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Abstract—A robot operating in multiple settings must develop
stable as well as flexible representations of the tasks and contexts
associated with their environments. Taking inspiration from
neurobiology, we apply a neural network model of schemas and
memory consolidation to train the Toyota Human Support Robot
to find and retrieve objects in indoor settings. We define schemas
to be collections of objects bound together by a common context.
In this case, the robot must learn schemas associated with rooms
found in a school based on objects typically found in those
rooms. Because the model develops schema representations for
each room, the robot can rapidly perform object retrieval tasks
associated with familiar schemas and disambiguate the tasks by
context. Our experiment explores the effects of the model in an
embodied setting and shows the benefits of applying research in
memory consolidation to contextual awareness in robotics.

Index Terms—Memory consolidation, Learning contexts, Cog-
nitive robotics, Neuromodulation, Neurorobotics, Schemas

I. INTRODUCTION

When operating in varied environments, robots must learn
the appropriate tasks to perform within a context. This requires
mental representations that are flexible enough to learn tasks
in new contexts and yet stable enough to retrieve and maintain
tasks in old contexts. Similarly in neuroscience, the stability-
plasticity dilemma asks how the brain is plastic enough to
acquire new memories quickly and yet stable enough to
recall memories over a lifetime [1], [2]. Using ideas and
theories from memory consolidation in neuroscience, we aim
to improve contextual awareness in robotics.

One theory of how the brain balances stability and plasticity
is that information is stored in schemas, which are defined
as items bound together by common contexts [3]. Tse and
colleagues demonstrated this by training rats on different
schemas, which were collections of associations between
different foods and their locations in a square arena [4]. They
found that the rats were able to learn new information quickly
if it fit within a familiar schema. Additionally, the rats were
able to learn new schemas without forgetting previous ones.
The hippocampus (HPC) was necessary for learning schemas
and any new information matching a schema. In a followup
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study, Tse and colleagues showed increased plasticity in the
medial prefrontal cortex (mPFC) when information was con-
sistent with a familiar schema [5]. Recently, a neural network
model showed how the mPFC develops representations of
schemas and modulates indexing patterns in the hippocampus
to form schema-specific task representations [6]. With the
addition of neuromodulatory areas, the model learned rapidly
when information was consistent with a familiar schema.

In this paper, we show how a model of schemas and memory
consolidation could be applied to a robot task to explore its
effects in an embodied setting and test how these concepts
might improve contextual awareness in real-world settings.
The goals of the present work are to: 1) investigate if concepts
from rodent neuroscience might have useful applications for
robot behavior, and 2) examine whether the original model
[6], which artificially replicated highly controlled rodent ex-
periments, can be used with noisy sensory inputs and behavior
in a real-world setting. Specifically, the setting was a school
in which there was a classroom and a breakroom, each with
objects typically found in these rooms. Our results suggest
that the interaction between the HPC and mPFC can allow
the robot to learn multiple memory episodes without the need
for retraining. Furthermore, the present robotic schema model
may have applications to resolve catastrophic forgetting and
task switching in artificial neural networks.

II. METHODS

A. Neural Network Model

A neural network was created to associate visual objects
and places with particular schemas. The robot learns these
associations to build schemas, which facilitate object retrieval.
The neural network was created to model areas corresponding
to the HPC and mPFC and simulated the known connections
between these areas. Memories are formed through neurobi-
ologically plausible learning with neuromodulation known to
occur in these brain areas.

The proposed neural network model follows ideas from the
theory of complementary learning systems [7], which suggests
that the HPC rapidly forms indices of activity in the neocortex.
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As both the HPC and neocortex use hierarchical representa-
tions [8], [9], our model shows how the indexing behavior and
neocortical learning occur in hierarchical streams. The model
introduces an Indexing Stream to indicate contexts and stimuli,
and a Representation Stream that learns tasks associated with
the contexts (see Figure 1). The Indexing Stream is inspired
by the interactions between HPC and mPFC, and the Repre-
sentation Stream has similarities to the sensory and association
cortex. The use of two separate streams prevents catastrophic
forgetting when training the network on multiple tasks in
succession [6]. This is because the Indexing Stream learns
indexes of contexts, which in turn gates the Representation
Stream to separate task representations by context. Addition-
ally, the model contains neuromodulators for detecting novelty
and familiarity. For example, if an object is novel, but the
context is unfamiliar, a new schema must be learned. However,
if an object is novel, and the context is familiar, the object
can be added to an existing schema. Each component reflects
an important brain function for context-aware learning in an
embodied environment. Figure 1 depicts an overview of the
network, with details of the modules and learning discussed
below.

