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CARL Research and
Related Coursework

* Neurorobotics or Brain-Based Robotics
— Neuromodulation as a robot controller
— Socially Assistive Robot that focuses on touch
» Neuromorphic Computing
— Spiking Neural Network of Motion Perception and
Visual Navigation
» Courses

— Cognitive Robotics
« PSYCH 112R/LR
* PSYCH 268R

— Computational Neuroscience
« PSYCH 268A
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Goals of Neurorobotics

* Understanding through building

— Building physical systems that demonstrate cognitive abilities could lead
to a better understanding of the neural machinery that realizes cognitive
function.

+ Building more intelligent machines

— Constructing physical systems could lead to a system that demonstrates
capabilities commonly found in the animal kingdom, but rarely found in
artificial systems.
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Design Principles for Neurorobots

* Engage in a behavioral task.

« Behavior controlled by a simulated nervous system
that reflects the brain’s architecture and dynamics.

» The world is an unlabelled place.

— Organize the signals from the environment into categories
without a priori knowledge or instruction.

» Avalue system that signals the salience of
environmental cues to the robot’s nervous system.

* Needs to be situated in the real world.

» Behavior and activity of its simulated nervous
system must allow comparisons with empirical data.

Krichmar, J.L., and Edelman, G.M. (2005). Artificial Life, Vol. 11, 63-78.

It's called Neurorobotic not Neurotic

Neurotic Robots Act More Human (@ examiner.

LN 6, 201401:40PET // BY ERICNILER

ness > Healthcare

Neurotic robots fall apart when asked to act human

ornia Robot Neurotic,

Scientists at the University of
California, Irvine, are programming
robots to be more "neurotic’ in order to
help them take smarter, human-like
decisions.

>

Jeff Krichmar, a professor of Cognitive
Science at the University of California,
is experimenting with building neurotic See Also

robots that exhibit signs of obsessive-

compulsive disorder (just like humans) Look At This Amazing

ar whao are afraid of onen snace Jumping Kangaroo
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WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

A Biologically Inspired Action Selection
Algorithm Based on Principles of
Neuromodulation

ﬁ[ﬁ@mﬁﬁ@f@ in ORIGINAL RESEARCH ARTICLE %
blished: 05 Feb 2013
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A neurorobotic platform to test the influence of
neuromodulatory signaling on anxious and
curious behavior

Jeffrey L. Krichmar'**

" Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
2 Department of Computer Science, University of California, Irvine, Irvine, CA, USA
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Agent Design Principle: Value

* Intelligent agents are equipped with a
value system that constitutes a basic

assumption of what is good and bad for an
agent. ‘

Pfeifer & Bongard, “How the body shapes the way we think.” The MIT Press, 2007
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Organisms Adapt Their Behavior
Through Value Systems

» Non-specific, modulatory signals to the rest of the brain.

» Biases the outcome of synaptic efficacy in the direction
needed to satisfy global needs.

Noradrenergic Cholinergic Dopaminergic Serotonergic

UC Irvine 10

Motivation

» Understand principles of the brain’s neuromodulatory
systems through building a neurorobotic system.

— Neuromodulatory systems are present in all vertebrates
and are critical for an animal to quickly assess the context
of sensory input and take action.

— Neuromodulators signal environmental changes to the
nervous system and alter neuronal responses such that
the organism can respond quickly and accurately to these
changes.

* Present a minimal neural model that captures the
aspects of neuromodulation with the goal of
developing a biologically inspired controller for robots.

