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Abstract
Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. 
Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among gluta-
matergic Pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state 
firing patterns are poorly understood. Leveraging the Hippo campo me. org knowledge base, we developed a data-driven, 
large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific 
connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment 
using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the 
resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible 
grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns 
of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network 
structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance 
of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the 
gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our 
SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our 
approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal 
architecture of this system subserves its crucial cognitive roles.

Keywords Neuron-type specific connectivity · Perisomatic-targeting · Dendritic-targeting · Phase · Oscillation · Network 
dynamics

Introduction

The rodent hippocampal formation has been the subject of 
extensive investigation since discovery of its critical role in 
episodic memory consolidation and retrieval [1–3]. Recently 

formed memories are reinforced and replayed while the 
rodent is eating, drinking, sleeping, and during quiet wake-
fulness, a set of behaviors collectively referred to as resting 
state [4, 5]. With an estimated two million neurons [6] and 
thirty billion synapses [7] in the mouse hippocampal for-
mation, computationally characterizing how resting-state 
dynamics emerge at the cellular level, and how they relate 
to other hippocampal functions, is a daunting task. Dif-
ferent scales to explore resting-state functions range from 
the molecular to the systems level, each conferring distinct 
descriptions and potential insights.

An intermediate level of description relies on the notion 
of neuron types. While no two cells are ever exactly alike, 
neurons display distinct patterns of similarities and differ-
ences [8]. In practice, neuroscientists routinely classify neu-
rons based on morphological, physiological, and molecular 
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properties [9]. This level of description is the focus of 
Hippo campo me. org, a knowledge base of neuron types in 
the rodent hippocampal formation [10]. Hippo campo me. org 
identifies neuron types based on their primary neurotrans-
mitter (glutamate or GABA) and the presence of axons and 
dendrites across distinct anatomical regions and layers [11]. 
These axonal and dendritic distributions are then leveraged 
to define the circuit of potential connectivity at the neuron 
type level [12]. In this framework, a potential connection 
type is associated with a directional pair of one presynap-
tic and one postsynaptic neuron type [13]. This resource 
describes 122 neuron types and 3120 potential connection 
types throughout the hippocampal formation [14], with 
examples in area CA3 such as Pyramidal, Axo-axonic, and 
Bistratified. For every neuron type, Hippo campo me. org also 
provides dense coverage of properties such as the expression 
of specific molecules [15], biophysical membrane proper-
ties (e.g., input resistance and resting potential), and elec-
trophysiological firing patterns [16].

The long-term goal of the Hippo campo me. org project is 
to create a computational model of the rodent hippocampal 
formation as a full-scale spiking neural network (SNN) 
simulation [17]. Building this SNN needs to account for the 
population size of each neuron type [18] and their input/
output properties [19], along with the probability of con-
nection of each potential connection [20] and their syn-
aptic signal features [21]. A data-driven SNN integrating 
parameter estimates for each of these characteristics is very 
challenging to create and requires considerable computa-
tional resources to simulate. Nevertheless, we believe this 
particular description level will have strong explanatory 
power. Textbook hypotheses about the hippocampal forma-
tion (e.g., spatial navigation or pattern separation, com-
pletion, and comparison) can be tested based on existing 
knowledge and will allow for new hypotheses to emerge if 
the current ones do not hold. Data-driven parameter esti-
mates can be updated when the simulated dynamics do 
not match the experimental observations. In this manner, 
simulations become like jigsaw puzzles, where poor-fitting 
pieces can be swapped for more suitable alternatives, ena-
bling an effective theory–experiment loop.

In this work, we stepped further towards realizing the 
vision of Hippo campo me. org, with a focus on investigating 
the mechanisms of resting-state dynamics. Specifically, we 
chose to build a large-scale SNN of the mouse CA3 utilizing 
eight neuron types (one excitatory principal cell type and 
seven inhibitory interneuron types) and their 51 potential 
connections. The diversity of these excitatory and inhibi-
tory elements is important for establishing and maintaining 
the balanced activity exhibited during resting-state dynam-
ics [22, 23]. This choice is complementary to prior efforts  
in the dentate gyrus (DG) [24, 25] and CA1 [26, 27]. This 
network model consists of approximately 90,000 neurons 

and 250 million synapses. Running a simulation of this size 
currently exceeds the computational power of standard cen-
tral processing units (CPUs). We have overcome this issue 
by instantiating the model in the open-source CARLsim4 
simulation environment, which is optimized to run on mas-
sively parallel graphical processing units (GPUs) [28]. The 
simulated CA3 SNN was able to spontaneously generate 
rhythmic network activity that was stable and robust when 
provided synchronous or asynchronous transient stimulation 
over a broad array of intensities. Individual neuron types 
fired in frequency ranges consistent with those observed 
during resting-state behaviors in vivo. Simulations involv-
ing altered network structures lacking either neuron- or 
connection-type specificity were neither stable nor robust, 
highlighting the importance of circuit architecture in build-
ing stable and robust large-scale SNNs. Moreover, the incor-
poration of external input from DG Granule cells to the CA3 
SNN generated slow gamma oscillations, demonstrating that 
the model can produce oscillations observed in CA3 and that 
the framework is flexible to the addition of new features to 
test hypotheses on the hippocampal formation.

Methods

Neuron and Connection Types

Hippo campo me. org defines neuron types based on their pri-
mary neurotransmitter (glutamate or GABA) and the pres-
ence of axons and dendrites across distinct layers: in the case 
of area CA3, strata lacunosum-moleculare (SLM), radiatum 
(SR), lucidum (SL), pyramidale (SP), and oriens (SO). For 
example, Hippo campo me. org defines a CA3 Pyramidal cell 
as a glutamatergic neuron with dendrites in all 5 layers (SO, 
SP, SL, SR, and SLM) and axons in SO and SR; whereas a 
CA3 QuadD-LM cell is a GABAergic neuron with dendrites 
in SO, SP, SL, and SR and axons in SLM. The presence of 
the axons of a presynaptic neuron type and dendrites of a 
postsynaptic neuron type within the same layer of CA3 iden-
tifies a connection type. For example, since CA3 Pyramidal 
cells and CA3 QuadD-LM cells have axons and dendrites 
in SR, respectively, they constitute a connection type (from 
the Pyramidal neuron type to the QuadD-LM neuron type).

Neuron Type Selection

The full-scale CA3 network consisted of Pyramidal  
cells and seven interneuron types: Axo-axonic, Basket, 
Basket CCK+ , Bistratified, Ivy, Mossy Fiber-Associated 
ORDEN (MFA ORDEN), and QuadD-LM cells (Fig. 1). 
The choice of neuron types was based on the following 
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rationale: (1) one excitatory cell type, which served as the 
main readout for the network, and (2) selection of at least 
one interneuron type for each major inhibitory pathway 
in this area, namely, perisomatic-targeting with axons in 
SP (Axo-axonic, Basket, Basket CCK+), collateral-related 
with axons in SO and SR (Bistratified and Ivy), mossy 
fiber associated with axons in SL (MFA ORDEN), and 
perforant pathway-associated with axons in SLM (QuadD-
LM, a type of O-LM cell). For firing frequency analysis 
and for alternate networks, non-perisomatic interneu-
ron types were grouped as dendritic-targeting (Bistrati-
fied, Ivy, MFA ORDEN, QuadD-LM). Based on axonal- 
dendritic overlaps as described above, these 8 neuron types 
give rise to 51 connection types.

