

Cognitive Anteater Robotics Laboratory (CARL)

Jeff Krichmar
Department of Cognitive Sciences
Department of Computer Science

UC Irvine

2

CARL Research and Related Coursework

- Neurorobotics or Brain-Based Robotics
 - Neuromodulation as a robot controller
 - Socially Assistive Robot that focuses on touch
- Neuromorphic Computing
 - Spiking Neural Network of Motion Perception and Visual Navigation
- Courses
 - Cognitive Robotics
 - PSYCH 112R/LR
 - PSYCH 268R
 - Computational Neuroscience
 - PSYCH 268A

Goals of Neurorobotics

- · Understanding through building
 - Building physical systems that demonstrate cognitive abilities could lead to a better understanding of the neural machinery that realizes cognitive function.
- · Building more intelligent machines
 - Constructing physical systems could lead to a system that demonstrates capabilities commonly found in the animal kingdom, but rarely found in artificial systems.

5

Design Principles for Neurorobots

- Engage in a behavioral task.
- Behavior controlled by a simulated nervous system that reflects the brain's architecture and dynamics.
- The world is an unlabelled place.
 - Organize the signals from the environment into categories without a priori knowledge or instruction.
- A value system that signals the salience of environmental cues to the robot's nervous system.
- Needs to be situated in the real world.
- Behavior and activity of its simulated nervous system must allow comparisons with empirical data.

Krichmar, J.L., and Edelman, G.M. (2005). Artificial Life, Vol. 11, 63-78.

Agent Design Principle: Value • Intelligent agents are equipped with a value system that constitutes a basic assumption of what is good and bad for an agent. Pfeifer & Bongard, "How the body shapes the way we think." The MIT Press, 2007

Organisms Adapt Their Behavior Through Value Systems

- Non-specific, modulatory signals to the rest of the brain.
- Biases the outcome of synaptic efficacy in the direction needed to satisfy global needs.

Vertebrate Neuromodulatory Systems

Cholinergic

Dopaminergic

Serotonergic

UC Irvine

Motivation

- Understand principles of the brain's neuromodulatory systems through building a *neurorobotic* system.
 - Neuromodulatory systems are present in all vertebrates and are critical for an animal to quickly assess the context of sensory input and take action.
 - Neuromodulators signal environmental changes to the nervous system and alter neuronal responses such that the organism can respond quickly and accurately to these changes.
- Present a minimal neural model that captures the aspects of neuromodulation with the goal of developing a biologically inspired controller for robots.
- Develop a model of social disorders and test the model in both an animal model and in human robot interaction experiments.

17

CARL Roomba and Cognitive Control

- Model for animal behavior and neurological diseases:
 - Anxious states, attention deficits, autism spectrum disorder
- Action selection module:
 - Fluidly switching between behavioral states.
 - Could be added onto conventional control systems.

UC Irvine

18

Neuromorphic Engineering

 Building Hardware and Applications Based on the Brain's Structure and Dynamics

Brains by the Numbers				
	Species	Neurons	Synapses	
	Nematode	302	103	
	Fruit Fly	100,000	107	
	Honeybee	960,000	10 ⁹	
	Mouse	75,000,000	10 ¹¹	
	Cat	1,000,000,000	10 ¹³	
	Human	85,000,000,000	1015	
Source – http://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons				

Brain Computations

- Massive parallelism (10¹¹ neurons)
- Massive connectivity (10¹⁵ synapses)
- Excellent power-efficiency
 - ~ 20 W for 10^{16} flops
- Low-performance components (~100 Hz)
- Low-speed comm. (~meters/sec)
- · Low-precision synaptic connections
- Probabilistic responses and fault-tolerant
- · Autonomous learning

UC Irvine Examples of Neuromorphic Hardware Devices Hardware Project: Hardware Group **Neuron Models Plasticity** SpiNNaker: - Completely digital Spiking: 1.000 neurons 10k synapses Industry and UK - Consists of array of nodes Izhikevich Yes: STDP per ARM9 per ARM9 core universities - Each node has 18 ARM9 cores and non-spiking core - Final goal: 1,036,800 cores - Analog/digital hybrid Spiking: Two-65.536 375M Neurogrid: Stanford - Full board has 16 neurochips compartment No neurons per synapses per - Operates on only 5 W University neurons neurochip neurochip True North Cog. - Completely digital Spiking: many 256 neurons 256K binary Architecture: - Consists of hierarchical design behaviors No per neurosynapses per IBM SyNAPSE Team - Neurosynaptic core is basic including LIF synaptic core neuro-synaptic - Analog/digital hybrid HRL neural chip: 70k virtual HRL Labs, SyNAPSE - Synaptic weights stored in Spiking: Yes: STDP 576 neurons synapses per memristors Izhikevich Team per chip chip - Analog/digital hybrid HiCANN: BrainScaleS - Each wafer has 384 chips Spiking: AdExp 16k synapses Yes: STDP 512 neurons Team - Neurons are analog and I&F per chip per chip - Synapses are digital

UC Irvine

Spiking Neural Networks (SNNs)

What are SNNs?