» Develop a model of social disorders and test the
model in both an animal model and in human robot
interaction experiments.
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Open Field Test
Typical Mouse Behavior when Free to Explore
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Fonio, E., Benjamini, Y., and Golani, |. (2009). Proc Natl Acad Sci 106, 21335-21340.
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Model Architecture based on
Principles of Neuromodulation

Sensory
Events Attentional Filter
Object \ > AchNe (Object)
Light \\ > AchNe (Light) OFC
Bump > AchNe (Bump) ;
Open Field
Explore Object
mPFC
DA Wall Follow
Find Home
= U/
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Typical CARL-Roomba Behavior
when Free to Explore
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Population Response to Light Flash
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Serotonin Levels Affect Risk-Taking
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CARL Roomba and Cognitive Control

* Model for animal
behavior and neurological
diseases:

— Anxious states, attention
deficits, autism spectrum
disorder

* Action selection module:

— Fluidly switching between
behavioral states.

— Could be added onto
conventional control
systems.

17
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Neuromorphic Engineering

» Building Hardware and Applications Based
on the Brain’s Structure and Dynamlcs
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Brains by the Numbers

| Species | Neurons | Synapses ___|

Nematode 302 103
Fruit Fly 100,000 107
Honeybee 960,000 10°
Mouse 75,000,000 10t
Cat 1,000,000,000 103
Human 85,000,000,000 10%

Source — http://en.wikipedia.org/wiki/List_of_animals_by number_of_neurons

UC Irvine

Brain Computations

Massive parallelism (10" neurons)
Massive connectivity (1015 synapses)

Excellent power-efficiency
— ~20 W for 10" flops

Low-performance components (~100 Hz)
Low-speed comm. (~meters/sec)
Low-precision synaptic connections
Probabilistic responses and fault-tolerant
Autonomous learning

11/16/15
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Examples of Neuromorphic Hardware Devices

Hardware Project: Hardware Description Neuron Models Synaptic Max Synapses
Hardware Group Plasticity

SpiNNaker: - Completely digital Spiking: 1,000 neurons 10k synapses
Industry and UK - Consists of array of nodes Izhikevich Yes: STDP per ARM9 per ARM9 core
universities - Each node has 18 ARMS9 cores and non-spiking core
- Final goal: 1,036,800 cores
- Analog/digital hybrid Spiking: Two- 65,536 375M
Neurogrid: Stanford - Full board has 16 neurochips compartment No neurons per synapses per
University - Operates on only 5 W neurons neurochip neurochip
True North Cog. - Completely digital Spiking: many 256 neurons 256K binary
Architecture: - Consists of hierarchical design behaviors No per neuro- synapses per
IBM SyNAPSE Team - Neurosynaptic core is basic including LIF synaptic core  neuro-synaptic
building block core
HRL neural chip: - Analog/digital hybrid 70k virtual
HRL Labs, SyNAPSE - Synaptic weights stored in Spiking: Yes: STDP 576 neurons synapses per
Team memristors Izhikevich per chip chip
- Analog/digital hybrid
HiCANN: BrainScaleS - Each wafer has 384 chips Spiking: AdExp Yes: STDP 512 neurons 16k synapses
Team - Neurons are analog and I&F per chip per chip
- Synapses are digital
UC Irvine 22

Spiking Neural Networks (SNNs)

» What are SNNs?

— Neural Networks that model neuronal/synaptic temporal
dynamics

— Spike only when the membrane voltage exceeds a threshold

* Why use SNNs?

Spike events are rare: average brain activity 1-10 Hz

* More energy efficient than sending an analog rate.

hardware

* Use “Address Event Representation” (AER) to minimize
communication.

* Provides a common language for neuromorphic systems.

» Spike Timing-Dependent Plasticity (STDP)
» Short-term Plasticity.
» Neuromodulation.