Biologically Realistic Parameter Selection

Hippo campo me. org annotates neuron and connection types 
with quantitative properties (i.e., parameters) necessary to 
simulate them. Model parameters can be divided into two 
broad categories: those describing neurons and those describ-
ing synaptic connections. The neuron category included a 
set of parameters that defines the neuronal input–output 
function, i.e., the spiking pattern produced by a neuron in 
response to a given stimulation [16]. Hippo campo me. org 
adopted a dynamical systems framework [29] that in its 
simplest form represents neurons as single compartments 
using nine parameters [30]: the membrane capacitance (C), 
a constant that reflects conductance during spike generation 

Fig. 1  Connectivity of the 
model CA3 circuit. Connection 
probabilities from excitatory 
cells are indicated with a circle, 
from inhibitory perisomatic 
cells with a triangle, and from 
inhibitory dendritic-targeting 
cells with a square. Relative 
shape size indicates connection 
probability (scale at bottom 
right). Dotted lines indicate the 
laminar extent of the dendritic 
tree for each neuron type to 
explain the connectivity, but 
neurons are simulated as single 
compartments in our network. 
QuadD, QuadD-LM; PC, 
Pyramidal cell; BC, Basket cell; 
AAC, Axo-axonic cell; BiC, 
Bistratified cell; SLM, stratum 
lacunosum-moleculare; SR, 
stratum radiatum; SL, stratum 
lucidum; SP, stratum pyrami-
dale; SO, stratum oriens
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(k), the resting membrane potential (vr), the instantaneous 
threshold potential (vt), a recovery time constant (a), a con-
stant that reflects conductance during repolarization (b), the 
spike cutoff value (vpeak), the membrane potential reset value 
(Vmin), and a constant that reflects the currents activated dur-
ing a spike (d). Hippo campo me. org provides experimentally 
constrained values of each of these 9 parameters for most 
neuron types (hippo campo me. org/ php/ Izhik evich_ model. 
php). These parameter values were selected as those best-
fitting the firing patterns reported in the literature for the 
corresponding neuron types [30].

The other parameter in the neuron category was the popu-
lation size that determines the number of neurons of a given 
type. Numerical optimization was utilized to estimate these 
population sizes based on relevant published information, 
such as the laminar location of the soma of the neuron type, 
its known expression of a given molecule, and the measured 
density of cells expressing that molecule in that layer [31, 
32]. Each neuron type in our network was selected as a rep-
resentative of a supertype as defined in Hippo campo me. org. 
Thus, the population size of each neuron type in our network 
is the sum of all neuron types of the given supertype. For 
example, the number of CA3 Axo-axonic cells (i.e., the popu-
lation size parameter value for this particular neuron type) 
consisted of the sum of Axo-axonic proper and Horizontal 

Axo-axonic cells (two variants of Axo-axonic neurons in 
CA3), which in the model was 1,909. The population sizes 
and the 9 Izhikevich parameters for each of the 8 CA3 neu-
ron types included in the network summed up to a total of 
80 parameter values in the neuron category (Tables 1 and 2).

The category of parameters describing synaptic connec-
tions included two sets of parameters: one pertaining to syn-
aptic dynamics, i.e., a description of the postsynaptic signal 
caused by a presynaptic spike and related short-term plastic-
ity (STP), and the other pertaining to connection probabil-
ity and delay between the presynaptic and the postsynaptic 
neuron types. To obtain estimates for the synaptic dynamics, 
synaptic electrophysiology data from over a thousand studies 
were mined, which included values for variables such as the 
type of synaptic response (glutamatergic or GABAergic), 
the reversal potential, the recording method (e.g., whole-cell 
patch-clamp), the ionic compositions of the intracellular and 
extracellular solutions, and the receptor-mediated currents 
that were measured (AMPA or  GABAA) [21]. These raw 
synaptic data were then digitized and integrated using com-
putational modeling and deep learning techniques to obtain 
normalized parameter estimates for each connection type 
in our network using the Tsodyks, Pawelzik, and Markram 
(TPM) STP model [33–35]. Specifically, synaptic dynam-
ics in the TPM model are described by five parameters: the 

Table 1  Population sizes for 
neuron types utilized in the 
network models

CCK + Cholecystokinin positive, O-LM oriens-lacunosum moleculare

Neuron type Supertype Population size

Local circuit CA3 Pyramidal Glutamatergic PC:Pyramidal:CA3 74,366
CA3 Axo-axonic Perisomatic-targeting:Axo-axonic:CA3 1,909
CA3 Basket Perisomatic-targeting:Basket:CA3 515
CA3 Basket CCK+ Perisomatic-targeting:Basket CCK+:CA3 665
CA3 Bistratified Collateral-related:RO-targeting:CA3 4,631
CA3 Ivy Ivy/Neurogliaform Family:Ivy/Neurogliaform:CA3 2,334
CA3 MFA ORDEN Mossy Fiber-related:L-targeting:CA3 1,526
CA3 QuadD-LM O-LM Family:O-LM-Like:CA3 3,280
Local circuit total 89,226

Local circuit +  
external 
afferents

DG Granule Glutamatergic GC:Granule:DG 394,502
Total 483,728

Table 2  Izhikevich parameters 
by neuron type Neuron type k a b d C Vr Vt Vmin Vpeak

CA3 Pyramidal 0.792 0.008 −42.552 588 366 −63.204 −33.604 −38.868 35.861
CA3 Axo-axonic 3.961 0.005 8.684 15 165 −57.100 −51.719 −73.969 27.799
CA3 Basket 0.995 0.004 9.264 −6 45 −57.506 −23.379 −47.556 18.455
CA3 Basket CCK+ 0.583 0.006 −1.245 54 135 −58.997 −39.398 −42.771 18.275
CA3 Bistratified 3.935 0.002 16.580 19 107 −64.673 −58.744 −59.703 −9.929
CA3 Ivy 1.916 0.009 1.908 45 364 −70.435 −40.859 −53.400 −6.920
CA3 MFA ORDEN 1.380 0.008 12.933 0 209 −57.076 −39.102 −40.681 16.313
CA3 QuadD-LM 1.776 0.006 −3.449 52 186 −73.482 −54.937 −64.404 7.066
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synaptic conductance (g), synaptic decay time constant (τd), 
synaptic resource recovery time constant (τr), resource utili-
zation reduction time constant (τf), and portion of available 
resources being utilized on each synaptic event (U). Note 
that this modeling formalism captures connection-specific 
unitary synaptic communication. As such, it reflects the total 
somatic effect of all synapses corresponding to connected 
neuron pairs.

Hippo campo me. org provides connection probabilities 
for all directional pairs of neuron types calculated from 
the overlap between the axons of a presynaptic neuron type 
and the dendrites of a postsynaptic neuron type within all 
individual layers of CA3 (Fig. 1; [20]; hippo campo me. 
org/ php/ synap se_ proba bilit ies_ dal. php); these probabili-
ties were scaled for the mouse according to an anatomical 
scaling factor [36]. The connection probabilities for the 
51 potential connections are reported in Table 3. Addi-
tionally, our simulation specifies the number of synapses 
per connection type, which was computed based on the 
population sizes of the presynaptic and postsynaptic neu-
ron type involved and the directional connection prob-
ability between them. For example, the number of syn-
apses from CA3 Pyramidal cells onto CA3 Basket cells  
was 74,366*515*0.02 = 765,970. While the numbers of 
synapses are not reported individually for each connection 
here, they can be computed from the data in Tables 1 and 
3 as highlighted in the above example. For synaptic delays, 
all potential connections with a presynaptic interneuron 
type were assumed to have delays of 1 ms due to the short 
length of the local axon. For synapses from the Pyramidal 
cell as the presynaptic neuron type, delays were assigned 
based on the assumed axonal conduction velocity of 
300 µm/ms [37] and the mean distance that the Pyramidal 
cell axon traveled within a parcel of CA3 (as also reported 
in [20]). For example, CA3 Pyramidal cell axons have a 
somatic length of 633 µm in SR, so we allowed for synaptic 

delays of either 1 or 2 ms for any postsynaptic type that the 
Pyramidal cell connected to in SR. The 5 TPM parameters 
and the synaptic delays for each potential connection are 
reported in Table 4. Altogether, Tables 2 and 3 account 
for 357 parameter values describing synaptic connections. 
Summed with 80 parameter values in the neuron category, 
the total number of model parameters was 437. All param-
eter estimates provided (except for population sizes) were 
computed from in vitro studies. This was sufficient for 
obtaining realistic responses in the network without the 
need to conduct a parameter search or employ an optimiza-
tion technique.

