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Adaptive Robot Path Planning Using a Spiking
Neuron Algorithm With Axonal Delays

Tiffany Hwu, Alexander Y. Wang, Nicolas Oros, and Jeffrey L. Krichmar

Abstract—A path planning algorithm for outdoor robots, which
is based on neuronal spike timing, is introduced. The algorithm
is inspired by recent experimental evidence for experience-
dependent plasticity of axonal conductance. Based on this
evidence, we developed a novel learning rule that altered axonal
delays corresponding to cost traversals and demonstrated its
effectiveness on real-world environmental maps. We implemented
the spiking neuron path planning algorithm on an autonomous
robot that can adjust its routes depending on the context of
the environment. The robot demonstrates the ability to plan
different trajectories that exploit smooth roads when energy
conservation is advantageous, or plan the shortest path across
a grass field when reducing distance traveled is beneficial.
Because the algorithm is suitable for spike-based neuromorphic
hardware, it has the potential of realizing orders of magni-
tude gains in power efficiency and computational gains through
parallelization.

Index Terms—Neuromorphic chips, path planning, plasticity,
robotics, spiking neurons.

I. INTRODUCTION

NAVIGATION in biology requires acquiring a map, and
then using that map to make intelligent decisions on

where to go and what to do [1], [2]. The idea of a cognitive
map, which was proposed by Tolman [3] in the last century,
is where the animal takes costs, context, and its needs into
consideration when moving through its environment.

Path planning involves calculating an efficient route from
a starting location to a goal, while avoiding obstacles and
other impediments. Despite much advancement over several
decades of robotic research, there are still many open issues
for path planners [4]. Classic path planning algorithms include
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Dijkstra’s algorithm, A Star (A*), and D*. Dijkstra’s algorithm
uses a cost function from the starting point to the desired goal.
A* additionally considers the distance from the start to the goal
“as the crow flies” [5]. D* extends the A* algorithm by start-
ing from the goal and working toward the start positions. It has
the ability to readjust costs, allowing it to replan paths in the
face of obstacles [6]. These algorithms can be computationally
expensive when the search space is large. Rapidly exploring
random trees are a less expensive approach because they can
quickly explore a search space with an iterative function [7].
Still these path planners are computationally expensive and
may not be appropriate for autonomous robots and other small,
mobile, embedded systems.

Because of their event driven design and parallel architec-
ture, neuromorphic hardware holds the promise of decreasing
size, lowering weight and reducing power consumption, and
may be ideal for embedded applications [8]. These systems
are modeled after the brain’s architecture and typically use
spiking neural elements for computation [9]. Spiking neu-
rons are event driven and typically use an address event
representation (AER), which holds the neuron ID and the
spike time, for communicating between neurons. Since spik-
ing neurons do not fire often and post-synaptic neurons do not
need to calculate information between receiving spikes, neu-
romorphic architectures allow for efficient computation and
communication.

Path planning approaches that may be a good fit for neu-
romorphic applications are wavefront planners [10], [11] and
diffusion algorithms [12]. In a standard wavefront planner, the
algorithm starts by assigning a small number value to the goal
location. In the next step, the adjacent vertices (in a topolog-
ical map) or the adjacent cells (in a grid map) are assigned
the goal value plus one. The “wave” propagates by increment-
ing the values of subsequent adjacent map locations until the
starting point is reached. Typically, the wave cannot propagate
through obstacles. A near-optimal path, in terms of distance
and cost of traversal, can be read out by following the lowest
values from the starting location to the goal location.

We recently introduced a spiking neuron wavefront algo-
rithm for path planning that adapts to changes in the
environment [13]. The adaptive element is inspired by recent
empirical findings supporting experience dependent plasticity
of axonal conduction velocities [13]. Unlike prior implemen-
tations of spiking wavefront path planners, our algorithm
introduces an adjustable spike delay that could potentially
allow for dynamic online adaptation to realistic environmen-
tal costs, while maintaining a temporally sparse coding of
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the path. In simulations, we were able to show that this algo-
rithm was more computationally efficient and sensitive to cost
than existing path planning algorithms.

