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Abstract—Spiking wavefront planners for navigation demon-

strate biologically plausible behavior when exploring and plan-

ning paths through an environment. Not present in these models,

however, is the replay of previous experiences observed in

hippocampal sharp wave ripple complexes (SWRs) during sleep

and wake resting states. This work implements a memory replay

algorithm in a spiking wavefront model, and investigates different

theories of replay selection. Results indicate that the addition

of replay in the spiking wavefront model improves the speed

at which the agent learns the environment, and the ability to

adapt to change. Furthermore, selection of replays based on

its effectiveness in updating model weights leads to greater

improvement when compared to a uniformly weighted selection.

Index Terms—Hippocampus, Navigation, Planning, Replay,

Spiking Network

I. INTRODUCTION

Studies of the hippocampus in rodents during navigation
tasks have observed firing of place cells corresponding to
its location in an environment [1]. When determining where
to navigate in a maze, rodents exhibit successive activation
in place cells corresponding to future trajectories, suggesting
place cells have a role in path planning [2]. These character-
istics of rodent navigation have inspired biologically plausible
spiking neural network models known as ”Spiking Wavefront
Planners”, which plan paths by propagating signals in a similar
manner [3], [4].

In addition to the described place cell activity during
navigation, successive reactivation of place cells in the same
pattern as paths taken while awake were found during slow-
wave sleep. This is believed to have a role in memory
consolidation and improving learning [5]. Currently, spiking
wavefront planner models do not exhibit this behavior. In
this work, we modify the model to replay memories of past
trajectories in a ”sleep state” after a number of ”awake” trials
are performed by a simulated agent. These agents are tasked
with exploring two environments, a Tolman detour maze [6]
and a Dyna maze [7], as well as reaching their respective
reward spaces when obstacles are put in place.

Another important aspect of memory replay is how the
selection of paths in memory is guided. One theory proposes
that memories are accessed to optimize the reward gained
should the replay be used to update a model [7]. In a

reinforcement learning framework, this can be quantified by
the product of a ”gain” term which measures the improvement
of the policy if the replay is applied, and a ”need” term which
measures the likelihood that this replayed state will occur in
the future. Another theoretical model prioritizes the replay of
similar experiences [8].

For our model we take an alternative approach, where
memory selection is weighted by the product of two terms.
The first is a ”loss” corresponding to the difference between
the perceived cost of the environment and the current model
weights. The second is the ”eligibility trace” which is used in
the update step of the model to determine which neurons are
eligible to be updated.

II. METHODS

A. Spiking Wavefront Planner

Here we briefly describe the spiking wavefront planner
model. For more details, see [4], [9].

The spiking wavefront propagation algorithm assumes a
grid representation of space, where connections between units
represent the ability to travel from one grid location to a
neighboring location. Each unit in the grid is represented by
a simplified integrate and fire neuron. The activity of neuron
i at time t+ 1 is represented by (1):

vi(t+ 1) = ui(t) + Ii(t+ 1) (1)

in which ui(t) is the recovery variable and Ii(t) is the input
current at time t.

The recovery variable ui(t+ 1) is described by:

ui(t+ 1) =

(
�5 if vi(t) = 1

min(ui(t) + 1, 0) otherwise
(2)

such that immediately after a membrane potential spike, the
recovery variable starts as a negative value and linearly in-
creases toward a baseline value of 0.

The input current I at time t+ 1 is given by:

Ii(t+ 1) =
NX

j=1

(
1 if dij(t) = 1

0 otherwise
(3)
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such that dij(t) postpones the integration of input, I , from
neighboring neuron j to neuron i. This delay is given by:

dij(t+ 1) =

(
Dij if vj(t) � 1

max(dij(t)� 1, 0) otherwise
(4)

The value of Dij(t) is the propagation delay between
neurons i and j, and denotes the expected cost of traveling
from location i to j. Cost is an open parameter, which could
depend on a number of variables. In the present paper, cost
represents how easy it is to move in a given direction. A low
cost could be an open traversable region of space, and a high
cost could signify the presence of a barrier.