Model Implementation and Execution

The CA3 model was implemented in CARLsim4 [28], which 
utilized the 4th order Runge–Kutta numerical integration 
method with a fixed time step of 0.2 ms. Simulation dura-
tion was 9 s, with the last 5 s used for analysis. Instantiation 
and execution of the network model was performed on a 
single 32 GB VRAM Tesla V100 GPU on the George Mason 
University High Performance Computing Cluster (ARGO). 
ARGO, which contained more than twenty such GPUs, 
allowed for efficient and flexible simulation that greatly 
reduced the time needed to test different stimulation para-
digms and alternate network structures. Simulation results 
were loaded and visualized in MATLAB with CARLsim4’s 
Offline Analysis Toolbox (OAT). Additional custom-built 
functions for data analysis were written in MATLAB. All 
scripts developed are available on GitHub (github. com/ 
Hippo campo me- Org/ snn_ analy sis).

Network Stimulation Protocol and Analysis

Two protocols were utilized to initiate network activ-
ity: a synchronous stimulation, where a random subset of 

Table 3  Connection probability for each connection type in the network model

Presynaptic cell types are listed in the first column, while postsynaptic cell types are listed in the first row

Pre-post CA3 Pyramidal CA3 Axo-axonic CA3 Basket CA3 Basket 
CCK+ 

CA3 Bistratified CA3 Ivy CA3 
MFA 
ORDEN

CA3 QuadD-LM

CA3 Pyramidal 0.025 0.015 0.020 0.017 0.016 0.025 0.021 0.013
CA3 Axo-axonic 0.150
CA3 Basket 0.150 0.025 0.005 0.005 0.025 0.005 0.005
CA3 Basket CCK+ 0.150 0.025 0.005 0.005 0.025 0.005 0.025
CA3 Bistratified 0.028 0.007 0.009 0.004 0.033 0.004 0.009 0.008
CA3 Ivy 0.072 0.004 0.016 0.011 0.017 0.004 0.017 0.002
CA3 MFA 

ORDEN
0.042 0.004 0.007 0.005 0.005 0.003 0.002 0.004

CA3 QuadD-LM 0.119 0.005 0.067 0.050
DG Granule 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table 4  STP parameters and synaptic delays for each connection type in the model

Presynaptic Postsynaptic g τd τr τf U Synaptic delay

CA3 Pyramidal CA3 Pyramidal 0.30 10.22 318.51 21.45 0.28 1–2
CA3 Pyramidal CA3 Axo-axonic 0.65 4.92 630.73 26.26 0.26 1–2
CA3 Pyramidal CA3 Basket 1.70 3.97 691.42 21.16 0.12 1–2
CA3 Pyramidal CA3 Basket CCK+ 0.85 4.29 530.40 22.45 0.20 1–2
CA3 Pyramidal CA3 Bistratified 0.62 5.37 569.15 23.85 0.26 1–2
CA3 Pyramidal CA3 Ivy 1.77 5.67 552.27 26.73 0.12 1–2
CA3 Pyramidal CA3 MFA ORDEN 1.10 5.95 444.99 29.01 0.15 1–2
CA3 Pyramidal CA3 QuadD-LM 1.09 5.82 453.29 27.16 0.15 1–2
CA3 Axo-axonic CA3 Pyramidal 2.71 7.62 361.03 12.93 0.13 1
CA3 Basket CA3 Pyramidal 2.28 7.64 384.34 16.74 0.13 1
CA3 Basket CA3 Axo-axonic 2.63 3.80 725.03 23.21 0.19 1
CA3 Basket CA3 Basket 1.80 3.01 689.51 11.19 0.39 1
CA3 Basket CA3 Basket CCK+ 1.69 4.21 636.76 16.72 0.24 1
CA3 Basket CA3 Bistratified 2.30 4.72 680.33 16.72 0.18 1
CA3 Basket CA3 MFA ORDEN 1.36 5.23 581.94 19.60 0.30 1
CA3 Basket CA3 QuadD-LM 1.31 5.16 589.20 19.31 0.31 1
CA3 Basket CCK+ CA3 Pyramidal 1.89 9.10 376.87 13.76 0.08 1
CA3 Basket CCK+ CA3 Axo-axonic 1.94 5.44 477.43 18.50 0.12 1
CA3 Basket CCK+ CA3 Basket 0.96 4.69 505.12 14.86 0.28 1
CA3 Basket CCK+ CA3 Basket CCK+ 0.97 4.89 283.28 23.38 0.12 1
CA3 Basket CCK+ CA3 Bistratified 1.78 5.97 478.31 15.25 0.13 1
CA3 Basket CCK+ CA3 MFA ORDEN 1.02 6.54 421.42 17.84 0.21 1
CA3 Basket CCK+ CA3 QuadD-LM 1.00 6.48 398.15 17.34 0.22 1
CA3 Bistratified CA3 Pyramidal 2.08 7.49 481.85 16.61 0.12 1
CA3 Bistratified CA3 Axo-axonic 2.15 4.57 686.28 19.16 0.17 1
CA3 Bistratified CA3 Basket 1.10 3.86 695.21 14.60 0.37 1
CA3 Bistratified CA3 Basket CCK+ 1.44 4.58 592.19 17.69 0.22 1
CA3 Bistratified CA3 Bistratified 2.01 4.58 775.04 13.60 0.17 1
CA3 Bistratified CA3 Ivy 1.34 5.33 649.83 18.17 0.30 1
CA3 Bistratified CA3 MFA ORDEN 1.57 5.54 605.25 18.30 0.29 1
CA3 Bistratified CA3 QuadD-LM 1.12 5.53 594.33 17.89 0.30 1
CA3 Ivy CA3 Pyramidal 2.23 9.01 439.50 23.01 0.12 1
CA3 Ivy CA3 Axo-axonic 2.29 5.67 651.64 25.51 0.17 1
CA3 Ivy CA3 Basket 1.16 4.75 665.16 19.12 0.37 1
CA3 Ivy CA3 Basket CCK+ 1.54 5.40 614.01 20.98 0.23 1
CA3 Ivy CA3 Bistratified 2.16 6.24 660.48 22.69 0.17 1
CA3 Ivy CA3 Ivy 1.34 5.51 675.54 17.72 0.31 1
CA3 Ivy CA3 MFA ORDEN 1.27 6.96 578.90 28.45 0.30 1
CA3 Ivy CA3 QuadD-LM 1.18 6.89 563.47 26.15 0.30 1
CA3 MFA ORDEN CA3 Pyramidal 1.97 7.15 496.05 20.62 0.12 1
CA3 MFA ORDEN CA3 Axo-axonic 2.12 4.55 762.60 21.45 0.16 1
CA3 MFA ORDEN CA3 Basket 1.08 3.90 759.12 15.70 0.36 1
CA3 MFA ORDEN CA3 Basket CCK+ 1.42 4.32 693.92 17.08 0.22 1
CA3 MFA ORDEN CA3 Bistratified 2.00 4.96 776.57 17.27 0.17 1
CA3 MFA ORDEN CA3 Ivy 1.35 5.39 712.27 21.22 0.30 1
CA3 MFA ORDEN CA3 MFA ORDEN 1.16 5.53 642.10 22.52 0.29 1
CA3 MFA ORDEN CA3 QuadD-LM 1.10 5.52 637.95 21.01 0.29 1
CA3 QuadD-LM CA3 Pyramidal 1.72 9.11 382.14 24.79 0.11 1
CA3 QuadD-LM CA3 Axo-axonic 1.91 5.17 635.01 22.34 0.15 1
CA3 QuadD-LM CA3 Basket 1.00 4.29 663.25 16.42 0.34 1
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Pyramidal cells was selected and fired transiently in the first 
millisecond of the simulation, and an asynchronous stimula-
tion, where a random Pyramidal cell subset was chosen to 
fire at different times during the first second of the simula-
tion. We stimulated each Pyramidal cell only once in either 
protocol. The size of the random subsets for synchronous 
stimulation ranged from 100 to 1,000 Pyramidal cells, and 
the random subsets for asynchronous stimulation in each 
millisecond ranged from 1 to 25 Pyramidal cells (for a total 
of up to 1,000 to 25,000 Pyramidal cells activated). Once 
the input terminated, the simulation ran for an additional 
9 s after synchronous stimulation or 8 s after asynchronous 
stimulation to evaluate network dynamics beyond the tran-
sient initiation. Activity from the eight neuron types was 
measured via CARLsim4, which captured spike information 
in Address Event Representation (AER) format (i.e., unique 
spike times for each neuron in each group) in 1 ms intervals. 
Spike times were stored in .dat files (a generic data file exten-
sion) for each neuron type, which enabled simple retrieval  
of the binned spike counts for every neuron.