Event-driven nature of SNNs fits well with neuromorphic

SNNs provide temporal coding but can still use rate coding
SNNs support biologically plausible learning rules

11/16/15
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Components of a SNN
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CARLsIim

A User-Friendly and Highly Optimized Library for the Creation of
Neurobiologically Detailed Spiking Neural Networks

* GPU-accelerated, user-friendly, well documented.
— Runs on Linux, Mac OS, Windows systems with CUDA SDK.
» Capable of simulating biological detailed neural models.
— Runs 104 to 105 neurons with ~107 plastic synapses in real-time on a
single GPU card.
» Tactile Processing and Hedonic Touch in the Cortex
— Chou, T.-S., Bucci, L.D., and Krichmar, J.L. (2015). Learning Touch
Preferences with a Tactile Robot Using Dopamine Modulated STDP in a
Model of Insular Cortex. Frontiers in Neurorobotics 9.
» Visual Cortical Processing
— M. Beyeler, M. Richert, N. D. Dutt, J. L. Krichmar, Efficient Spiking
Neural Network Model of Pattern Motion Selectivity in Visual Cortex.
Neuroinformatics, 2014.
* Freely available at:
— http://www.socsci.uci.edu/~jkrichma/CARLsim/

11/16/15
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Uc University of
California, Irvine

Learning Touch Preferences With A
Tactile Robot Using Dopamine Modulated
STDP In A Model Of Insular Cortex

UC Irvine

Introduction

« Humans and other animals respond preferentially to
different types of touches.
— For example cats prefer to be petted from head to tail.
— What neural areas respond to hedonic touch?
* Insular cortex responds to hedonic touch.
* Dopaminergic neurons respond to reward and pleasure.
» Designed a neurorobot that has a surface designed for
petting.
— Tactile sensors project to a model of somatosensory cortex and
insular cortex.
— Signals its preferences through coloration of its surface and
auditory signals.
» Use this neurorobot and its simulated nervous system to
explore learning preferences in uncertain, real-world
environments.

11/16/15
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CARL-SJR

Cognitive Anteater Robotics Laboratory — Spike Judgment Robot

» Because hedonic touch
requires a caresser N
and a caressee, we p
developed a human
robot interaction study
that required mutual
reinforcement learning.

» To achieve these goals,
we built a robot, named
CARL-SJR, with a
large tactile sensory
area and a surface
capable of displaying
bright colors.

UC Irvine

Reinforcement Learning Paradigm

» The user has to learn how to reward CARL-SJR
— CARL-SJR has innate tactile preferences.
— CARL-SJR gives the user feedback in response to a
touch.
* CARL-SJR can learn the user’s preferences

— Conditioning task: learn to associate conditioned
stimulus (CS) and unconditioned stimulus (US).
» CSis a color pattern and US is a touch.
» Conditioned response (CR) is bright color.
* Unconditioned response (UR) is a high tone.

11/16/15
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UC Irvine
Experimental Paradigm
l&{ release of CS at decremental pathway
lﬁnelease of CS at incremental pathway
0.8s, | 2s ., 29s |
L= ol |
/L
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60 66 time (s)

trial N trial N+1

» CARL-SJR initiated a trial by displaying a color (CS).
» The user must choose to reward CARL-SJR with a touch
pattern (US) within a 2 second window.

UC Irvine

FeedMe
Learning CARL-SJR’s Preferences

11/16/15
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SNN Network Architecture
------------ Plas“c
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» The neural architecture based on the dual-pathway model:
— CSinput to both the decremental and incremental pathways.
— US input to the incremental pathway.

— Incremental and decremental pathways balance each other out when a
reward predicted by the CS and arrives at the expected time of the US.

UC Irvine 32

Trackballs as a Biomimetic
Tactile Sensor

» Generates spikes
naturally:
— Neuromorphic sensor
— Directly compatible with
simulated spiking
neurons.
» Emulates first-order
directionally tuned
tactile neurons.

Pruszynski et al, (2014), Nature Neuronscience

11/16/15
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CARL-SJR Learned User’s
Color Preference ”
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UC Irvine
Conclusions
* \We demonstrated a neurorobot which was
capable of:

— Sensing noisy, real-world tactile inputs
— Learning to associate user preferences with touch
patterns.
» A detailed model cortical and subcortical brain
areas controlled CARL-SJR’s behavior.