Versions of the wavefront algorithm have been imple-
mented on neuromorphic hardware that supports spiking
neurons [14]–[16], including our own algorithm which was
successfully implemented on the IBM TrueNorth chip [17]. In
addition, it has been shown to plan efficient paths on mobile
robots and robotic arms [11], [14], [18]. However, these algo-
rithms are not flexible in dynamic environments or in situations
where the context changes. Other neural inspired implemen-
tations of the wavefront or diffusion idea use learning rules
to learn routes through environments [19]–[22]. These models
rely on synaptic plasticity to learn and adapt to environments.
However, most of the environments used in these experiments
have been static and highly constrained.

In this paper, we expand upon this previous work, demon-
strating the algorithm’s effectiveness in complex natural envi-
ronments. Rather than using a manually constructed map, we
create maps from an outdoor park with an abundance of natural
obstacles and varied terrain. These obstacles and varied terrain
are reflected in the algorithm’s cost function. We further show
how this algorithm can be implemented on an autonomous
robot navigating an outdoor environment. The mobile robot
had to consider real-world costs and tradeoffs in the envi-
ronment, such as smooth roads versus rough grass, as well
as obstacles such as benches, bushes, and trees. The robot
demonstrated context-dependent path planning through this
environment and the spiking wavefront was efficient enough
to run on an Android smartphone that was mounted on and
controlled the robot.

II. METHODS

A. Neuron Model and Connectivity

To demonstrate a spiking neuronal wave path planning algo-
rithm, we constructed a simple spiking neuron. The neuron
model contained a membrane potential (v), a recovery variable
(u), and received current input (I) from synaptically connected
neurons

vi(t + 1) = ui(t) + Ii(t) (1)

ui(t + 1) = min(ui(t) + 1, 0) (2)

Ii(t + 1) =
∑

j

(
1 if dij(t) = 1; 0 otherwise

)
(3)

dij(t + 1) = max
(
dij(t) − 1, 0

)
. (4)

dij(t) is the axonal delay between when neuron vj(t) fires an
action potential and neuron vi(t) receives the action potential.
When vj(t) fires an action potential, dij(t) is set to a delay
value of Di,j(t) , which was assigned according to variable
costs in the environment. Note from (4) that dij has a null
value of zero unless the presynaptic neuron fires an action
potential.

Equations (1)–(4) calculate the membrane potential, recov-
ery variable, synaptic input, and axonal delay for neuron i at
time step t, which is connected to j presynaptic neurons. The
neuron spiked when v in (1) was greater than zero, in which
case, v was set to 1 to simulate a spike, u was set to −5 to

simulate a refractory period, and the axonal delay buffer, d,
was set to D. The recovery variable, u, changed each time step
per (2). The delay buffer, d, changed each time step per (4).
I in (3) was the summation of the j presynaptic neurons that
delivered a spike to post-synaptic neuron i at time t. Because
of the refractory and delay periods, most neurons will be inac-
tive during each timestep, resulting in sparse activity. Although
neurons have to check if they fired a spike or received a spike
each timestep, most of the computation occurs when neurons
emit or receive a spike.

The neural network consisted of a 20×20 grid of spiking
neurons as described in (1)–(4). The 20×20 grid corresponded
to grid locations used in the outdoor robot experiments. Each
neuron corresponded to a location in the environment and was
connected to its eight neighbors (i.e., N, NE, E, SE, S, SW, W,
and NW). At initialization (t = 0), v and u were set to 0. All
delays, D, were initially set to 5, but could vary depending on
experience in the environment. D represented the time it takes
to propagate a presynaptic spike to its post-synaptic target.

B. Axonal Delays and Plasticity

A spike wavefront proceeds by triggering a single spike at
a neuron that corresponds to the start location. This neuron
then sends a spike to its synaptically connected neighbors.
The delivery of the spike to its post-synaptic targets depends
on its current axonal delay. Each synapse has a delay buffer,
which governs the speed of the spike wave

Di,j(t + 1) = Di,j(t) + δ
(
mapx,y − Di,j(t)

)
(5)

where the delay Di,j(t) represents the axonal delay at time t
between neurons i and j, mapx,y is the value of the environment
at location (x, y), and δ is the learning rate. For the present
experiments, δ was set to 1.0, which allows the system to
instantaneously learn the values of locations. This allows us
to use an a priori cost map to test the effectiveness of the plan-
ning algorithm when the map is known, without incremental
learning. In Section IV, we describe how changing the learning
rate can allow for map creation as the robot explores an envi-
ronment. The learning is expressed through axonal delays. For
example, if the spike wave agent encountered a major obsta-
cle, with a high traversal cost (e.g., 9), the neuron at that
location would schedule its spike to be delivered to its con-
nected neurons nine time steps later, whereas, if the traversal
cost of a location were 1, the spike would be delivered on the
next time step. It should be noted that in this paper the delay
buffers were reset before each route traversal.