- Neural Networks that model neuronal/synaptic temporal dynamics
- Spike only when the membrane voltage exceeds a threshold

Why use SNNs?

- Spike events are rare: average brain activity 1-10 Hz
 - · More energy efficient than sending an analog rate.
- Event-driven nature of SNNs fits well with neuromorphic hardware
 - Use "Address Event Representation" (AER) to minimize communication.
 - Provides a common language for neuromorphic systems.
- SNNs provide temporal coding but can still use rate coding
- SNNs support biologically plausible learning rules
 - Spike Timing-Dependent Plasticity (STDP)
 - Short-term Plasticity.
 - Neuromodulation.

CARLsim

A User-Friendly and Highly Optimized Library for the Creation of Neurobiologically Detailed Spiking Neural Networks

- · GPU-accelerated, user-friendly, well documented.
 - Runs on Linux, Mac OS, Windows systems with CUDA SDK.
- Capable of simulating biological detailed neural models.
 - Runs 10⁴ to 10⁵ neurons with ~10⁷ plastic synapses in real-time on a single GPU card.
- · Tactile Processing and Hedonic Touch in the Cortex
 - Chou, T.-S., Bucci, L.D., and Krichmar, J.L. (2015). Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex. Frontiers in Neurorobotics 9.
- · Visual Cortical Processing
 - M. Beyeler, M. Richert, N. D. Dutt, J. L. Krichmar, Efficient Spiking Neural Network Model of Pattern Motion Selectivity in Visual Cortex. Neuroinformatics, 2014.
- · Freely available at:
 - http://www.socsci.uci.edu/~jkrichma/CARLsim/

Learning Touch Preferences With A Tactile Robot Using Dopamine Modulated STDP In A Model Of Insular Cortex

UC Irvine

26

Introduction

- Humans and other animals respond preferentially to different types of touches.
 - For example cats prefer to be petted from head to tail.
 - What neural areas respond to hedonic touch?
 - · Insular cortex responds to hedonic touch.
 - · Dopaminergic neurons respond to reward and pleasure.
- Designed a neurorobot that has a surface designed for petting.
 - Tactile sensors project to a model of somatosensory cortex and insular cortex.
 - Signals its preferences through coloration of its surface and auditory signals.
- Use this neurorobot and its simulated nervous system to explore learning preferences in uncertain, real-world environments.

27

CARL-SJR

Cognitive Anteater Robotics Laboratory – Spike Judgment Robot

- Because hedonic touch requires a caresser and a caressee, we developed a human robot interaction study that required mutual reinforcement learning.
- To achieve these goals, we built a robot, named CARL-SJR, with a large tactile sensory area and a surface capable of displaying bright colors.

UC Irvine

28

Reinforcement Learning Paradigm

- The user has to learn how to reward CARL-SJR
 - CARL-SJR has innate tactile preferences.
 - CARL-SJR gives the user feedback in response to a touch.
- CARL-SJR can learn the user's preferences
 - Conditioning task: learn to associate conditioned stimulus (CS) and unconditioned stimulus (US).
 - CS is a color pattern and US is a touch.
 - · Conditioned response (CR) is bright color.
 - Unconditioned response (UR) is a high tone.

Conclusions

- We demonstrated a neurorobot which was capable of:
 - Sensing noisy, real-world tactile inputs
 - Learning to associate user preferences with touch patterns.
- A detailed model cortical and subcortical brain areas controlled CARL-SJR's behavior.
- CARL-SJR may have applications as a tactile socially assistive robots with a long-term goal of standardizing and automating therapy for children with developmental disorders and adults with dementia.

A Cortical Neural Network Model For Visually Guided Robot Navigation

Neuromorphic Applications and Neurorobotics

- · Large-scale, complex, realistic brain simulations are necessary:
 - For the field of neuromorphic engineering to produce results and applications of practical value.
 - To help computational neuroscientists develop new theories of neural function.
- Embodying neural algorithms on physical devices are necessary to:
 - Closely couple the brain, body and environment.
 - Critical for understanding cognition.
 - Develop truly cognitive machines.
- · To address this challenge, our approach leverages:
 - Optimization capabilities of evolutionary computation.
 - Exploits graphical processing unit (GPU) parallelism.
 - Implementation is compatible with neuromorphic hardware.
- · Simulation environment is publicly available:
 - http://www.socsci.uci.edu/~jkrichma/CARLsim

UC Irvine

48

Thank You!!

- · More information can be found at:
 - http://www.socsci.uci.edu/~jkrichma