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Abstract—Neuromodulators such as dopamine (DA), serotonin 

(5-HT), and acetylcholine (ACh) are crucial to the 

representations of reward, cost, and attention respectively.  

Recent experiments suggest that the reward and cost of actions 

are also partially represented in orbitofrontal and anterior 

cingulate cortices in that order.  Previous models of action 

selection with neuromodulatory systems have not extensively 

considered prefrontal contributions to action selection.  Here, we 

extend these models of action selection to include prefrontal 

structures in a resource allocation task.  The model adapts to its 

environment, modulating its aggressiveness based on its 

successes.  Selective lesions demonstrate how neuromodulatory 

and prefrontal areas drive learning and performance of strategy 

selection. 

 
Index Terms—Computational Neuroscience, Decision-Making, 

Policy Search, Neuromodulation, Reward, Cost 

 

I. INTRODUCTION 

EUROMODULATORS such as dopamine (DA), serotonin (5-

HT), and acetylcholine (ACh) affect both short and long 

term dynamics of neural circuits that represent reward, cost, 

and attention in that order [1]. 

The ventral tegmental area (VTA) and the substantia nigra 

(SN) are the source of dopamine, which is related to expected 

reward, and incentive salience or “wanting” [2, 3].  The raphe 

nucleus (RN) is the source of serotonin, which is linked to 

cognitive control of stress, social interactions, and risk taking 

behavior [4, 5]. 

The basal forebrain is the source of acetylcholine, and 

appears to modulate attention and optimize information 

processing.  Experiments conducted by Chiba et al. [6] and 
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Baxter et al. [7] showed that the basal forebrain has specific 

and separate pathways for decrementing and incrementing 

attention: 1) ACh projections from the medial septum/vertical 

limb of the diagonal band (BF.MS) to the hippocampus and 

medial prefrontal cortex were crucial to reduce attention to 

irrelevant stimuli (medial prefrontal cortex includes anterior 

cingulate cortex, ACC), and 2) ACh projections from the 

substantia innominata/nucleus basalis region (BF.SI) to the 

amygdala and neocortex were necessary to increase attention 

to relevant stimuli.  Ross et al. [8] have also shown that 

depletion of ACh in orbitofrontal cortex (OFC) impairs 

associative learning tasks. 

Recent experiments suggest that the reward and cost of 

actions are also partially represented in OFC and ACC 

respectively (e.g., [9, 10]).  Rudebeck et al., for example, 

trained rats to choose maze arms that yielded more food 

pellets either after a delay or after scaling a barrier.  In the first 

case, a rat with an impaired ability to differentiate between 

reward magnitudes would be more likely to choose the lower 

(immediate) reward than the higher (deferred) reward.  Such 

behavior was demonstrated with OFC lesions.  ACC lesions, 

on the other hand, caused rats to more often pick lower (less 

effortful) rewards than higher (more effortful) rewards. 

To better understand interactions between neuromodulatory 

systems and prefrontal cortical areas, we extended previous 

models of neuromodulatory influences on action selection [11, 

12] to a resource allocation task.  Based on its successes, the 

model modulates its aggressiveness to the environment.  

Learning and performance in strategy selection from 

neuromodulatory and prefrontal cortical areas were also 

affected by selective lesioning. 

 

II. METHODS 

A. Resource Allocation Task 

Simulated agents played a variant of the multi-arm bandit 

game with betting [13] adapted to a resource allocation task.  

The task simulated a military planner’s decisions to defend 

against an attack.  Specifically, given attack probability 

estimates for four groups, agents must assign troops to defend 

against these groups.  Thus, each trial “bets” troop units across 

four bandit arms.   

Intuitively, one would assign more troops to groups that are 
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more likely to attack.  This is known as probability matching.  

For example, if the agent believes groups A, B, C, and D are 

likely to attack with probabilities of 80%, 10%, 5%, and 5% 

respectively, probability matching (PM) would assign 100 

troops in the following manner: 80 to group A, 10 to group B, 

and 5 to both group C and D (assuming the marginal utility of 

each troop unit is constant).  A more aggressive strategy, call 

it PM+, would assign more resources to groups which are 

more likely to attack, e.g., a troop allocation of 90, 10, 0, and 

0 given the previous group attack probability estimates.  

Conversely, a more conservative strategy, call it PM-, would 

reserve troops to groups which are less likely to attack; e.g., a 

troop allocation of 70, 14, 8, 8 for the same group attack 

probability estimates. 