1) Indexing Stream: The Indexing Stream models the func-
tionality of mPFC-HPC circuits in the brain by clustering
inputs into different contexts and indexing information at
increasing levels of detail along the dorsal-ventral axis of the
HPC [8]. All layers in the Indexing Stream use the following
equation to calculate activity at each time step:

xk(t) = f(Wkxk−1(t− 1)), (1)

where layer k is the postsynaptic layer, layer k-1 is the
presynaptic layer, Wk is the weight matrix between layer k
and k-1, and f is the Rectified Linear Unit (ReLU) transfer
function:

f(x) = max(x, 0). (2)

A contextual pattern first projects to the mPFC, where each
individual neuron encodes a different schema. The mPFC
neuron activity vector xk at time t is calculated using Equation
1. A winner-take-all scheme sets all activations in the mPFC to
zero except for the one with the maximum value. The Hebbian
learning rule [12] is applied to train weights from context
pattern to mPFC as

∆Wk = ηpatternxkxT
k−1, (3)

where xk is the mPFC layer, ηpattern is the learning rate, and
xk−1 is the context pattern layer. The weights are normalized
such that the norm of weight vectors going to each post-
synaptic neuron i is 1:

wi =
wi

||w||
. (4)

w is the vector of weights sharing a postsynaptic neuron, and
wi is a single weight in w. Equations 1-4 enforce a stable
clustering by ensuring that no single neuron has much higher

activity than the others. The ventral HPC (vHPC) indexes
mPFC activity, also using Equations 1-4. The dorsal HPC
(dHPC) then indexes triplets of vHPC, context pattern, and
action selection layer activities in the same way, but with a
learning rate of ηindexing . The faster learning rate compared
to ηpattern reflects the rapid indexing of the HPC. The mPFC,
vHPC, and dHPC therefore form a hierarchical stream of
indices that increase in specificity.

2) Representation Stream: Just as the neocortex performs
multimodal associations for perception and cognition [13],
the Representation Stream learns tasks by associating actions
to cues. Contextual information from the Indexing Stream
disambiguates tasks by context, similar to mPFC functionality
in animals. To maintain biological plausibility, we use Con-
trastive Hebbian Learning (CHL) [14], a local learning rule,
to learn tasks. In a network with layers 0 through L, activity
of the kth layer is yk and the weight matrix from layer k-1
to k is Wk. Each weight matrix Wk has a feedback matrix of
γWT

k , such that each feedback weight value is a scaled down
value of the feedforward weight. In free phase, the input layer
y0 is fixed and the neuron activations of the other layers are
given by

yk(t) = f(Wkyk−1(t− 1) + γWT
k+1yk+1(t− 1)) (5)

where f is the ReLu function.
Equation 5 is applied for Ts time steps for convergence,

consistent with standard CHL [14]. The resulting neuron
activations for free phase is y̌k. Then in clamped phase, the
output is fixed to the desired value to associate with the input,
while the input remains fixed. In CHL, the desired value
for clamping the output can occur in a supervised fashion.
In the case of this experiment, the value is determined via
connections from the dHPC of the Indexing Stream. Again
Equation 5 is applied for Ts time steps for convergence to
make ŷk, for the clamped phase. The update rule is then
applied:

∆Wk = ηCHL(ŷkŷT
k−1 − y̌ky̌T

k−1), k = 1, ..., L. (6)

The input layer of the representation stream represents a cued
input, such as a stimulus, and the output layer represents a
learned action to the stimulus. Intermediate layers represent
the association cortex (AC), which can be designed as one
or more layers to perform multimodal associations between
cues and actions. While CHL is able to learn by clamping
and unclamping the output layer alone and without clamping
of the intermediate layers, the intermediate layer in our im-
plementation takes additional inputs from the vHPC during
clamping. These vHPC connections to AC are randomly
sampled and held static, which result in unique activations
in the intermediate layer depending on which vHPC neuron is
active.