Of note, we updated CARLsim4 in two important aspects 
for this work. First, we enabled the specification of short-
term synaptic plasticity parameter values at the level of 
connection type, whereas before CARLsim4 defined these 
parameters solely based on the identity of the presynaptic 
neuron. Second, we implemented a NeuronMonitor function 
to capture the instantaneous membrane potential (recorded 
in mV) and input current (recorded in pA) of each neuron. 
These data also were stored at 1 ms intervals in .dat files.

Spike, voltage, and current data associated with each 
neuron type were loaded into MATLAB at 1 ms intervals 
using CARLsim4’s SpikeReader and NeuronReader tools. 
A first approximation local field potential (LFP) was com-
puted from the average voltage of every neuron in a desired 
group. The LFP was calculated separately for each neuron 
type, collectively for all perisomatic neuron types and for all 
dendritic-targeting neuron types, as well as for the entire net-
work. The power spectral densities (PSD) of the LFPs were 
derived as the absolute square of the fast Fourier transform 

amplitude. Sharp-wave ripple (SWR) events were detected 
using the LFP band-pass filtered in the 150–200 Hz range 
when the power exceeded two standard deviations (SD) of 
the mean power during the course of the simulation and 
lasted at least 15 ms [38, 39].

The mean and coefficient of variation (CV) of the inter-
spike intervals (ISI) along with the mean firing frequency 
for each neuron of every neuron type were computed. The 
mean and SD of the activity sparseness were computed for 
each neuron type, which was quantified as the percentage 
of active neurons of each neuron type in 100 ms intervals 
or over the entire simulation period [40]. Relationships 
between the mean and CV of ISIs were assessed via Pearson 
correlation coefficients for the Pyramidal, perisomatic-, and 
dendritic-targeting groups. Additionally, the inequality in 
the firing rates of neurons of each type was assessed with a 
Lorenz curve, which highlighted the cumulative spike share 
of individual neurons within a type. The Gini coefficient 
computed from the Lorenz curve quantified the magnitude 
of the deviation of cumulative spike share from equality. 
Values of the Gini coefficient can range from zero to one, 
where zero reflects all neurons having the same number of 
spikes, and one reflecting that one neuron fired all the spikes.

Preferred firing phases for each neuron type were com-
puted relative to the filtered LFP analog in the observed 
frequency bands, using all spikes for the given neuron type 
that occurred within the 5s analysis window. For each fil-
tered LFP analog, the spike times were converted to phases 
relative to the troughs of the cycle in which they fired. Addi-
tionally, the angular SD and mean resultant vector length 
for each filtered LFP analog were computed for each neu-
ron type with the CircStat MATLAB toolbox [41]. Spike 
phases were then subjected to a Rayleigh nonuniformity test 
to determine the level of modulation of the firing for each 
neuron type [42].

Network stability was evaluated based on two criteria: 
the CV of the instantaneous firing frequency of the network, 
computed from the mean and SD of the firing frequency of 
all neurons (irrespective of their neuron type, binned at 1 ms 

Table 4  (continued)
Presynaptic Postsynaptic g τd τr τf U Synaptic delay

CA3 QuadD-LM CA3 Basket CCK+ 1.31 4.83 596.50 17.78 0.21 1
DG Granule CA3 Pyramidal 1.83 7.43 347.44 42.00 0.16 1–10
DG Granule CA3 Axo-axonic 1.94 4.13 702.40 36.83 0.17 1–10
DG Granule CA3 Basket 1.50 3.58 744.66 30.29 0.19 1–10
DG Granule CA3 Basket CCK+ 1.57 3.46 658.70 25.92 0.21 1–10
DG Granule CA3 Bistratified 1.91 4.39 594.72 38.34 0.19 1–10
DG Granule CA3 Ivy 2.27 3.75 764.65 21.48 0.18 1–10
DG Granule CA3 MFA ORDEN 1.97 4.87 453.65 48.65 0.19 1–10
DG Granule CA3 QuadD-LM 1.88 4.96 464.59 43.06 0.18 1–10
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intervals), and the mean firing frequencies of each neuron 
type. The network was considered stable if CV ≤ 1 and each 
neuron type had a mean firing frequency greater than zero. 
The robustness of the network was evaluated on the SD of 
the network’s firing frequency within each stimulation para-
digm, with a SD less than or equal to 0.25 Hz considered 
robust.

Alternate Networks

To assess the influence of connection-specific probabilities 
and the diversity of neuron types, we simplified the network 
architecture in two ways. The class network, which assessed 
the influence of connection-specific probabilities, preserved 
all features of the baseline network, with the exception that 
the probabilities of connection for each presynaptic neuron 
type to their corresponding potential postsynaptic neuron 
type targets were equal for each connection class (E-E, E-I, 
I-E, I-I, where “E” and “I” stand for excitatory and inhibitory 
neuron types, respectively). Additionally, the equivalent con-
nection probabilities ensured that the overall number of syn-
apses created by each connection class in the baseline net-
work was preserved. The archetype network, which assessed  
the influence of the diversity of neuron types, preserved all 
features of the baseline network, with the exception that only  
a representative neuron type from the excitatory (Pyrami-
dal), perisomatic (Basket), and dendritic-targeting (MFA  
ORDEN) types were utilized. The representatives were cho-
sen to ensure that all nine potential connection types (E-E, 
E-IP, E-ID,  IP-E,  ID-E,  IP-IP,  IP-ID,  ID-IP,  ID-ID, where “D” 
and “P” stand for dendritic- and perisomatic-targeting neu-
ron types, respectively) were preserved. Each representative 
reflected the sum of both the population sizes and synapses 
created by the perisomatic- and dendritic-targeting types in 
the baseline network, with the Izhikevich and STP param-
eters preserved for the representative type.

In addition to simplifying the network architecture into 
the two variants described above, we also expanded the 
baseline architecture to include external inputs from DG. 
This DG-CA3 network assessed the influence of mossy fib-
ers on the activity and included an additional neuron type, 
DG Granule, and eight connection types, with population 
size, connection probabilities, TPM parameter estimates, and 
conduction delays as defined in Tables 1, 3, and 4. Each DG 
Granule cell’s mean firing rate was set to 1.5 Hz and was 
governed by a Poisson process [43].

List of Explicit Reasoned Model Assumptions

A limited number of reasonable assumptions, listed below, 
were necessary to match the parameters required by the 
described model design with available experimental 
measurements.

• The connection probability for a pair of presynaptic and 
postsynaptic neuron types could be set from a range 
of estimates between the corresponding supertypes. 
We assumed that connection types involving the same 
supertype have similar structural properties and there-
fore similar connection probabilities.

• The connection probabilities from perisomatic 
interneurons to Pyramidal cells were set to 0.15. This 
assumption was based on the observation that periso-
matic interneurons contact Pyramidal cells with higher 
probabilities than dendritic-targeting interneurons [26], 
which in our model had an upper bound of 0.12.

• The connection probabilities involving a presynaptic 
perisomatic neuron type were set between 0.005 and 
0.025. This assumption was based on the range of con-
nection probabilities for  ID-IP and  ID-ID in the network 
model.

• The connection probability between DG Granule and 
CA3 Pyramidal was set to 0.002, and connection prob-
abilities between DG Granule and CA3 interneurons were 
set to 0.001. These probabilities were assumed based on 
the number of boutons and filopodial extensions provided 
to CA3 Pyramidal cells and interneurons [44].

• The synaptic delays between DG Granule and CA3 neu-
ron types were set between 1 and 10 ms. These delays  
assumed that DG Granule cells could span the length of CA3 
SL.