After assigning resources to the four groups, agents were 

directly rewarded by the number of troops they assigned to the 

actual attack perpetrator.  For example, if group A was the true 

attacker, than PM+ (PM-) would be rewarded with a score of 

90 (70).  The cost would be the number of troops allocated to 

groups other than A: 10 for PM+, and 30 for PM- (14+8+8).  

However, if group B was the attacker, the reward of PM- 

exceeds that of PM+ (14 > 10).  Experimental evidence 

suggests that agents will change their strategy based on their 

success rate [14, 15, 16].  Therefore, across several trials, 

agents should choose a more (less) aggressive strategy when 

estimates about group attacks are accurate (inaccurate). 

B. Neural Agent 

Motivated by the work of Krichmar et al. [11, 12], we 

created a neural model with three areas: Input, Action, and 

Neuromodulatory systems (Fig. 1).  
 

 
Fig. 1 – Architecture of the neural model.  In the Input area, PFC Probs 

registers group attack probability estimates of (e.g.,) 80%, 10%, 5%, and 5%.  
ACC Conflict registers relatively low conflict.  In the Action area, OFC and 

ACC neurons, each with different degrees of aggressiveness, encode the 

different strategies.  OFC and ACC then project to DLPFC, where a motor 
schema takes the selected aggressiveness parameter and transforms PFC Probs 

into a resource allocation.  In the Neuromodulatory systems area, VTA, RN, 

and BF.SI and BF.MS represent reward, cost, and incremental and 
decremental attentional pathways in that order.  VTA (RN) is used to register 

the difference between actual and predicted reward (cost).  Reward was equal 

to the number of troops assigned to the attacking group, while cost was equal 
to the number of troops used to defend against other groups.  BF.SI and 

BF.MS control sharpening and flattening dynamics in OFC and ACC 

respectively.  Diamonds represent corresponding neuromodulatory effects.  

For example, weights between ACC Conflict and OFC used the dopamine 

signal from VTA.  Table I contains further details. 
 

Neurons in the PFC region of the Input area held group attack 

probabilities estimates (PFC Probs), while neurons in the ACC 

region of the Input area had a localist representation for the 

spread of these estimates (ACC Conflict).  For simplicity, we 

programmatically calculated a measure of dispersion on PFC 

Probs and placed its value into ACC Conflict.  ACC has long 

been implicated with several performance monitoring 

functions including measuring conflict between different 

actions or outcomes (see [17] for a review).  Here, however, 

we measure the conflict of beliefs, not actions—the conflict of 

group attack probability estimates, not the choice between 

sharpening or flattening group attack probabilities into a 

resource allocation.  If agents had to make a binary choice for 

resource allocation as in typical bandit games, this conflict of 

beliefs would become a conflict of actions.  Typically, conflict 

is measured with Hopfield energy (e.g., [18]).  However, 

energy does not differentiate between flat (.25, .25, .25, .25) 

and peaky (e.g., 1, 0, 0, 0) probability distributions; in both 

cases it is 1.  We chose normalized entropy instead because it 

differentiates between these two extremes; it measures 1 and 0 

bits in that order for these distributions.  Equation 1 gives the 

formula for normalized entropy as represented in ACC 

Conflict: 

   
 

     
∑           (1) 

where    is the group attack probability estimate for group i 

within PFC Probs and   is the total number of groups. 

There were two possible strategies in the Action area, one 

for PM+ and one for PM-.  Each strategy had a corresponding 

OFC and ACC component, which then compete and project to 

a final decision layer perhaps in dorsolateral PFC (DLPFC), 

an area of PFC known to be involved in executive control of 

actions (e.g., [19], [20]).  The site of this competition may be 

the dorsal medial striatum and associated components within 

the basal ganglia [21].  In this case, we assume OFC (ACC) 

units project to the direct or Go (indirect or No Go) pathway.  

The chosen strategy in DLPFC takes group attack probability 

estimates and implements a motor schema to sharpen or flatten 

this distribution in assigning resources.  We used the Power 

rule to implement this function: 

     
  ∑   

 
 . (2) 

where    are troops assigned and    are group attack 

probability estimates both for group   and   is a parameter.  

When   is greater than (less than) 1,   ’s are sharpened 

(flattened) implementing PM+ (PM-).  (As   approaches 

infinity, the Power rule implements winner take all 

competition.  Flat distributions are returned when   

approaches zero.)  In the Action area, the chosen strategy in 

DLPFC is a product of long term weights in the Input area as 

well as short term effects from the Neuromodulatory area. 

In the Neuromodulatory area, VTA, RN, BF.SI and BF.MS 

were simulated.  The activity of these neurons was based on 

synaptic input from the Input and Action areas. 