B. E-Prop
The E-Prop learning rule was developed to learn sequences

in spiking neural networks [10]. In the present path planning
algorithm, E-Prop was used to learn a map of the environment
and to plan paths based on that map knowledge. The active
neurons after a wave propagation are eligible to update. An
eligibility trace based on time elapsed since the wave reaches
the goal destination, dictates the eligibility.

E-Prop is applied to weights projecting from neurons along
the calculated path. It is assumed that the agent can observe
the features (e.g., traversal cost) at map locations adjacent
to the path. In this way, E-Prop solves the credit assignment
problem by rewarding paths that lead to goal locations, while
also learning about environmental structure.

The E-Prop algorithm is applied to weights of the spiking
neural network by:

Dij(t+ 1) = Dij(t) + �(ei(t)(mapxy �Dij(t)) (5)

where � is the learning rate, set to 0.1, ei(t) is the eligibility
trace for neuron i, and mapxy represents the observed cost for
traversing the location (x, y), which corresponds to neuron i.
This rule is applied for each of the neighboring neurons, j, of
neuron i. The loss in Eqn. 5 is mapxy - Dij .

Fig. 1. Simulated Tolman detour maze. Start location is marked with ”S”.
End location is marked with ”E”. Barriers P1 and P2 are marked as such.
Yellow regions had a traversal cost of 50 and the purple regions had a cost
of 1.

The eligibility trace for neuron i is given by (6):

ei(t+ 1) =

(
1 if vj(t) � 1

ei(t)� ei(t)
⌧ otherwise

(6)

where ⌧ is the rate of decay for the eligibility trace, set to 25.
To determine a path from an agent’s location to a desired

space, a signal is sent originating from the neuron correspond-
ing to the agent’s location. This signal propagates to the origin
neuron’s neighbors, delayed by the associated weight of the
origin’s outgoing connection. This is repeated for each of these
neurons and their neighbors until a signal reaches the neuron
corresponding to the destination for the first time. The origin
of this signal is recursively traced backwards until the first
neuron is reached again. This sequence of neurons represents
the path of least cost given the agent’s information about
the environment. Details on the original spiking wavefront
propagation planner can be found in [9].

C. Tolman Maze
We simulate a Tolman detour maze, used previously in

a number of studies involving place cells and hippocampal
replay [6], [11]. For the detour task, the agent is placed at the
start location (S in Fig. 1), and must reach the end location
(E in Fig. 1). During the task, two barriers may be placed
forcing the agent to take a shortcut (P1 and P2 in Fig. 1).
Placing the barrier at P1 should cause the agent to choose
the shorter detour on the left, while placing the barrier at P2
should result in the agent taking longer detour on the right.
Barriers and areas outside the maze have an environmental
cost of 50, and areas within the maze have an environmental
cost of 1.

In an initial exploration phase, no barriers are placed and
the agent is free to familiarize itself with the environment. To
explore, the agent uses the spiking wavefront planner to travel
to random locations in the environment, updating the model
weights after each path. After this exploration phase, the agent
will plan a straight path from ”S” to ”E” when ”E” is the goal
destination.

Following the exploration phase, one of two barriers are
placed and the agent must continually attempt to reach the
end environment from the start. A trial is successful if the

Fig. 2. Simulated Dyna maze. End location is marked with ”E”. Yellow
regions had a traversal cost of 50 and the purple regions had a cost of 1.
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Fig. 3. Total loss for all neurons over time for each replay type in the Tolman
detour maze. Agents with no replay in solid blue. Agents with random replay
selection in dotted orange. Agents with loss-based replay in dashed green.
Lines are the mean of 10 trials, shaded areas represent one standard error.

planned path successfully reaches the end state, otherwise it
is a failure. After each trial, agents with replay will select
paths from memory to update their weights.