• The number of transiently stimulated Pyramidal cells 
in the baseline network corresponded to the fraction of 
active Pyramidal cells observed during SWR in vivo, 
which range from < 1 to > 30% in a single SWR event in 
CA1 [45]. We assumed that the same proportions held in 
CA3.

Building Blocks of Full-Scale Network Models

David Marr posited that a complex system such as the brain 
can be understood at the computational (i.e., what problems 
does the system solve), algorithmic (i.e., how does the sys-
tem solve problems), and implementation levels (i.e., the 
substrate or mechanism within the system that solves the 
problems) [46, 47]. In the spirit of Marr’s three levels of 
analysis, we have defined a set of conceptual elements that 
are important to building full-scale network simulations 
designed to model functions such as memory formation and 
recall (Table 8). Furthermore, we have provided explana-
tions of the advantage each element could provide when 
explicitly modeled. Our simulations only employed elements 
whose parameters could be directly constrained by experi-
mental measurements. This approach allows for empirically 
testing which building blocks are needed to adequately 
model a function or behavior.
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Results

Here we briefly describe our data-driven CA3 model (the 
baseline network, Fig. 1); a more thorough description can 
be found in the “Methods” section. We simulated the base-
line SNN containing 74,366 (83%) excitatory and 14,860 
(17%) inhibitory neurons. These percentages were close 
to those observed experimentally via immunocytochemi-
cal and stereological estimation [48]. The ~250 million 
synapses in the network were comprised of E-E (~55%), 
E-I (~8%), I-E (~36%), and I-I (~1%) connections. Each 
neuron type in the network was instantiated with corre-
sponding population sizes (Table 1) and Izhikevich model 
parameters (Table 2), and each potential connection type 
was created with its corresponding connection probability 
(Table 3, Figs. 1 and 2) and STP parameters (Table 4).

Our updated Hippocampome-CARLsim4 framework 
enabled the declaration of these neuron and connection-
type specific properties critical for testing the stability and 
robustness of our network. The CARLsim4 Hippocam-
pome CA3 model is publicly available on GitHub (github. 
com/ UCI- CARL/ CARLs im4/ tree/ feat/ means dSTPP ost_ hc/ 
proje cts). In the software repository, we provide a detailed 
guide that describes how to generate data-driven networks 

and how they could be used to test additional hypotheses 
of hippocampal function.

We initiated activity in the network via synchronous, tran-
sient stimulation of a randomly chosen subset of Pyramidal 
cells at the beginning of the simulation, or through asyn-
chronous random stimulation of Pyramidal cells within the 
first second of the simulation. Each chosen Pyramidal cell 
was stimulated once, and this initial activity in turn acti-
vated other Pyramidal cells and interneurons. After a vari-
able delay of current integration, rhythmic activity reliably 
emerged in the baseline network with both the synchronous 
and asynchronous protocols, as evidenced in the baseline 
network’s LFP (Fig. 3a). The network displayed a remark-
ably stable and robust grand average firing frequency (GAF) 
of ~3 Hz, with low variability within the duration of the 
recordings, across multiple simulation runs with different 
subsets of stimulated Pyramidal cells, and over a broad range 
of transient stimulation paradigms, from 100 cells synchro-
nously to 25,000 cells asynchronously (Fig. 3b). The firing 
frequencies of individual neuron types varied between 2 
and 15 Hz and were compared with values observed during 
resting-state behaviors in vivo (Table 5). Overall, the aver-
age activity of various neuron types was well aligned with 
their expected characteristics: the non-CCK+ perisomatic 

Fig. 2  Required characterization 
for a representative connection 
type (CA3 Pyramidal–CA3  
Basket) out of the 51 in the CA3  
circuit model. a Population 
size of each neuron type [31]. 
b Probability of connection 
(P) between each directional 
pair of neuron types [20]. c 
Intrinsic electrophysiological 
properties of each neuron type 
[30]. d Excitatory (EPSC) and 
inhibitory post-synaptic cur-
rents (IPSC) generated from the 
spike trains in b [21]
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cells (Basket and Axo-axonic cells) fired at the highest fre-
quency; Pyramidal cells displayed sparse activity (Table 5); 
and the remaining interneurons (dendritic-targeting or 
CCK-expressing) varied substantially from low to moder-
ate activity. Additionally, raster plots from a random sample 
of 500 Pyramidal cells and 50 interneurons of each type 
(Fig. 3c), along with their example membrane potential 
traces (Fig. 3d), highlighted their unique firing profiles.

We thus sought to characterize the variability within and 
across each neuron type. First, we looked at the distribu-
tions of the mean firing frequencies of individual neurons 
that were active within the analysis window (Fig. 4a). The 

Pyramidal cells and a majority of interneuron types had 
skewed firing frequency distributions, as previously seen in 
CA3 Pyramidal cells and interneurons recorded in vivo [45]. 
We then assessed the contributions that each neuron provides 
to the firing profile of its corresponding type through their 
Gini coefficient, which quantifies the deviation from equality 
with a value between 0 (all neurons contribute an equal num-
ber of spikes) and 1 (one neuron contributes all spikes). Gini 
coefficients ranged between 0.04 and 0.25, indicating mod-
erate firing frequency inequality for Ivy and MFA ORDEN 
cells and low inequality for all other neuron types (Fig. 4b). 
Next, we investigated whether the mean interspike interval 

Fig. 3  Population activity for CA3 spiking neural network. a First 
approximation LFP activity. Synchronous stimulation leads to tran-
sient network depolarization (i), followed by integration of currents 
propagating throughout the network for the next 500 ms (ii). With a 
large number of Pyramidal cells above firing threshold, the network 
experiences a population burst (iii), before settling into a steady 
rhythm that will persist for the duration of the recording (iv). Inset: 

Connectivity schematic for the baseline network. b Summary plots 
for both synchronous and asynchronous stimulation detail low firing 
rate variability (< 0.2 Hz) and low network CV (< 1), indicative of a 
stable and robust network. c Raster plot of 500 ms activity from (a) 
(yellow frame) of 500 Pyramidal cells and 50 interneurons of each 
type. d Representative voltage trace for each neuron type during 
500 ms activity from (a)



1200 Cognitive Computation (2023) 15:1190–1210

1 3

(ISI) of individual neurons was correlated with their firing 
irregularity as measured by the coefficient of variation (CV) 
of their ISIs [49]. Interestingly, perisomatic neuron types 
displayed strikingly distinct behaviors in this regard, with 
Basket, Axo-axonic, and Basket CCK+ cells demonstrating 
strong positive, no, and weakly negative correlations, respec-
tively, under the synchronous activation of 1,000 Pyramidal 
cells (r = 0.83, −0.04, and −0.38, respectively; Fig. 4c). In 
contrast, all dendritic-targeting neuron types showed no 
to weak correlation (r =  −0.05, 0.04, 0.23, −0.18 for Bis-
tratified, Ivy, MFA ORDEN, and QuadD-LM, respectively; 
Fig. 4d). For Pyramidal cells, the correlation was moderately 
positive (r = 0.40; Fig. 4e). Moreover, while the correlation 
coefficients between mean ISI and ISI CV were largely inde-
pendent of stimulation paradigm for Pyramidal cells, they 
varied more substantially for interneurons, in particular the 
perisomatic types (Fig. 4f). Nevertheless, the overall posi-
tive values of these coefficients confirmed that neurons with 
higher mean firing frequencies had lower CV for their ISIs, 
consistent with previous findings on cortical neurons [49].

The contributions of each neuron type to the LFP were 
evaluated with spike-to-phase coupling (SPC) relationships. 
PSD analysis revealed a 16 Hz oscillation in the LFP, which 
was band-pass filtered within the beta range (10–30 Hz). 