C. Spike Wave Propagation and Path Readout

Fig. 1 shows the progression of a spike wave in a typical
environment. The example shows how the algorithm is sen-
sitive to different costs; the left columns of Fig. 1 show an
environment where the best path is the most direct route, and
the right columns show an environment where it is advan-
tageous to take a longer route along a smooth road. The
neuron at the starting location is triggered to emit a spike.
The top panels of Fig. 1 show the start of the spike wave
emanating from the start position. Note how the spike wave
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Fig. 1. Spike wave propagation in simulation. The top panels show the
network activity at timestep 3, the middle panels show network activity at
timestep 18, and the bottom panels show the resulting path. The left side
shows the test area without a road. The light blue is the surrounding region,
which has a cost of 9. The dark blue depicts the location of an open grass
field, which has a cost of 3. The right side shows the test area that takes
into consideration a road, which has a cost of 1 and is shown in dark blue.
The spike wave propagation is shown in yellow. The starting location is at the
top middle of the map, and the goal location is at the bottom middle of the
map. Note how the spike wave propagates faster when there is a low cost
road present.

is propagating faster on the regions that depict a smooth road
[Fig. 1 (right column)]. This is because the road has a traver-
sal cost of 1, whereas the grass field has a cost of 3. Each
spike, which is shown in yellow in Fig. 1, is recorded in the
AER table, with its neuron ID and time step.

To find the best path between the start and goal locations,
we used the list of spikes held in the AER table. From the
goal, the list was searched for the most recent spike from
a neuron whose location was adjacent to the goal location.
If more than one spike met this criterion, the neuron whose
location corresponded to the lowest cost and was closest to the
start location was chosen. This iteratively proceeded from the
goal through other neuron locations until a spike at the start
location was found. The bottom right image in Fig. 1 shows
the found path.

In complex environments, there was the potential for
multiple waves to occur and collide (Fig. 2). In this case, the
AER table could contain more than one path. To find the best
path, a second pass was made through algorithm with a tem-
porary map that had a cost of 1 for the paths from the first
pass, with the rest of the map set to 20. This second pass of
the spike wave algorithm ensured that the resulting path was
most efficient in terms of length and cost.

D. A* Path Planner

For comparison purposes, we implemented the A*
algorithm [5], which is commonly used in path planning. A*
uses a best-first search and attempts to find a least-cost path
from the start location to the goal location. The cost includes
the Euclidean distance from the start, the Euclidean distance

Fig. 2. In some instances, the collision of multiple spike waves generated
inefficient paths (left). This was remedied by adding a second pass through the
algorithm with a cost map containing just the paths from the first pass (right).
(a) Path with wave collision. (b) Remedied path.

from the goal, and the cost of traversing the location. From
the start location, adjacent locations are placed in a node list.
Then the node list is searched for the node with the low-
est cost. The location corresponding to this low-cost node is
expanded by placing adjacent, unevaluated locations on the
node list. The process is repeated until the goal location is
reached. The A* algorithm can find the shortest path based on
its cost function.

E. Map of Environment

To demonstrate the effectiveness of our spiking wavefront
planner, we tested the algorithm in a real environment through
a variety of terrains in Aldrich Park, a 19-acre botanical gar-
den at the University of California at Irvine. Two sections
of the park, an open area and a cluttered area (Fig. 3) were
transformed into 20×20 grid maps encoding the costs of trav-
eling and the global positioning system (GPS) coordinates. We
generated the GPS coordinates by pacing off the area with
a smartphone (Samsung Galaxy S5) and recording the GPS
points with an Android application.

