-oriented filters whose receptive
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Fig. 1 Network architecture. 32×32 grayscale images are fed through
model V1, MT, and LIP (as explained in sections “Spatiotemporal-Ener-
gy Model of V1 – Spiking Layer of LIP Decision Neurons”). Shown is a
snapshot in time of the network’s response to an example RDK stimulus
in which 50 % of the dots drift to the right. Black bold arrows denote
synaptic projections. Inhibitory projections and populations are not

shown. Numbers in parentheses next to an element are the equations that
describe the corresponding neuronal response or synaptic projections (see
text). V1 filter responses were mapped onto mean firing rates by repro-
ducing the contrast sensitivity function reported for V1 cells projecting to
MT, as explained in section “Spatiotemporal-Energy Model of V1”

440 Neuroinform (2014) 12:435–454
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Model Response to Motion Patterns 
Component and Pattern Selectivity  

ComponentK
direc:onK
selec:ve'

Pa9ernK
direc:onK
selec:ve'
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Model Response to Motion Patterns 
Component and Pattern Selectivity  

V1 MT-CDS MT-PDS 
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Visually Guided Robot Navigation 
Architecture and I/O 
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hbp://www.socsci.uci.edu/~jkrichma/ABR%
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Android Based Robotics (LeCarl) 

hbp://www.socsci.uci.edu/~jkrichma/ABR%
%
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Visually Guided Robot Navigation 
Server Control GUI and Results 
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Visually Guided Robot Navigation 
By a Spiking Neural Network of Visual Cortex 
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Comparison to Psychophysical Data 

•  Dotted lines are human trajectories  
–  Replicated with dynamical system by Fajen & Warren, 2003; 2007. 
–  Comparable to neural simulation by Browning, Grossberg & Mingolla. 

•  Colored lines are robot trajectories. 
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Team CARL 
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Neuromorphic Applications and 
Neurorobotics 

•  Large-scale, complex, realistic brain simulations are necessary: 
–  For the field of neuromorphic engineering to produce results and 

applications of practical value. 
–  To help computational neuroscientists develop new theories of neural 

function. 
•  Embodying neural algorithms on physical devices are necessary to: 

–  Closely couple the brain, body and environment. 
–  Critical for understanding cognition. 
–  Develop truly cognitive machines. 

•  To address this challenge, our approach leverages: 
–  Optimization capabilities of evolutionary computation. 
–  Exploits graphical processing unit (GPU) parallelism. 
–  Implementation is compatible with neuromorphic hardware. 

•  Simulation environment is publicly available: 
–  http://www.socsci.uci.edu/~jkrichma/CARLsim 
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Thank You!! 

•  More information can be found at: 
– http://www.socsci.uci.edu/~jkrichma 
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