SPC relationships of each neuron type were then computed 
relative to the filtered LFP. Pyramidal cells fired before and 
near the peak of the oscillation, while all interneuron types 
fired following the Pyramidal cells (Fig. 5a, b). The level of 
beta modulation exhibited by each neuron type, as quanti-
fied through the mean resultant vector length (MRVL), was 
strongly phase-locked to the beta rhythm (p < 0.001, Ray-
leigh’s nonuniformity test) (Fig. 5c). Pyramidal cells fired on 
average every 7th oscillation, while Basket cells fired nearly 
every oscillation (Fig. 5d). The correlation of mean firing 
frequency with phase indicated that neuron types that were 
more active fired earlier during the dominant oscillation 
(r =  −0.89; p < 0.001). These results were consistent across 
the whole range of transient stimulation intensities, from 1% 
of Pyramidal cells synchronously to 34% asynchronously. 
Taken together with the firing frequency features of the net-
work’s average frequency and corresponding CV, the PSD 
and SPC feature preservation indicated that the CA3 network  
was both stable and robust.

To better understand the mechanisms underlying the 
stability and robustness observed in the baseline network, 
we modeled two alternative architectures: a class network 
preserving the neuron types but homogenizing the synap-
tic connectivity and an archetype network that simplified 

Table 5  Firing rates and activity sparseness (portion of active cells in 100 ms) during resting-state behaviors as recorded in our model and those 
recorded in vivo for the neuron types included in our network model. Firing rates are expressed as mean ± s.d

* These values are from recordings in CA1

Neuron type Synchronous model  
firing rate (Hz) and activity 
sparseness (%)

Asynchronous model  
firing rate (Hz) and activity 
sparseness (%)

Immobility 
firing rate 
(Hz)

Animal Animal state Reference

Pyramidal 2.31 ± 2.19
19.80 ± 0.21

2.32 ± 2.10
20.06 ± 0.15

0.2 Rat Awake; freely moving [45]
0.5 Rat Awake; freely moving [70]
0.72 ± 0.51 Rat Urethane-anesthetized [60]
CA3a: 0.4
CA3b: 0.3

Rat Awake; freely moving [71]

1.74 ± 1.45 Mice Awake; freely moving [72]
Axo-axonic 8.03 ± 0.99

71.67 ± 1.20
8.40 ± 1.01

73.65 ± 1.29
22.8 ± 3.1 Rat Urethane-anesthetized [57]

Basket 13.53 ± 1.57
91.83 ± 2.81

14.62 ± 1.23
95.31 ± 1.33

20 ± 7 Rat Urethane-anesthetized [56]
17 ± 7* Rat Isoflurane-anesthetized [73]
8.2 ± 5.6* Rat Awake; head-fixed [74]

Basket CCK+ 4.62 ± 0.46
42.48 ± 0.68

4.75 ± 0.46
43.29 ± 0.59

0.99 Rat Urethane-anesthetized [60]

Bistratified 6.90 ± 0.56
62.75 ± 1.28

7.18 ± 0.57
64.59 ± 1.06

0.9 ± 0.26* Rat Urethane-anesthetized [75]
30.4* Rat Awake; freely moving [76]

Ivy 2.36 ± 1.22
22.96 ± 3.82

3.01 ± 1.29
28.77 ± 3.59

1.7 ± 0.3* Rat Urethane-anesthetized [58]
3.0 ± 3.6* Rat Awake; freely-moving

MFA ORDEN 2.79 ± 0.92
27.05 ± 1.59

3.07 ± 0.94
29.50 ± 1.71

N/A --- --- ---

QuadD-LM 7.24 ± 0.87
66.31 ± 1.32

7.58 ± 0.86
68.42 ± 1.11

6.14 Rat Urethane-anesthetized [60]



1201Cognitive Computation (2023) 15:1190–1210 

1 3

the neuron type composition but preserved their synaptic 
connectivity. After either synchronous or asynchronous 
activation, the class network LFP displayed a gradual 
decrease in voltage, due to the hyperpolarized state of the 
network’s Pyramidal cells (Fig. 6a). Given that Pyramidal 
cells were the only drivers of excitation in the network, the 
network firing ceased for the remainder of the simulation. 
In contrast, the archetype network exhibited elevated mean 
firing frequencies relative to the baseline network, with 
a GAF of 6.46 Hz for synchronous activation (Fig. 6c). 
As for the neuron type representatives, under synchro-
nous activation, the mean firing frequencies of Pyramidal 
and MFA ORDEN cells increased to 4.93 and 17.78 Hz, 
respectively, while Basket cells were nearly silenced with 

a frequency of 0.12 Hz. When subjected to asynchronous 
activation, Basket cells were silenced entirely (Fig. 6b). 
Additionally, the CV of the network’s firing frequency 
increased nearly two-fold to 1.34 under synchronous acti-
vation (Fig. 6d). The increased firing frequencies within 
this network variant raised the oscillation frequency only 
marginally from 16 to 18 Hz for both synchronous and 
asynchronous activation. SPC relationships to the filtered 
LFP highlighted surprising differences relative to the base-
line. Pyramidal cells fired later during the oscillation, with 
a phase shift of 25° in the synchronous case, placing the 
preferred firing phase after the oscillation peak (Table 6). 
MFA ORDEN, the dendritic-targeting representative type, 
fired earlier than the perisomatic type representative, the 

Fig. 4  CA3 spiking neural network firing characteristics. a Mean fir-
ing rate distributions of the neurons active during the recording win-
dow in each type. Percentages in parentheses indicate active fraction. 
b The Gini coefficient shows how unevenly individual neurons con-
tribute to the overall firing rate of their respective type. c–e Scatter 
plots of the coefficient of variation (CV) of the ISI of every neuron 

in each type as a function of its mean ISI displayed for perisomatic 
(c), dendritic-targeting (d), and Pyramidal cell types (e). f Box plot 
of correlation coefficients for perisomatic, dendritic-targeting, and 
Pyramidal cell types with varying levels of synchronous and asyn-
chronous network activation
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Basket cells, which in the baseline had the earliest firing 
phase of any interneuron type. Taken together, the results 
from the archetype and class networks indicated that the 

contribution of both individual neuron type properties and 
connection-type specificity were necessary for network 
stability and robustness.

Fig. 5  Intrinsic beta rhythms 
of the baseline CA3 SNN. a 
Preferred firing phases of each 
neuron type. b Firing phase 
histograms for each neuron type 
relative to the network’s beta 
rhythm. c Mean resultant vector 
length (MRVL) for each neuron 
type exhibit strong phase-locking 
to the beta rhythm. d Mean 
spikes per oscillation for each 
neuron type

Fig. 6  Alternate networks highlight the importance of both neuron 
and connection-type specificity. a The class network LFP is strongly 
hyperpolarized (green), leading to network silence. Baseline network 
LFP (faded red) shown for comparison. Inset: Connectivity schematic 
for the class network, with a circular arrow indicative of shuffled con-
nectivity among each connection class. b Top: The archetype network 
LFP (blue) exhibits a beta band oscillation, similar to the baseline.  
Inset: Connectivity schematic for the archetype network. Bottom: 
Population firing rates for the Pyramidal cells (top) and MFA ORDEN 
(middle) show elevated firing rates relative to baseline, but the Bas-

ket cells (bottom) are silent. c Average firing rate frequencies (AF) of 
the whole network, Pyramidal, perisomatic-, and dendritic-targeting 
interneuron types for the baseline (red), class (green), and archetype 
(blue) network configurations. AFs are robust under synchronous and 
asynchronous activation for the baseline network, while AFs are not 
robust for the class and archetype networks. d The network AF CV 
highlights the stability and instability of the baseline and archetype 
networks, respectively. GAF, grand average frequency; PC, Pyramidal 
cell; PS, perisomatic; DT, dendritic-targeting; CV, coefficient of vari-
ation
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The baseline CA3 SNN can be also adapted to test dif-
ferent hypotheses relevant to CA3. To demonstrate the 
flexibility of our framework in this regard, we updated 
the baseline SNN by including an additional neuron 
type, the granule cells of the dentate gyrus (DG Gran-
ule), and its corresponding mossy fiber projections to 
CA3 (Fig. 7a); this updated DG-CA3 SNN provided an 
additional 395,000 neurons and 65,000,000 synapses. 
Instead of synchronous or asynchronous transient input 
to random Pyramidal cells at the beginning of the simu-
lation, we provided constant input from a population of  
DG Granule cells. As the baseline network was more rep-
resentative of an isolated CA3 preparation, we hypoth-
esized that the additional afferent input could elevate  
the originally observed beta rhythm to an oscillation in 

the gamma band. Indeed, the resultant network activity 
of the DG-CA3 network showed a dominant oscillation 
in the slow gamma range (25–55 Hz, [50]), which per-
sisted across simulations generated from different random  
seeds (25.3 ± 0.3 Hz; n = 15; Fig. 7c). Interestingly, in 
this model, the Basket cells fired in spike doublets, a phe-
nomenon observed in identified CA3 Basket cells in vitro 
([51], Fig. 7d). Similar to those recorded in vitro, the  
Basket cells in the DG-CA3 SNN had short ISIs during the 
doublets (8.5 ms in vitro; 4.6 ms in silico) and exhibited  
a high doublet event rate (6 vs 8 spike doublets in the 
designated 300 ms time interval). SPC relationships to 
the filtered LFP largely preserved the phase preferences 
observed in the beta oscillations for the baseline network 
(Table 7). These results provide evidence that afferents 