3) Novelty and Schema Familiarity: Neuromodulatory
mechanisms speed up learning of novel stimuli when consis-
tent with a previously learned schema. To calculate novelty,
each neuron in the dHPC projects to the novelty submodule
with a starting weight that represents the baseline level of



Fig. 1. Overview of network and learning phases. The blue box contains the Indexing Stream, the orange box contains the Representation Stream and
the pink box contains the neuromodulators. The size of each layer in both streams is specified in Table I. There are four phases in an epoch of training.
A) Indexing phase: the medial prefrontal cortex (mPFC) indexes the context pattern, the ventral hippocampus (vHPC) indexes the mPFC, and the dorsal
hippocampus (dHPC) indexes triplets of vHPC, cue, and action. The activity of the neuromodulator is the product of activity from the novelty and familiarity
areas. see Equations 1-4 for details. B) Free Phase of Contrastive Hebbian Learning (CHL): the cue and schema layers are clamped to an input value while
the Representation Stream runs freely, as in Equation 5. C) Clamped Phase of CHL: the cue and schema remain clamped and the output is clamped via
connections from dHPC. During training, results from the clamped and free phase are combined in Equation 6. D) Test Phase: this is used to query the
network when performing tasks.

Fig. 2. The Toyota Human Support
Robot [10], [11]. A scanning lidar
at the base allows for SLAM map-
ping of the environment. A combi-
nation of height, arm, and gripper
controls allows for objects to be
picked up and put down on various
surfaces. An RGBD camera allows
for object segmentation, identifica-
tion, and localization.

surprise when a new stimulus is presented. Whenever the
activity of the dHPC is updated, the activity of the novelty
submodule is found in the same way as neurons in the Indexing

Stream. The weights from the dHPC to the novelty submodule
are then updated with an anti-Hebbian learning rule:

∆W = −ηindexingxnoveltyx
T
dHPC . (7)

where W is the weight matrix of weights from the dHPC
to novelty submodule, ηindexing is the learning rate, xnovelty
is the activity of the novelty submodule, and xdHPC is the
activity of neurons in the dHPC. Since the dHPC uses winner-
take-all, each weight from dHPC represents an individual
novelty score for the corresponding dHPC neuron. The activity
of the familiarity module, xfamiliarity , is the weighted sum
of inputs from the mPFC after winner-take-all, as in Equation
1. However, rather than a ReLU function, we use a shifted



sigmoidal function:

f(x) =
1

1 + e−s(x−xshift)
. (8)

where s is the sigmoidal gain and xshift is the amount of
input shift. These weights are updated after mPFC activity is
updated, using the Hebbian learning rule from Equation 3 with
a learning rate of ηpattern. The activity of the neuromodulator
is

neuromodulator = xnovelty ∗ xfamiliarity (9)

This value determines the number of times the vHPC and
dHPC will clamp and unclamp the representation layer in a
single trial, emulating the resonance of brain areas in schema-
consistent cases [3]. The number of extra epochs in a trial that
are added to a default number of epochs, edefault is calculated
as the following:

epochs = edefault + neuromodulator ∗ eboost (10)

4) Training Sequence: The neural network was trained to
associate objects with contexts. All network weights are first
initialized randomly along the range wmin and wmax, with
fully connected weights between layers, with the following
exceptions: 1) weights between vHPC and AC are first fully
connected with a weight of winh. Then, the weights are set to
0 with probability P such that each neuron in vHPC would
provoke a sparse pattern of activity in the AC, 2) weights going
to the novelty module are all set to wnovelty, and 3) weights
going to the familiarity module are all set to wfamiliarity . As
explored in [6], the level of sparsity provided by these weight
values balances between catastrophic forgetting and ability to
learn single tasks. The parameter values used for training can
be found in Table I.