Two maps created from the sections of Aldrich Park con-
sisted of a 20×20 grid of GPS coordinates and terrain costs
(see Fig. 3). The first, referred to as map 1, was in an open
grassy area of the park, which was surrounded by a paved side-
walk. In one variant, referred to as “without road” [Fig. 4(a)],
the grassy area had a cost of 3, and all other areas had a cost
of 9. In the “with road” variant [Fig. 4(b)], the paved sidewalk
around the grassy area was given a cost of 1. In the “with road
and obstacles” variant [Fig. 4(c)], benches, bushes, and trees
were given a cost of 6. The second map, referred to as map 2
[Fig. 4(d)], had an outer region with a cost of 6, large trees
and brush had a cost of 10, the paved road had a cost of 1, and
the gravel road had a cost of 2. Map 2 was stretched horizon-
tally such that the asphalt path location roughly matched the
asphalt path of map 1, allowing for better route comparisons
between maps. These maps were used in both simulations and
in autonomous robot experiments.

F. Robot Hardware and Software Design

For the robot experiments, we used the Android-based
robotic platform [23], a mobile ground robot constructed
from off-the-shelf commodity parts and controlled through
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Fig. 3. Google satellite image of Aldrich Park at the University of
California at Irvine. Two sections of the park (boxed) were transformed into
cost maps (map 1 as bottom box and map 2 as top box) for the spiking wave
planner. Imagery c⃝2016 Google.

Fig. 4. 20×20 cost grids created from two areas of Aldrich Park. (a) Open
area with uniform low cost in the traversable area, and high cost outside of
this area. (b) Same area as (a) but with a lower cost for the surrounding road.
(c) Same area as (b) but with obstacles denoting benches, bushes, and trees
near the road. (d) Second area in Aldrich Park with high cost for trees, low
cost for asphalt roads, and medium cost for dirt roads. (a) Map 1—without
road. (b) Map 1—with road. (c) Map 1—with road and obstacles. (d) Map
2—with road and obstacles.

an Android smartphone (see Fig. 5). An IOIO-OTG
(www.sparkfun.com/products/13613) microcontroller commu-
nicated with the Android smartphone via a Bluetooth

Fig. 5. Android-based robotic platform. Left: side view of ground robot.
A flexible pan and tilt unit controls view of smartphone camera. Top
right: front view of ground robot. Three LV-MaxSonar sensors are able to
detect obstacles up to 254 inches away. Bottom right: top view of compo-
nent enclosure. An IOIO-OTG microcontroller (below) serves as the central
hub for communication, including sending motor commands to the motor
controller (above).

connection and relayed motor commands to a separate
RoboClaw motor controller (www.pololu.com/product/1499)
for steering the Dagu Wild Thumper 6-Wheel Drive All-
Terrain chassis (www.pololu.com/product/1563robot). The
robot used a differential steering technique, moving the left
and right sets of wheels at differing speeds to achieve dif-
ferent degrees of turning. Additional sensors and actuators
were also connected to the robot through the IOIO-OTG,
including several MaxBotix LV-MaxSonar sensors (http://
www.maxbotix.com/Ultrasonic_Sensors/MB1000.htm) and an
SPT200 pan and tilt unit (www.servocity.com/spt200) for con-
trolling the view of the smartphone camera. Software for
controlling the robot was created using the Android Software
Development Kit. The software application was written in
Java using Android Studio and deployed on a Samsung Galaxy
S5 smartphone. The application utilized the phone’s built-in
accelerometer, gyroscope, compass, and GPS.

G. Computation

Simulations and robot experiments were run to test the spike
wave algorithm. The simulations of the spike wave and the
A* algorithm were run in MATLAB. For robot experiments,
the spike wavefront algorithm, robot I/O, and robot control
software were implemented in Java using Android Studio,
and run as an app on a Samsung Galaxy S5. Fig. 6 shows
a screenshot of the Android application. A graphical user
interface (GUI) on the phone allowed the user to input start
and goal grid locations, as well as select a map. The app then
generated a path using the spike wavefront planner described
in Sections II-A–II-C. The phone then displayed the desired
path on the GUI (see Fig. 6). Once the operator pressed the
auto button on the GUI, the app generated a list of ordered
GPS waypoints, from the start to the goal location, from the
path grid locations. The robot then used a navigation strat-
egy to visit each waypoint on the list in succession. The robot
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TABLE I
COMPARISON BETWEEN SPIKE WAVEFRONT PLANNER AND A* PLANNER IN DIFFERENT ENVIRONMENTS

Fig. 6. Screenshot of app used for robot navigation. The screen displays
a camera view overlaid with information about distance to the destination,
bearing to the destination ranging 0◦−360◦ from true north, heading direction
(also ranging 0◦−360◦ from true north), and the 2-D cost grid. Colors on the
grid ranging from dark blue to red indicated the costs of the grid, with tree
locations marked at highest cost in red. The planned path of the robot is
indicated in yellow and the current location of the robot is marked in green.
The “grid” button toggles the grid view on and off and the “auto” button
switches the robot into and out of autonomous navigation mode.

stopped moving once the last waypoint, which represented the
goal location, was reached.