D. Dyna Maze

We also simulate the Dyna maze, introduced by Sutton
to evaluate the Dyna-Q reinforcement learning algorithm and
later used to investigate methods for memory access [7], [12].
The agent starts at a random location along the west wall of
the maze and must reach the end location at the northeast
corner of the maze (see Fig. 2). Similar to the Tolman maze,
the barriers had a traversal cost of 50 and the other regions
had a traversal cost of 1.

In the period of initial exploration, barriers are removed.
For the goal task, the agent will attempt to plan a path from
its starting location to the end. If a barrier is encountered, the
agent will update its weights from this information and update
its path using the spiking wavefront planner again. This re-
planning continues as barriers are encountered until the end
is successfully reached. After each of these trials, agents with
replay will select paths from memory to update their weights.

E. Replay

In a replay sequence, the agent will select a number of paths
and their corresponding eligibility traces from memory stored
during the exploration phase. The same path may be chosen
more than once in a single replay sequence. The selected
memory is used to update the model weights using the most
recently sensed values from a path traversal. Two different
memory selection criteria were investigated: uniform selection
and loss-based selection. For uniform selection, each path in
memory had an equal probability of being replayed.

For loss-based selection, selection was weighted such that
paths which covered areas that have the greatest disparity
between the perceived cost and the model weights have a
higher likelihood of being replayed. To determine this, a metric
is calculated for each path. First, the average incoming weight

Fig. 4. Probability of failure for agents reaching the goal after the P1 (Top)
or P2 (Bottom) barrier is placed in the Tolman detour maze. Lines are the
mean of 10 trials, shaded areas represent one standard error.

value is calculated for each neuron as in (7), where N is the
set of neighboring neurons and dn,i is the delay from neuron
n to neuron i.

Davgi =

P
n2N

dn,i

len(N)
(7)

li = (cx,y �Davgi)
2 (8)

The loss for each neuron (denoted li) is calculated as the
squared difference between the sensed cost of traversal at the
associated area cx,y and the average weight value, as in (8).
Finally, the score for each path is calculated by summing over
each point in the path P the product of the eligibility trace
and the loss.

Sp =
X

p2P

ep ⇤ lp (9)

The softmax of these scores is taken to determine the
probability of selection for each path. Each memory score is
also subject to exponential decay based on the number of times
it was accessed in the past.
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Fig. 5. Heatmap showing the frequency of each location based on the paths
selected with a uniformly selected replay agent during the exploration phase.

III. RESULTS

A. Tolman Maze

In the exploration phase of the Tolman maze, agents ex-
plored for a total of 300 trials. For each trial, the agent planned
and navigated a path to a random location using the spiking
wavefront planner. Model weights were updated after each
path using the sensed cost of traversal. Every 10 trials, agents
would be removed from the environment and would be allowed
to replay 10 paths from memory before beginning again at the
start location. The total loss between all neuron weights and
the true environmental cost of their corresponding locations
was evaluated at every trial, after replay if it would occur.
Due to some regions being unreachable, agents could achieve
a minimum loss of 1000.

Fig. 3 shows the mean loss of 10 agents for each replay
method. Agents which used replay of some form learned the
environment faster than agents which did not use replay. Ad-
ditionally, loss-based replay performed better than uniformly
selected replay.

Agents that have explored the environment were then tasked
with reaching the end location with either the P1 or P2 barrier
placed. Fig. 4 shows the average probability of failure for 10
agents during these test trials with the P1 and P2 barrier. In
both cases, some agents which did not use replay were unable
to plan successful paths after 10 trials. All agents which used
replay recognized the need to take the correct detour after 4
trials. Loss-based replay adapted faster than uniformly selected
replay.