In the terminology of our experiment, one trial of training a
schema consists of multiple epochs, with each epoch training a
random paired association of an object and location within the
schema. In one training epoch, the network runs through the
first three phases in Figure 1. The number of training epochs
in a trial is determined by the level of neuromodulation (see
Equation 10). During CHL, the action layer is clamped to
the value driven from the dHPC input. AC receives external
input from the vHPC using Equation 1, which inhibits most
of the AC neurons except for those that have a weight of 0
from the winning vHPC neuron. Since most of the neurons
are inhibited, this effectively gates neuronal activity, as only
sparse groups of non-inhibited neurons are activated for each
vHPC neuron.

vHPC and dHPC therefore serve the roles of contextually
gating intermediate layers of the Representation Stream and
driving CHL activity. At the beginning of a trial, the number
of training epochs is undetermined, but tentatively set at esettle
epochs (Figure 1A). During this time, activity levels of the
neuromodulator are tracked, and the maximum neuromodula-
tor activity found within this period is used to determine the
ultimate number of training epochs within the trial. After each
trial, the performance of the network is measured during the

Test Phase in Figure 1D by presenting a cue to the network
and allowing the network to settle on an action.

Population Sizes Learning Parameters
Ncue 18 Ts 5

NmPFC 10 ηindexing .1
Nmultimodal 40 ηpattern .0001
Ncontext 25 ηCHL .001
NvHPC 5 γ .001
NdHPC 40 eboost 1000

edefault 600
esettle 20
wmin 0.3
wmax 0.8
winh -10

wfamiliarity .0001
wnovelty 1

s 200
xshift .03
P 0.3

TABLE I
PARAMETERS USED IN EXPERIMENT.

B. Robot Inputs, Actions, and Graphical User Interface

Fig. 3. The graphical user interface for controlling the HSR includes buttons
for manual control of the robot as well as the following components for
automated behavior: A) The head camera input of the HSR with object
segmentation and detection. B) A map of the roamable area is displayed here.
The red circle shows the current location of the HSR. Grid dots represent the
locations of corresponding neurons in the action layer of the neural network.
C) Retrieval commands are sent to the robot by entering the name of the
object to be retrieved. D) A roam sequence is initiated by clicking this button,
causing the HSR to explore the current room.

We test our model by training it on the task of finding
and retrieving objects in an indoor space. Before running
experiments, the robot mapped the two rooms using an ex-
isting SLAM algorithm [15]. During experiments, the robot
uses its camera and lidar to recognize and locate objects in
the room. The object/location paired associations are used
to create or update schemas based on the neural network



described in Section II-A. In a trial, the robot is prompted
to retrieve an object, which requires prior knowledge of the
schema in which the object belongs, and the location of the
object. This causes the robot to navigate towards a location,
recognize the object, grasp the object, and then return the
object to its starting location. This is achieved by using ROS
packages provided by Toyota Motor Corporation for mapping,
navigation, and movement, as well as open-source libraries
for computer vision. More implementation details are in the
ensuing paragraphs.

We use the Toyota Human Support Robot (HSR) (Fig-
ure 2) and its associated Robot Operating System (ROS)
packages to carry out the tasks [10], [11], [16], [17]. A
scanning lidar at the base of the HSR allows for SLAM
mapping of the environment. A combination of height, arm,
and gripper controls allows for objects to be picked up and
put down on various surfaces. An RGBD camera allows
for object segmentation, identification, and localization. To
relay commands to the robot, we create a graphical user
interface in Python. Images from the camera are input to
the object segmentation and recognition package, YOLOv3
[18], which is implemented in PyTorch [19]. The YOLOv3
network uses pretrained weights trained on the COCO image
dataset [20]. The code for our experiment can be found at
https://github.com/fitany/SchemaHSR.

The input context pattern layer contains one neuron for each
detectable object, and the cue layer of our model contains one
neuron for each object graspable by the robot. The activation
of these neurons is set to 1 if detected by the robot in the last
60 seconds. The action layer output consists of a 2D grid of
neurons representing possible locations for the objects.