For robot navigation, a GPS location was queried using the
Google Play services location API. The bearing direction from
the current GPS location of the robot to a desired waypoint
was calculated using the Android API function bearingTo.
A second value, the heading, was calculated by subtracting
declination of the robot’s location to the smartphone compass
value, which was relative to magnetic north. This resulted in
an azimuth direction relative to true north. The robot trav-
eled forward and steered in attempt to minimize the difference
between the bearing and heading. The steering direction was
determined by deciding whether turning left or turning right
would require the least amount of steering to match the bear-
ing and heading. The navigation procedure continued until the
distance between the robot’s location and the current waypoint
was less than 10 m, at which point the next waypoint in the
path list was selected.

III. RESULTS

A. Path Planning Simulations

Table I shows path and cost metrics for simulated path plan-
ning that compared the spike wave algorithm with the A*
path planner. Simulations were run with all four map variants:
1) map 1—without road; 2) map 1—with road; 3) map 1—with

road and obstacles; and 4) map 2—with road and obstacles.
One hundred start and goal locations were randomly chosen,
in which the locations could not be out of bounds and the
Euclidean distance between the start and goal was greater than
five grid units.

The path lengths between the two algorithms were nearly
identical (see Table I), but the spike wave algorithm found
lower cost paths, especially when there were obstacles and
roads present (p < 0.001; Wilcoxon Ranksum). This is because
the spike wave algorithm depends primarily on cost, whereas
our A* implementation uses the common and standard heuris-
tic of Euclidean distance in addition to the cost of a node
on the map. Although A* is proven to be optimal given an
admissible heuristic [5], our heuristic is only admissible when
calculating for shortest path. A varied and dynamically chang-
ing environment would make a cost-admissible heuristic more
difficult to determine, whereas the spike wave algorithm inher-
ently includes both distance and cost in its calculation by
combining neighbor connectivity and axonal delay.

The A* algorithm ran faster than the spike wave algo-
rithm when calculating the paths, as measured by the tic/toc
functions in MATLAB (see Table I). Interestingly, this dif-
ference became smaller as the maps became more complex
(see map 2 in Table I). This is due to the presence of low
cost roads among high cost obstacles, which leads to the
algorithm requiring less neural activity to calculate a path.
In Section IV, we discuss how the spike wave algorithm can
be made parallel, asynchronous, and implemented on neuro-
morphic hardware. This should allow for substantial speedups
in processing, and reduction in power consumption, which
can be quantifiably measured against the baseline run times
reported here.

B. Robotic Experiments

Given that the spike wavefront planner showed possible
advantages over a traditional approach in simulation, we
aimed to test the plausibility of embedding the planning
algorithm on an autonomous robot with limited power
and computational resources. Robot experiments were con-
ducted in Aldrich Park on the campus of the University of
California at Irvine (see Fig. 3). For each map, we tested a set
of six routes with the same start and end coordinates on the
cost grids. See Figs. 7–10 for route start and end coordinates.
The generated routes were different depending on whether
roads and obstacles were taken into account. For each route
in a given map, the robot ran four trials, following the route
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Fig. 7. Experimental results for the spiking path planning algorithm on map 1, with no unique costs encoded for the path. Start and end locations are
noted by their row and column position on the cost map. Black lines indicate the planned route and the four colored lines indicate the actual route taken
by the robot. Scale bars indicate the length of 10 m along latitudinal and longitudinal axes, indicating the size of error threshold of our navigation strategy.
Imagery c⃝2016 Google.

Fig. 8. Experimental results for the spiking path planning algorithm on map 1, with lower costs encoded for the path. Black lines indicate the planned route
and the four colored lines indicate the actual route taken by the robot. Imagery c⃝2016 Google.

produced by the spiking wavefront path planner. To account
for changing satellite conditions and other environmental
factors, we spread out the testing times to sample the variance

of GPS signal quality. The first two runs were performed
in the morning and the last two runs were performed in the
afternoon. Since the robot only relied on GPS and compass to
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Fig. 9. Experimental results for the spiking path planning algorithm on map 1, with lower costs encoded for the road and higher costs for obstacles. Black
lines indicate the planned route and the four colored lines indicate the actual route taken by the robot. Imagery c⃝2016 Google.