+ CARL-SJR may have applications as a tactile
socially assistive robots with a long-term goal of
standardizing and automating therapy for
children with developmental disorders and adults
with dementia.

11/16/15
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Uc University of
California, Irvine

A Cortical Neural Network Model For
Visually Guided Robot Navigation

UC Irvine 36

Navigating a Cluttered Scene Using Vision

Crossing a busy Walking through a crowd at
i_ntersection in Ethiopia Ythe San Diego County Fair

18
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Visual Motion Pathwayb

Dorsal Stream (Macaque)
Spatial Localization and Action

Primary visual cortex (V1) L]
— Tuned to simple attributes of shape, motion,
color, texture, depth.

Middle temporal (MT) area el e
— Tuned to coherent local motion (retinal flow)
Medial Superior Temporal (MST) area
and Ventral Intra-Parietal (VIP)

— Tuned to global, complex motion.

— Self-motion and object motion.

— Multimodal.

(Britten, 2008)

UC Irvine

Spatiotemporal-energy model of V1
— Bank of linear space-time oriented
filters (rate-based).
« Adapted from Simoncelli & Heeger, 1998.
— Direction-selective cells.
— Fully realized in CUDA.
Two-stage spiking model of MT
— Izhikevich spiking neurons: regular-
spiking / fast-spiking
* 153,216 neurons.
* ~40 million synapses.
* Runs in real-time with video.
— Component Direction Selective cells.
— Pattern Direction Selective cells:
+ Direction pooling + opponent
inhibition.
+ Signals the global pattern of motion.
» Solves the aperture problem

spiking

rate-based

11/16/15
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Model Response to Motion Patterns
Component and Pattern Selectivity
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Model Response to Motion Patterns
Component and Pattern Selectivity
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Visually Guided Robot Navigation
Architecture and 1/0O

ABR client

Le Carl

ABR server

Cortical model

‘_\‘

Image
frames
(UDP)

320x240px
~30fps

WiFi/3G

Servo
commandsg

Obstacle component

—

| N |

(TCP)

ABR = Android Based Robot
http://www.socsci.uci.edu/~jkrichma/ABR
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Steering control
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UC Irvine

Android Based Robotics (LeCarl)

http://www.socsci.uci.edu/~jkrichma/ABR
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Visually Guided Robot Navigation
Server Control GUIl and Results

.....
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Visually Guided Robot Navigation
By a Spiking Neural Network of Visual Cortex

22
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Comparison to Psychophysical Data
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* Dotted lines are human trajectories
— Replicated with dynamical system by Fajen & Warren, 2003; 2007.
— Comparable to neural simulation by Browning, Grossberg & Mingolla.
Colored lines are robot trajectories.
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Team CARL

Back row from left to right: Alexis Craig, Alex Wang, Michael Beyeler,

Feng Rong, Timo Oess, Saideep Gupta.
Front row from left to right: Emily Rounds, Steve Doubleday, Jeffrey

Krichmar, Ting-Shuo Chou, Nikil Dutt.

Listopad
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Neuromorphic Applications and
Neurorobotics

» Large-scale, complex, realistic brain simulations are necessary:

— For the field of neuromorphic engineering to produce results and
applications of practical value.

— To help computational neuroscientists develop new theories of neural
function.
»  Embodying neural algorithms on physical devices are necessary to:
— Closely couple the brain, body and environment.
— Critical for understanding cognition.
— Develop truly cognitive machines.
» To address this challenge, our approach leverages:
— Optimization capabilities of evolutionary computation.
— Exploits graphical processing unit (GPU) parallelism.
— Implementation is compatible with neuromorphic hardware.
» Simulation environment is publicly available:
— http://www.socsci.uci.edu/~jkrichma/CARLsim

UC Irvine

Thank You!!

» More information can be found at:

— http://www.socsci.uci.edu/~jkrichma
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