The experiences that were replayed had an effect on agent
behavior. To examine the replays chosen for selection in
the uniform and loss-based agents, we generate a heatmap
illustrating the frequency of locations among the replayed
paths during the exploration phase (Fig. 5 and Fig. 6) and
the goal task (Fig. 7 and Fig. 8). In the exploration phase, the
frequency of locations were distributed such that no single

Fig. 6. Heatmap showing the frequency of each location based on the paths
selected with a loss-based replay agent during the exploration phase.

location was dominantly present in either agent’s chosen
replays. This stayed true for random agents during the goal
task. In contrast, replays selected by the loss-based agent
centered strongly around the placed barrier, depending on
the agent’s trial condition. These results show that the loss
based replay leads to examination of areas with the highest
uncertainty to the agent.

B. Dyna Maze

In the exploration phase of the Dyna maze, agents explored
for a total of 350 trials. Agents navigated randomly and were
removed every 10 paths taken to replay as in the Tolman
detour maze. For each trial, agents began the next 10 trials
at a random start location. This was to replicate methods used
in previous work [7].

For the initial exploration phase, the environment did not
have any barriers and the cost of traversal was the same
for all locations. As in the Tolman detour maze, the loss-
based replay agents learned fastest, followed by the uniformly
selected replay agents, with the agents without replay learning
the slowest (Fig. 9).

Next, the barriers were placed in the environment and
the agents were tasked with reaching the goal as previously
described (see yellow regions in Fig 2). Because replay only
occurs after trials, agents performed similarly during the first
trial. Agents that were able to replay after the first trial were
more likely to reach the goal without hitting a barrier. This
results in the agents with replay reaching the goal in fewer
steps, with the loss-based replay performing slightly better
than the uniformly selected replay as in Fig. 10.

We also analyze the ability for the agent to learn the
environment when the objective is to reach an end location
rather than explore. Fig. 11 shows the loss of the spiking
wavefront planner for each of the agents after barriers have
been placed. Replay methods were able to learn changes in
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Fig. 7. Heatmap showing the frequency of each location based on the paths
selected with a uniformly selected replay agent when the P1 (Top) or P2
(Bottom) barrier is placed in the Tolman detour maze.

the environment faster, even when the task did not necessitate
exploring novel areas.

Similar to the Tolman detour maze simulations, the replays
for loss-based replay agent focused on areas of high uncer-
tainty. The heatmap showing frequency of locations in the
replayed paths is shown in Fig. 12. In the loss-based agent,
locations on or around barriers were replayed with slightly
higher frequency. Frequently replayed locations in the uniform
selection agent did not seem to have any preference towards
barrier locations.

IV. DISCUSSION

The addition of memory replay to the spiking wavefront
planner caused a dramatic increase in the speed at which an
agent was able to learn an unknown environment and recover
from change. When there was a change in an environment,
replay agents adapted faster and performed goal-reaching
tasks with greater accuracy and efficiency than agents which
did not. Because the weights are updated using a previous

Fig. 8. Heatmap showing the frequency of each location based on the paths
selected with a loss-based replay agent when the P1 (Top) or P2 (Bottom)
barrier is placed in the Tolman detour maze.

path and the most recent experience with the environment,
it can be said that the agent is revisiting old experiences
with new information. The results also suggest that replaying
experiences based on a selection criteria, rather than randomly
can result in a greater benefit to the agent.

Neuroscience studies have varying observations regarding
the content of replay in the hippocampus. Some observe
place cell activation in similar patterns as past experiences, or
resembling a trajectory toward home or goal locations [13],
[14]. Others have found that replayed paths did not resemble
past experiences at all, but rather random trajectories similar
to Brownian motion [15]. Our work supports the former, by
showing that prioritizing replays based on novelty (i.e., loss)
improves exploration and memory adaptation.

Studies of neuron behavior during replay find that the
amount of time each place neuron is active is not always
equal [16]. Activation of place cells during replay sometimes
appear to “hover” at specific locations in the replayed path.
This becomes more common as the rodent is more familiar
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Fig. 9. Total loss for all neurons over time for each replay type in the
Dyna maze. Agents with no replay in solid blue. Agents with random replay
selection in dotted orange. Agents with loss-based replay in dashed green.
Lines are the mean of 10 trials, shaded areas represent one standard error.

with the environment, suggesting that the role of replay may
shift from rapidly acquiring a rough model to honing in on
specific details of an environment.