Fig. 10. Experimental results for the spiking path planning algorithm on map 2, with different costs encoded for the asphalt road, dirt path, and trees. Black
lines indicate the planned route and the four colored lines indicate the actual route taken by the robot. Note that the 10-m scale bars indicate that the image
has been compressed along the longitudinal axis. Imagery c⃝2016 Google.

navigate, it was sometimes necessary to manually redirect the
robot slightly away from undetected obstacles. This occurred
very infrequently in map 1, and more frequently in map 2

due to the presence of dense vegetation and an abundance of
obstacles. In Section IV, we discuss ways to mitigate these
interventions.
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TABLE II
FRÉCHET DISTANCES (IN METERS) BETWEEN PLANNED ROUTE AND ACTUAL ROUTE FOR SPIKE WAVEFRONT PLANNER

Overall, the actual robot trajectories matched the desired tra-
jectories calculated from the spike wavefront algorithm quite
well. For each map condition, Figs. 7–10 show the satellite
image of the area, the cost map used by the path planner,
and the trajectories for the six routes from a starting grid
location to a goal grid location. The trajectories were super-
imposed on the street view of Google Maps. The black line
in these figures shows the desired path, and the four colored
lines show a robot trajectory. Occasionally, the GPS signal
became unreliable due to buildings, trees, and other environ-
mental noise. This sometimes caused the robot to drive away
from the desired destination, requiring the robot to backtrack
and visit a missed waypoint.

We used the discrete Fréchet distance [24] as a metric for
calculating the similarities of trajectories between the actual
robot’s movements and the intended route. Intuitively, Fréchet
distance is the minimal leash length necessary to physically
connect two agents as they walk along their two separate paths.
The agents are allowed to pause at any time but not permitted
to backtrack, and both must complete their respective paths
from start to endpoint. Compared to other comparison tech-
niques such as Hausdorff distance, Fréchet distance takes into
account the specific ordering of points on the trajectory, ideal
for our experimental conditions. Table II shows mean and stan-
dard deviation of Fréchet distances for each of the maps and
routes, with the sample size of four trials for each condition.

As our navigation strategy defined reaching a waypoint
as arriving within 10 m of the waypoint GPS location, any
Fréchet distance near the 10-m threshold should be considered
acceptable. We also see the scale at which our hardware and
algorithm can operate accurately, which in this case may not
be sufficient in some areas of the park but may be sufficient
for a car on a commercial road.

IV. DISCUSSION

In prior work, we introduced a path planning algorithm that
used spiking neurons and axonal delays to compute efficient
routes [13]. The spike wavefront path planner could gener-
ate near optimal paths and was comparable to conventional
path planning algorithms, such as the A* algorithm or a stan-
dard wavefront planner. We introduced a learning rule that
represented the cost of traversal in axonal delays. Because
the spike wavefront is a local algorithm (i.e., computations

are independent and based on neighboring neurons), it is suit-
able for parallel implementation on neuromorphic hardware,
as was shown recently with both grid-based and topological
maps [17].

In this paper, we showed that this algorithm was efficient
and accurate enough for autonomous robot path planning in
complex, outdoor settings. In prior work, maps are idealized,
virtual environments. In this paper, the axonal delays rep-
resented real-world costs, such as park benches, vegetation,
bumpy grass terrain, and trees. Smooth roads were repre-
sented with short axonal delays, and this led to the robot
choosing easier to traverse terrain, despite the longer overall
path. The spiking algorithm, input/output handling, and robot
control all ran on an off-the-shelf smartphone with an appli-
cation written in Java. This demonstrated that the algorithm
was lightweight and could support autonomous navigation in
real time.

A. Neurobiological Inspiration for the Spike
Wavefront Algorithm

The present algorithm was inspired by recent evidence
suggesting that the myelin sheath, which wraps around and
insulates axons, may undergo a form of activity-dependent
plasticity [25], [26]. These studies have shown that the myelin
sheath becomes thicker with learning motor skills and cogni-
tive tasks. A thicker myelin sheath implies faster conduction
velocities and improved synchrony between neurons.