For one trial of training, the robot is provided with a set of
5 locations in the room, which are hand-selected for maximum
coverage. The robot visits each of these locations in random
order, stopping at each point to perform a full head rotation,
scanning to identify objects. Using the infrared depth sensor on
the HSR, the locations and identities of all objects seen during
the scan are recorded. The locations of the objects are set to the
closest grid coordinate. After visiting each location, the robot
then trains on the set of objects and locations, with the set of
all objects seen in the past 60 seconds input to the context
pattern layer. This information feeds into the mPFC layer,
which indexes these objects as a single neuron representation
through winner-take-all dynamics. This effectively clusters
groups of objects seen in each individual room, with one
mPFC neuron representing each room seen by the robot. The
room in which the robot was located was thus known by the
identity of the most active mPFC neuron. For all graspable
objects, the RGBD camera detects their location and trains
the representation stream for a single epoch with the object as
the cue and the location as the action.

The performance of the robot is tested by typing the name
of a graspable object into the graphical user interface and
requesting the robot to retrieve the item. The neural network
then receives input of all objects seen in the last 60 seconds
into the context pattern, and the requested object as the cue.

Running the network in Test Phase, the output layer produces
different levels of activation corresponding with the belief of
where the cued object was located. The activities of the 5
output neurons with highest activation are normalized into a
probability distribution. The robot then visits each of these 5
points by sampling from the probability distribution, removing
that point from the list, and re-normalizing the probabilities.
At each point, the robot performs a full head scan. If the cued
object is seen, the robot then aborts the searching process and
picks up the object. The movement sequence for picking up the
object is set to navigate to a specific distance and angle from
the object, raising the height of the robot to match the object,
lowering the arm, and closing the gripper in a pre-programmed
fashion. The graspable objects in our environment are small
and generally spherical, such that the same basic grasping
routine is applied to all objects.

C. Experimental Design for Learning and Maintaining
Schemas

Fig. 4. Experimental setup for the classroom and breakroom schemas. Yellow
dots represent the destinations for the robot to roam and scan during training.
A) Room layout and paired associations trained in the classroom. The bottle,
teddy bear, and apple were laid out in the specified locations. After training
on this layout, the teddy bear was exchanged for the mouse, introducing
novelty. The robot then trained on this environment. The book (starred) was
not trained as a paired association, but was included as a contextual item
during training. B) Physical setup of classroom and contextual items. C) Room
layout and paired associations trained in the breakroom, which is adjacent to
the classroom. The wine glass, cup, and apple were laid out on the central
table. The banana (starred) was not trained as a paired association, but was
included as a contextual item during training. D) Physical setup of breakroom
and contextual items.

In a series of experiments, we trained the robot to retrieve
objects in two adjacent rooms, a classroom and a breakroom
(Figure 4).

1) Experiment 1 - Learning and updating a single schema:
The first experiment was to train the robot on a single schema
(Experiment 1a). The robot was placed in a classroom setup,
with typical classroom items as seen in Figures 4A-B. The
graspable items were an apple, a bottle, and a teddy bear,
placed in different locations around the room. After training
and testing for 5 trials on the classroom, the teddy bear was
replaced by a computer mouse (Experiment 1b). The robot
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then went through one trial of training, and was tested on its
ability to retrieve this novel object. In all testing trials, the
robot started at the same location in front of the computers,
and brought the retrieved items to a neutral location near the
door separating the two rooms.

2) Experiment 2 - Maintaining multiple schemas: The
second experiment was to train the robot on a second schema
consisting of a breakroom as seen in Figures 4C-D. The
graspable items were an apple, a cup, and a wine glass.
After training and testing for 5 trials, the classroom schema
was tested again to see if the robot was able to maintain
performance of prior tasks. As the apple was present in both
contexts, we wanted to test whether the neural network could
place this overlapping object in both schemas. For all testing
trials, the robot started by facing the table and microwave,
and brought objects to the same neutral location between the
two rooms. When choosing locations to explore, only neurons
corresponding to the breakroom were used.

3) Experiment 3 - Schema prompting: The third experiment
was to test whether schemas could help the robot retrieve items
it was never explicitly trained to retrieve. Starting from the
neutral drop-off location, the robot was shown a banana for
context, and nothing else. Then, it was cued to retrieve the
banana. Since the banana was part of the breakroom schema,
we predicted that the robot would search for the banana in
the breakroom first as opposed to the classroom. Figure 7
shows the sequence of actions when retrieving the banana. We
repeated the same procedure with a small graspable book to
ensure that schema prompting would work for the classroom
schema as well.