Table 6  Preferred firing phases 
by neuron type for the baseline 
and archetype networks for 
synchronous (1,000) and 
asynchronous (10,000) random 
Pyramidal cell activation

Neuron type Synchronous Asynchronous
Baseline Archetype Baseline Archetype
Phase (°) MRVL Phase (°) MRVL Phase (°) MRVL Phase (°) MRVL

CA3 Pyramidal 162 0.51 188 0.69 170 0.55 185 0.68
CA3 Axo-axonic 264 0.83 272 0.85
CA3 Basket 202 0.93 266 0.96 203 0.95
CA3 Basket CCK+ 304 0.48 314 0.49
CA3 Bistratified 221 0.90 228 0.92
CA3 Ivy 322 0.70 326 0.70
CA3 MFA ORDEN 319 0.73 262 0.98 328 0.73 261 0.97
CA3 QuadD-LM 282 0.80 289 0.81

Fig. 7  Addition of Granule 
cell afferents generates gamma 
oscillations. a Connectiv-
ity schematic for the network 
including granule cell afferents. 
b Top: The DG-CA3 network 
LFP (green) exhibits oscilla-
tions in the slow gamma fre-
quency band. Bottom: LFPs for 
each neuron type. c The power  
spectrum of the DG-CA3 SNN  
contains a pronounced peak at 
26 Hz, indicative of the net-
work’s slow gamma frequency 
as mediated by the mossy fiber 
input. Dashed line indicates the 
spectral peak in the baseline 
network. d Basket cells fire in 
spike doublets during gamma 
oscillations in vitro (left), a 
behavior also exhibited by  
Basket cells in our simulations  
(right). e Top: Preferred firing 
phases of each neuron type.  
Bottom: Firing phase histograms 
for each neuron type relative to 
the network’s gamma rhythm
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allow for gamma oscillation generation and highlight 
that our network can be readily adapted to test different 
hypotheses regarding area CA3.

Discussion

We leveraged Hippo campo me. org to create a data-driven 
SNN of the mouse hippocampal subregion CA3. To define, 
instantiate, run, and analyze the simulations, we updated 
CARLsim4 to allow for synapse-type specific STP and to 
record the voltage and current of each neuron. Coupled with 
the ability to record the spike times of individual neurons 
in a multi-GPU simulation environment, this framework 
provides a tractable and efficient testing ground to evaluate 
large-scale, biologically realistic SNN models.

Our network, when provided with transient synchronous 
or asynchronous stimulation to random subsets of Pyramidal 
cells, was able to reach and maintain stable and robust rhyth-
mic network activity. Altering the network configuration to 
reduce or abolish the neuron-type and connection-type spe-
cific parameters severely impaired the stability and robust-
ness of the resting-state dynamics. These results highlighted 
the necessity of neuron and connection-type specificity in 
the creation of large-scale, data-driven, and biologically 
realistic networks, as borne out previously in invertebrate 
model systems [52].

Beyond building a stable and robust data-driven SNN, we 
aimed to re-create the characteristics for the CA3 network 
observed in vivo. These characteristics included the mean 
firing rates for each neuron type, network firing frequency 
features (i.e., rhythms), and SPC relationships for those 
network firing frequency features. Considering the mean 
firing frequencies for defined neuron types, our model rea-
sonably matched the estimates observed when the animal 
was immobile (Table 5). In particular, Basket, QuadD-LM, 
and Ivy cells were either within the range or at most ~23% 
greater than the reported value in vivo. At the same time, 
Pyramidal and Axo-axonic cells were more than threefold 

greater and 2.5-fold less than the reported value in vivo, 
respectively. These mismatches may be due to the network 
stimulation protocol by single spikes to a randomly activated 
set of Pyramidal cells, as opposed to continuous afferent 
excitation.

For CA3, the primary network behaviors exhibited in vivo 
during immobility are small (SIA) and large irregular activ-
ity (LIA), which reflect frequencies in the 0–4 Hz band, and 
sharp-wave ripples (SWR), which occur at frequencies of 
150–200 Hz [5, 50]. We did not observe the former at all in 
our network and only detected the latter during the popula-
tion burst of Pyramidal cells (marked as “iii” in Fig. 3a; even 
here, however, frequencies continuous with beta oscillations 
displayed greater power than the SWRs). Otherwise, our net-
work generated a 16 Hz beta oscillation, which was surpris-
ing given that this frequency band is not commonly reported 
in hippocampal resting state (see however [53]). We believed 
this may be due to the absence of sustained extrinsic activity 
from the entorhinal cortex, dentate gyrus, and other cortical 
and subcortical areas [54]. To test if the absence of sustained 
extrinsic activity would be sufficient to reproduce these net-
work behaviors during immobility, we altered the network 
architecture once more to include mossy fiber afferents from 
a population of DG Granule cells. The modified DG-CA3 
network did not produce SWR, SIA, nor LIA; however, a 
strong slow gamma oscillation did emerge, which involved 
synchronized firing between Pyramidal cells and interneu-
rons, leading to sustained excitation of Pyramidal cells that 
preceded those of interneurons, a feature observed both 
in vivo and in vitro [55]. In future work, we plan to test 
our mossy fiber DG-CA3 SNN with additional afferent syn-
apses from the entorhinal cortex to further explore typically 
observed rhythms such as SWRs or theta.

Our analysis of SPC relationships indicated that Pyrami-
dal cells preferentially fired at the peak of the oscillation, fol-
lowed by each interneuron type. We noticed that Basket cells 
fired closest to Pyramidal cells, followed by two other fast-
spiking interneuron types, Bistratified, and Axo-axonic cells. 
More generally, faster spiking cells fired closest to Pyrami-
dal cells, while regular spiking cells fired farthest from the 
Pyramidal cells (Fig. 5a-b). SPC relationship analysis of 
the SWRs that CA3 exhibits during rest in vivo indicates 
that Pyramidal and Basket cells fire near the trough on the 
descending and ascending phase of the SWR, respectively 
[56]. Additionally, Axo-axonic and Ivy cells are silent dur-
ing SWRs, thus having no SPC relationship [57, 58]. Since 
the oscillations of our model and those observed in vivo are 
different, we cannot make a direct comparison between their 
SPC relationships. Furthermore, to our knowledge, there are 
no SPC relationship analyses for beta rhythms to compare 
firing phase preferences with in vivo observations.