Based on these findings, we developed a learning rule in
which a path that traverses through an easy portion of the envi-
ronment (e.g., via a road) would have shorter axonal delays
than a path that travels through rough terrain. Although it is
not known if such spatial navigation costs are represented
in the brain in this way, and most likely they are not, this
learning rule does investigate a rarely considered form of
plasticity. Moreover, manipulating the delays, as was done in
this paper, shows how a spiking neural network can solve
a real-world problem using a purely temporal code. Other
groups have investigated learning rules based on axonal delays.
Wang and colleagues have implemented a spike timing delay
dependent plasticity rule that can shorten or lengthen the
axonal delay between two connected neurons [27], [28]. They
showed that altering axonal delays had advantages in forming
polychronous neuronal groups, which represent spatiotemporal
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memories [29], over altering synaptic weights via spike timing
dependent plasticity (STDP).

The present algorithm is also inspired by the notion of
neuronal waves in the brain. Wave propagation has broad
empirical support in motor cortex, sensory cortex, and the
hippocampus [30]–[36]. These waves have been suggested as
a means to solve the credit assignment problem for asso-
ciating a conditioned stimulus with the later arrival of an
unconditioned stimulus [37]. In this paper, we have shown that
neuronal wave dynamics in complex spiking neural network
models can be used to associate visual stimuli with noisy
tactile inputs in a physical robot [38]. Therefore, the idea of
solving problems with spike timing generated by propagating
waves of activity has biological and theoretical support.

Relevant to the present task, is the experimental observa-
tion of neural activity that represent potential paths through
space. Sequences of place cell activity in the hippocam-
pus prior can predict an animal’s trajectory through the
environment [39]–[43]. These so-called preplays may be
a means to assess different possible paths prior to selecting
a specific path plan. In a way, this is similar to how the spike
wavefront planner operates. Sequences of place activity are
generated, and the spike sequence that arrives first at the goal
is the one selected for execution.

B. Parallel Implementation of Spike Wavefront Planner on
Neuromorphic Hardware

The present path planner calculates paths based on the tim-
ing of spiking neurons. Because each neuron can calculate
its state independently, the algorithm could realize impressive
speedups through parallelization. Moreover, spiking neuron
networks are inherently event-driven, that is, a new state is
only calculated when an incoming spike has been received.
This further reduces computational load. Lastly, by stopping
as soon as the first spike is received at a goal node, the spike
wavefront planner algorithm only calculates what is neces-
sary. For example, when there were variable costs, such as in
map 2, the amount of time to calculate a path with the spike
wavefront planner was reduced relative to the A* path planner
(see Table I). It should be noted that the A* path planner can be
parallelized [44], but unlike this and other conventional algo-
rithms, they cannot take advantage of neuromorphic hardware
as can spiking neuron algorithms.

Neuromorphic hardware differs from the conventional Von
Neumann computer architecture in that it is asynchronous and
event-driven, with parallel computation [8], [9]. The artificial
neurons do not take up computation cycles unless they receive
a spike event from a connected neuron. Typical neuromorphic
designs have the memory, in the form of synapses, co-located
with the processing units, that is, the neurons. This allows
computations to be local, independent, and parallel. These
features allow neuromorphic chips to have low size, weight,
and power [8], [45]. Nearly all these chips use spiking neuron
elements and some form of AER.

As has been shown in prior implementations, the
spike wavefront algorithm is compatible with neuromorphic

hardware [14]–[18]. These implementations show the feasi-
bility and parallelization of the wavefront planner. Moreover,
they show how this neuromorphic algorithm can generate
optimal paths. In addition, IBM’s TrueNorth neuromorphic
chip was recently embedded on the robot used in the present
experiments in an autonomous self-driving application [46].
Considering that the present spike wavefront algorithm has
been implemented on TrueNorth [17] a complete neuromor-
phic path planning system is now feasible on our robot.

This paper builds on these implementations by adding
a learning rule to make the planner more flexible and to con-
sider the relative costs of traversing an environment. Axonal
delays have been introduced in large-scale spiking neural
network simulations [47], [48], but are not typical for neu-
romorphic hardware. However, some neuromorphic designs
include axonal delays [27], [28], [49], [50]. To implement the
present algorithm in neuromorphic hardware, all that would be
needed is a delay buffer, delay line, or a means to schedule
spikes at specific times in the future. Because a synaptic based
learning rule, such as STDP, is not needed for the present
algorithm, the circuitry to support the spike wavefront planner
could be simplified.