III. RESULTS

A video of our main results can be seen at https://youtu.
be/ lPV0BuhSBI. We repeated all experiments 5 times. For
each repetition, the weights were randomly initialized at the
beginning and used throughout all experiments. Figure 5
shows the performance in Experiments 1 and 2. Performance
was calculated analytically by cueing each graspable item
in the room to the network, running it in Test Phase, and
calculating the percentage of activation level of the action
neuron corresponding to the location of the object. Behavioral
performance in terms of retrieval time was also tested on Trial
0 (prior to any training), and Trial 4. The performance of an
individual in any particular trial was averaged over each of the
graspable objects in the room. In Experiment 1a, performance
improved over the trials. In Experiment 1b, the retrieval time
was quick despite having only one training trial, which showed
that a novel object could be rapidly incorporated into an
existing schema. Figure 6 shows example trajectories taken
by the robot after training in each experiment. The robot goes
directly to the location of the item, picks it up, and returns to
drop off the item at a neutral location.

In Experiment 2, performance improved over time with this
new context or schema (Figure 5). As in Experiment 1, a
novel object that fit within the context was quickly learned.
Furthermore, when the individual was prompted to retrieve

an object in the previously learned schema (CR in Figure 5),
the performance was not degraded, demonstrating the ability
to hold two separate schemas in memory without forgetting
either one.

In Experiment 3, the robot explored the room corresponding
with the schema containing the prompted object, dropping
the object in the appropriate location (Figure 7). Figures 8A-
B show that the action layer activation is high for object
locations in the same room as the prompted item. Figure 9
shows selected sets of weights in the network after training
on all experiments. Weights from the context pattern to mPFC
show two rows containing distinct patterns of high and low
weight values. This indicates that there is one mPFC neuron
encoding each schema. Weights from the vHPC, cue and
action to dHPC show 6 rows, each with 3 high values. This
means that some dHPC neurons are encoding triplets of cue,
action, and schema. Weights to the novelty and familiarity
areas show that novelty has decreased for some dHPC inputs
and familiarity has increased for the two schema neurons.
Weights from mPFC to AC show two columns representing
the two schema neurons, each containing a different pattern of
high weight values. This shows the gating effect of the vHPC
on the AC, which separates task representations by schema.
More of the gating is seen in weights from AC to action, as
the action neurons corresponding to the locations of items have
strong weights from different sets of AC neurons.

IV. DISCUSSION

Neuroscience research on schemas inspired a memory
model, which allowed the Toyota Human Support Robot to
separate and maintain objects by context, quickly learn the
locations of novel objects, and retrieve new objects by its
knowledge of a schema. This relates to current approaches in
improving contextual awareness when carrying out commands
[21]. For instance, as the HSR is designed to aid humans
in household tasks, context is important when determining
how to carry out a task. Maintaining schemas of different
rooms allows the robot to be aware of contexts. When asked
to retrieve items at an unknown location, the robot explored
the rooms associated with the appropriate schema. This led
to faster retrieval times. The same principle can be applied
to other tasks, such as tidying up, seeking individuals, or
behaving appropriately given a context (e.g., quiet in the
classroom, raising one’s voice in a noisy breakroom).

There have been various approaches to conceptual under-
standing of space in robotics. For instance, [22] combines
SLAM systems and object recognition with clustering and
semantic knowledge for better navigation. Hierarchical con-
ceptual representations of space have been explored by [23].
Probabilistic models of episodic memory have also been used
to store and recall experiences of robots, improving control
and human-robot interaction [24], [25]. Compared to these
works, our model ties in knowledge of brain connectivity
and functionality, and studies neurobiological mechanisms for
higher order reasoning and planning.

https://youtu.be/_lPV0BuhSBI
https://youtu.be/_lPV0BuhSBI


Fig. 5. Performance on Experiments 1 and 2 on a population of n = 5. A) For Experiment 1, the activation of the correct location neuron of a cued object
increased with training (blue line) and the retrieval time decreased (red line). When a novel object was introduced (Exp 1b), the location activation was still
high and retrieval time was low, despite only having had one trial of training. B) Performance also improved over time when a novel schema was introduced
in Experiment 2. When returning to the classroom schema (CR), performance of original objects and novel objects was retained. Points denote the mean
performance and error bars denote the standard deviation of the population.