We find a similar shift in replay objective in our loss-
based replay to that observed by [16]. Fig. 6 shows little to
no preference for replayed locations while the agent is still
exploring the environment. Once the agent is familiar with an
environment, we see a preference for areas requiring further
exploration in the overall choice of replays selected as seen
in Fig 8 for the Tolman detour maze and also in Fig 12. We
predict that replay experiences may be selected similarly in
rodents.

The proposed method of scoring memories based on the
eligibility trace and the loss share many similarities to the
theory proposed by Mattar and Daw [7]. The value of the
eligibility trace and the gain term quantify the increase in
expected reward. In our case, high reward would represent a
large change in model weights towards the true environmental
value. The loss and the need term quantify the frequency of

Fig. 10. Number of steps to reach the end location. Lines are the mean of
10 trials, shaded areas represent one standard error.

Fig. 11. Total loss for all neurons over time for each agent in the Dyna maze
after the barriers have been placed. Lines are the mean of 10 trials, shaded
areas represent one standard error.

reward given at a state or location. Since fast exploration
prioritizes unexplored locations, we should expect it to be
increasingly less rewarding to visit locations which have been
traversed multiple times.

Finally, work related to rodent studies of hippocampal
replay have shown that experience is not the only factor in
contributing to the selection of replays [17]. The current work
has shown that experience may be an important heuristic in
the selection of replays, but a combination of many qualities
may result in a greater improvement. Also not present in the
current work are ”backwards” replay of paths as well as the
activation of novel sequences of neurons. Evidence of both
has been recorded in rat hippocampal place cells during replay
[14], [18].

Replay buffers are commonly used in Deep Reinforcement
learning [19]. However, they have not been applied as much to
robot navigation and other robot tasks. Adding replay to these
control policies could lead to performance improvements in
terms of learning speed and adaptability.

The BADGR robot had similar goals to the present work
in that it learned the cost of traversing varied environments
[20]. However, instead of using replay, it used deep learning
and an LSTM to learn which features predicted passable
trajectories. Unlike our algorithm, training was offline and
required intensive computations. The algorithm proposed here
learns continually and online. In general, it is lightweight and
learns rapidly. Furthermore, since it is a spiking neural network
it can be deployed on power efficient neuromorphic hardware
as was demonstrated in [21].

In traditional robotics, Simultaneous Localization And Map-
ping (SLAM) and path planning are handled separately [22].
SLAM creates the map and can update the map as the robot
explores. SLAM makes a prediction of where the robot is
currently located. If a goal location is specified, a separate path
planner like A* or Djikstra’s algorithm or rapidly exploring
random trees (RRTs) is applied to the SLAM map [23]. In
contrast, our model combines these two steps by using the
spikewave to generate the path and map the environment
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Fig. 12. Replayed areas of the Dyna maze. Heatmap showing the frequency
of each location based on the paths selected with a uniformly selected replay
agent (Top) and a loss-based agent (Bottom) when barriers are placed.

through E-Prop and replay.
The neurobiologically inspired RatSLAM also combines

SLAM with path planning by maintaining the map information
in a continuous attractor network and path information in
an experience map [24]. Dijskra’s algorithm is used on this
map to plan a path between locations, weighted on transition
time between experiences. This could be replaced by spiking
wavefront propagation, allowing for transition times to be
adjusted with E-prop and experience. The addition of this
replay method as well could facilitate rapid adaptation to
changes in the environment.

In conclusion, we introduce replay methods to a spiking
wavefront propagation algorithm. In particular, the loss-based
replay shows superior performance, in terms of learning speed
and ability to adapt to change, over no replay and a uniformly
distributed replay. The algorithm was tested on mazes that have
been used in neuroscience experiments and to demonstrate
machine learning algorithms. The replays selected by the
loss algorithm are similar to that observed in recent rodent

experiments [16]. The algorithm could also have applications
for robot navigation and machine learning.
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