The SPC relationships during the gamma oscillations 
observed in our DG-CA3 SNN could also be compared with 

Table 7  Preferred firing phases by neuron type for the DG-CA3 net-
work

Neuron type Phase (°) MRVL

CA3 Pyramidal 174 0.86
CA3 Axo-axonic 234 0.94
CA3 Basket 200 0.87
CA3 Basket CCK+ 345 0.33
CA3 Bistratified 215 0.95
CA3 Ivy 251 0.89
CA3 MFA ORDEN 267 0.88
CA3 QuadD-LM 257 0.89
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a previous in vitro study [59]. Reconstructed Pyramidal cells 
and interneurons fired on the ascending phase of the oscil-
lation, with Pyramidal cell spikes preceding those of the 
interneurons. While the phase preferences of the identified 
Pyramidal, perisomatic-, and dendritic-targeting types were 
earlier than those in our SNN, the firing phase preference 
order was preserved (Pyramidal spikes preceding interneu-
ron spikes). The residual quantitative discrepancy is not 
surprising given the different (carbachol-induced) activa-
tion protocol in this experimental preparation relative to our 
simulation. Additionally, we noticed that Basket CCK+ cells 
were not strongly phase-locked to gamma oscillations in our 
network, as observed for these cells in vivo [60]. If Bas-
ket CCK+ cells fire asynchronously, then they can release 
neurotransmitters asynchronously as well. Thus, our results 
support the hypothesis that asynchronous GABA release 
from Basket CCK+ terminal boutons could be an emergent 
property of hippocampal networks [61].

The choice of the Izhikevich formalism for neuron mod-
els enabled the implementation of a full-scale network of 
the CA3 circuit but substantially limits the opportunity to 
investigate how non-linear dendritic integration in Pyrami-
dal neurons may affect the information-processing capabili-
ties of the networks as a whole. Early multi-compartment 
models of CA3 Pyramidal cells allowed a detailed investiga-
tion of the spatial–temporal interplay of passive and active 
membrane properties underlying bursting behavior in these 
neurons [62]. Pairing experimental in vitro recordings with 
multi-compartmental simulations showed that the diversity 
of intrinsic dynamics in CA3 Pyramidal neurons (bursting, 
early-onset adapting, and late-onset non-adapting) may be 
explained by relative differences in potassium currents [63]. 
The emergent properties of a simulated network of multi-
compartment neuron models could undoubtedly enhance 
the integrative properties of incoming input, whether noisy 
or periodic. A seminal CA3 network model of 1200 multi-
compartment neurons replicated features of the in vivo net-
work such as theta-modulated gamma and low mean firing 
rates with neurons not firing every cycle [64]. That simulation 
reflected considerably less cellular and circuit diversity than 
ours, with only three neuron types (Pyramidal, Basket, and 
O-LM). Whether a network simulation composed of a more 
representative diversity of single-compartment neurons could 
also reproduce those dynamic features remains to be shown 
in future modeling work.

The primary reason for adopting a single-compartment 
approach in this work was the computational feasibility of 
studying the dynamics of the entire CA3 circuit at scale. 
CARLsim4 is highly optimized for large-scale spiking neu-
ral network simulations on GPUs and has reported up to 
60 × speedup for multi-GPU implementations [28]. However, 
CARLsim4 is limited to Izhikevich and leaky integrate-and-
fire (LIF) formalisms. Notably, Hippo campo me. org does 

offer multi-compartment Izhikevich formalisms for modeling 
neuronal input–output relations [19]. While CARLsim4 pro-
vides GPU support for simple multi-compartment Izhikevich 
neurons that model the interaction among compartments, 
this formalism does not capture full neuronal morphologies 
or precise compartment geometry. This may be a limitation 
for users that are interested in how dendritic arbors influence 
computation. However, even in different simulation environ-
ments, memory constraints generally limit the network size of 
complex multi-compartmental models implemented in GPUs. 
For example, using CoreNEURON, a GPU-compatible simu-
lation environment, large-scale networks of the rat somatosen-
sory cortex and CA1 with multi-compartment neurons could 
only be modeled on CPUs and were proven to be unfeasible 
on GPUs due to memory limitations [65]. As GPU speed and 
on-board memory increases in future hardware architectures, 
it may soon become practical to simulate a whole CA3 circuit 
with multi-compartment neuron models.

The minimally invasive and transient stimulation proto-
col chosen provided an effective and efficient way to assess 
CA3 resting-state dynamics, whereas continuous periodic or 
noisy input from external afferents would have complicated 
the interpretation of resting-state activity. The robustness 
observed in our model, as characterized by the convergence 
of the network to a stable and periodic activity pattern inde-
pendent of the transient stimuli provided, highlights the 
auto-associative capability of CA3. Notably, our simulation 
design approximated away the anatomically realistic topo-
graphic organization of this circuit which was included in 
another recent model [66]. Instead, the network dynamic was 
critically dependent on the network circuitry which utilized 
neuron type-specific connection probability estimates. This 
result highlights that the key information processing element 
in neural circuits may be neuron types and their potential 
connections, as opposed to topographic connectivity.

Among the key conceptual elements not yet implemented 
in this SNN simulation of CA3 is long-term plasticity 
(LTP): the synaptic weights in our network model were 
fixed within each pair of neuron types and fully determined 
by the TPM model. The main reason for this exclusion is 
again the absence of sufficient experimental constraints in 
this regard for most pairs of neuron types in the model. 
Nonetheless, our framework is flexible enough to incorpo-
rate LTP through spike-time-dependent plasticity, whose 
implementation in future network models may be suffi-
cient to reproduce the non-uniform distribution of weights 
observed in the hippocampus [67]. Similarly, we did not 
model spatially selective inputs, which in later extensions 
of this work might foster a better understanding of state 
transitions between different network rhythms and the con-
tribution of individual neuron types to the formation of CA3 
Pyramidal cell place fields. Furthermore, including other 
conceptual circuit building blocks such as neuromodulation 
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or diverse input–output relationships for each neuron type 
may contribute to elucidate CA3 functionality (Table 8). 
While experimental estimates are still lacking for many of 
these conceptual building blocks, explicitly modeling each 
one with the Hippocampome-CARLsim4 framework may 
help establish reasonable bounds.

Our network modeling approach serves as a steppingstone 
towards building both a powerful comparison and prediction 
framework for hypotheses of CA3 functions. Measurement 
of the phase preferences of Pyramidal cells and a variety of 
perisomatic- and dendritic-targeting interneuron types can 
be made, allowing for comparisons with unique neuron types 
recorded in various experimental settings and generating 
experimentally testable predictions for those neuron types 
that still lack direct evidence [68]. Additionally, this frame-
work can predict and explain emergent network behavior, as 
in the example of the circuit level mechanism for asynchro-
nous vesicle release. Last but not least, the SNN simulation 
size and connectivity can be scaled down to reproduce and 
be more directly compared to the in vitro slice model sys-
tem for exploring similarities and differences with experi-
mentally tractable circuit interactions [69]. This will then 
provide a fuller picture of how a variety of interneuron types 
create the observed dynamics in area CA3.

Conclusion

The large-scale CA3 SNN we have developed here serves as 
an important milestone in the Hippo campo me. org project: the 
creation of a data-driven neural circuit model of a hippocam-
pal subregion that integrates biologically realistic parameter 
estimates for the population sizes and intrinsic properties of 
defined hippocampal neuron types as well as the connection 
probabilities and STP between them. All parameter estimates 
and the software to create, simulate, and analyze this model 
are well-documented and freely available on the CARLsim 
and Hippo campo me. org GitHub (github. com/ UCI- CARL/ 
CARLs im4/ tree/ feat/ means dSTPP ost_ hc/ proje cts; github. com/ 
Hippo campo me- Org/ snn_ analy sis), in line with our commit-
ment to open science. While Hippocampome parameter esti-
mates are manually transferred to CARLsim4 in the current 
CARLsim4-Hippocampome framework, automation of param-
eter transfer will be forthcoming in the next major release of 
Hippocampome. In future work, this flexible framework will 
allow further investigations of the computations performed by 
the under-explored subregion CA3. Afferent excitation can be 
supplied from both the dentate gyrus and the entorhinal cortex 
to simulate theta and gamma rhythms, SWRs, and measure 
SPC relationships for each neuron type. The involvement of 
every neuron type for each rhythm can be further examined 
by modifying parameter estimates such as population sizes 
and connection strengths. How CA3 performs the functions Ta
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of pattern completion and auto-association can also be tested, 
either through input patterns of excitation or images converted 
to input spike trains to random sets of Pyramidal cells. Moreo-
ver, data-driven network simulations can be extended to other 
under-explored areas of the hippocampus, such as CA2 and 
subiculum, advancing towards the goal of a full scale SNN of 
the entire hippocampal formation.
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