Fig. 6. Trajectories of an individual robot at various stages of the experiments.
Stars indicate the start of the trajectory. A) The red line shows the trajectory of
the robot when retrieving the bottle after Trial 4 of training in Experiment 1.
B) The green line shows the the retrieval of an apple in Trial 4 of Experiment
2. C) The yellow line shows the trajectory of the robot retrieving the banana in
Experiment 3. The blue line shows retrieval of the book. Although the entire
area is accessible during retrieval of both objects, each object is associated
with a prior schema, prompting the robot to search in the room corresponding
to that schema.

Fig. 7. Sequence of actions in Experiment 3. The HSR was shown a banana,
with nothing else in its field of view. The experimenter then placed the banana
on the breakroom table, outside of the HSR’s view. The robot went to the
breakroom to pick up the banana and navigated to the drop off location to
deposit it.

To meet our objectives of examining whether the neu-
robiological model could be usefully applied to machine
learning and robotics, we designed experiments similar to
those performed in the original rat experiments [4]. Our
robot experiments showed basic concepts of: 1) learning a
schema, 2) gradually incorporating novel information into a
schema, 3) rapidly consolidating information into an existing
schema if it fits within the schema context, and 4) maintaining

Fig. 8. Heatmap of action layer during Experiment 3. A) When the robot
was presented with a book and asked to retrieve it, the action layer showed
high activity for objects in the classroom schema. B) When the robot was
presented with a banana and asked to retrieve it, the action layer showed high
activity for objects in the breakroom.

multiple schemas in memory. The robot experiments, which
were intentionally simple in order to reduce environmental
confounds and isolate different brain functionalities, constitute
an important first step in designing memory systems for
machine learning and robotics.

In the future, we hope to combine multiple levels of
abstraction in the Indexing Stream by adding multiple layers in
the HPC. By representing these levels in a fully connectionist
way, our model could extend to end-to-end deep learning
techniques for task learning. With the addition of the Indexing
Stream to a basic task-learning network like the Representation
Stream, a deep neural network can use contextual information
to maintain separate representations of tasks. This may aid in
the prevention of catastrophic forgetting if the robot must learn
tasks in multiple settings.

Furthermore, the neuromodulator model introduced here can
detect novelty and familiarity in the physical environment,
prompting an increase in training epochs to learn new task-
relevant information. By only increasing learning when a



Fig. 9. Selected weights on one individual after the experiment. Each
set of weights is depicted as a heatmap, with warmer colors representing
higher values, rows representing the post-synaptic layer neurons, and columns
representing the pre-synaptic layer neurons.

schema is familiar and a paired association is novel, the
robot avoids learning irrelevant information. This has potential
applications in one-shot learning [26], as the use of a neuro-
modulatory area is a bio-inspired approach to rapid learning.

The use of robotics to explore hippocampal function has
revealed insights into how spatial representation in the brain
arises from navigation. Our experiment shows how context
is tied to these spatial representations via interaction with
the mPFC. By studying the model in an embodied setting,
we learned of various sources of uncertainty that must be
addressed by the brain. Initial tests showed that inaccurate
object detection and depth readings led to large errors in the
network. Furthermore, the model was unaware of errors in
grasping, attempting to complete the retrieval sequence even
if the object had not been grasped. While it is possible to
decrease these sources of uncertainty, the brain still must
process remaining uncertainty throughout the network. For
instance, rather than having activation inputs of 1 or 0, the
activations could relate to the certainty of object detection
from perceptual errors. Likewise, the strength of activations
in the output layer may prompt the robot to allocate more
resources to motion planning when the action to be performed
is uncertain.

V. CONCLUSION

The present work demonstrates how ideas from memory
models in the brain may improve robotic applications and
issues in artificial intelligence, such as catastrophic forgetting
and lifelong learning.
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