In the present algorithm, the AER representation is used
to read out the path, which may be a limitation since
it requires saving the AER list for each planned route.
It also requires a planning calculation and readout for
every route. A more natural implementation might use the
rank order of the spike wave in a similar way to that
proposed by Thorpe et al. [51] and VanRullen et al. [52].
Such alternative readout implementations will be explored in
the future.

C. Comparison to Other Neurally Inspired Path
Planning Approaches

The result of our algorithm has complementary paral-
lels to past work in bioinspired algorithms for mobile robot
control [53]. For instance, Ni and Yang [54] proposed a neu-
ral network for multirobot cooperative hunting in unknown
environments, representing space in a 2-D neuron grid and
using a shunting model to represent attraction and repulsion
agents on the field. Similarly, our algorithm could draw upon
these principles, representing not only environmental costs but
costs of interacting with other dynamic agents cooperatively
and competitively. It also opens the possibility of neuromor-
phic solutions for the complex tasks of swarm coordination in
mobile robots.

Aside from neural navigation models inspired by hippocam-
pal activity and cognitive map representation, cerebellar mod-
els of motor control using the delayed eligibility trace learning
rule have also been used for spatial motion planning [55],
with further developments increasing its efficacy in real envi-
ronments such as urban expressways and tracks [56]. Perhaps
a model of predictive motor control combined with a larger
cognitive map representation could be implemented in neu-
romorphic hardware to form an effective multiscale motion
planning system.
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D. Simultaneous Path Planning and Mapping

The present algorithm could be modified to build a map as
the robot explores its environment. It would need additional
sensors to measure the cost of traversal or some other cost
function related to navigation. Rather than assuming that the
environment is known and static, the robot could update
the map with each path it generates. This would require
setting the learning rate in (5) to be less than one. In addi-
tion, if the spike wavefront planner had a learning rate
between 0 and 1, the uncertainty of the cost at a location
would be represented. Similar to [57], this would result in
the spike wavefront planner predicting the cost of travers-
ing locations in an environment. Moreover, the planner could
utilize an exploration/exploitation tradeoff to decide whether
to explore unknown regions, or exploit previously navigated
regions. Such tradeoffs have been implemented in neurobio-
logically inspired algorithms [58]–[60]. Such a planner could
respond flexibly and fluidly to dynamic environments, or
the changing needs of the robot. For example, if the robot
needed to get to a location as fast as possible, it might
take a direct, but more risky route from the start to goal
location. However, if the robot wanted to conserve energy,
it might take a longer, but easier path. The different tra-
jectories taken by the robot in Figs. 6–9 demonstrate this
capability. Context is represented in the map itself. In a future
implementation, one could change the cost values of the
map based on the robot’s needs, thus changing the robot’s
behavior.

Additionally, building a map incrementally opens up many
possibilities of representing the map besides a 2-D grid con-
figuration. For example, a more flexible arrangement such as
a topological map is compatible with our spike wave prop-
agation algorithm, and in fact has recently been achieved
with large-scale maps [17]. For increased resolution of map
representation, a system of multiscale place recognition [61]
may also be considered. Further, a hierarchical spiking neural
network [62] could be involved in forming multiscale rep-
resentation compatible with neuromorphic hardware. Any of
these suggested implementations would ease the computa-
tional load of 2-D grid implementations of the A* and the
spike wavefront propagation algorithm, both of which increase
in complexity with the grid resolution.

V. CONCLUSION

In summary, we have shown that a spike-based wave-
front planner can successfully be used on an autonomous
robot to navigate natural environments. Developing from the
existing literature on spiking path planning algorithms, we
showed that the algorithm, which implemented a form of
activity-dependent axonal delay plasticity, was sufficient to
plan paths based on real costs of traversing an outdoor envi-
ronment. We further demonstrated that this algorithm could
be implemented on a standard smartphone with consumer-
grade GPS and compass sensors, suggesting that this may
be efficient enough for other autonomous vehicles that do
not have access to high performance computing. Because
the algorithm relies on spiking neurons and asynchronous,

event-driven computation, it can be implemented on neuro-
morphic hardware, making it power efficient enough for many
embedded applications.
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