The synaptic connectivity of the network is shown in Fig. 1 

and Table I.  As in the work of Krichmar et al. [11, 12], VTA 
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(RN) was used to drive learning according to difference 

between actual and expected rewards (costs).  Reward was 

equal to the percentage of troops assigned to the attacking 

group, while cost was equal to the percentage of troops used to 

defend against other groups.  For example, given a troop 

allocation of 90, 10, 0, and 0 with the actual attacker being the 

first group, reward would be 0.9, while cost would be 0.1.  

BF.SI was driven by an arousal signal from OFC (possibly via 

the amygdala) which in turn incremented attention, or 

sharpened, OFC neurons.  BF.MS was driven by a novelty 

signal from ACC (possibly via the hippocampus) which in 

turn decremented attention, or flattened, ACC neurons. 
 

TABLE 1 – SYNAPTIC CONNECTIONS BETWEEN NEURAL AREAS 

Row From To Plasticity Phasic 

neuromodulation 

Input 

1 
ACC 

Con-
flict 

OFC Reward-VTA N 

2 ACC Cost-RN N 

3 VTA Reward-VTA N 

4 RN Cost-RN N 

Action 

5 

OFC 

DLPFC Reward-VTA N 

6 OFCC N/A Y, BF.SI sharpens 

7 BF.SI Reward-VTASTP N 

8 

ACC 

DLPFCI Cost-RN N 

9 ACCC N/A Y, BF.MS flattens 

10 BF.MS Cost-RNSTP N 

In the To column, a C represents lateral competition as implemented by the 

Power rule, while an I represents inhibition.  In the Plasticity column, R in (6) 

is given for long term plasticity.  Reward and cost are provided from the 

external environment.  VTA (RN) refers to the activity of the VTA (RN) 

neuron.  For short-term plasticity, e in (4) is fixed at 1 except where STP 

appears.  In those cases, (5) creates a pre-synaptic efficacy term to capture 

short term dynamics. 

 

The neural activity was simulated by a mean firing rate 

neuron model: 

  ( )      (   )  (    )(
 

     (   ( )  )
) (3) 

where    is a neuron’s activation level at time  ,    is a 

parameter that represents the persistence of a neuron,   , its 

input, and   a parameter that controls the steepness of its 

activation function.  The input to a neuron was the inner 

product of pre-synaptic connection strengths and neural 

activity, multiplied by an optional pre-synaptic efficacy term 

(   , defined below): 

   ∑       (   )  ( )  (4) 

where     was the synaptic weight from neuron j to   and    is 

the pre-synaptic neuron’s activation level at time  .     was 

fixed at 1 except in the case of weights between OFC, ACC 

and their corresponding BF regions to capture 

exploitation/exploration dynamics based on gain and loss.  In 

those cases,     used the short-term plasticity model of [22]: 

     = r[1-   (t)]-d  ( )   ( ) (5) 

where    represents synaptic efficacy at time  , r and d dictate 

recovery and depletion rates in that order.  When the BF.SI 

(BF.MS) neuron’s activation exceeded a threshold, it would 

trigger sharpening (flattening) in OFC (ACC).  For simplicity, 

the Power rule (2) was used to implement sharpening and 

flattening in OFC and ACC and winner take all choice in 

DLPFC where    was used in place of   , and    was the new 

value for   .  Finally, weight updates were performed with the 

following equation: 

         ( )  ( )  (6) 

where   is a learning rate, and  , the level of reinforcement, is 

given in Table I (Plasticity column).  The Appendix lists 

parameter values. 

A trial consisted of random group attack probability 

estimates being generated and their spread being measured in 

the Input area.  Activation from the Input layer propagated 

into the Action and Neuromodulatory areas.  After a winning 

strategy was selected in the Action area, the agent output its 

troop allocations and received feedback.  This feedback in turn 

updated short term (BF neuron activities) and long term 

(weights involving VTA and RN) dynamics. 

If group attack probability estimates were accurate, reward 

from the environment would be higher for PM+ than for PM-.  

In this case, weights between ACC Conflict and the PM+ 

strategy in OFC should increase due to higher than expected 

reward (Table I, row 1).  Weights between ACC Conflict and 

VTA would also move in the same direction (Table I, row 3).  

There would be the same trend for weights between PM+ in 

OFC and DLPFC (Table I, row 5).  Weights between ACC 

Conflict and the PM+ strategy in ACC (Table I, row 2), ACC 

Conflict and RN (Table I, row 4), and PM+ in ACC and 

DLPFC (Table I, row 8) should decrease due to lower than 

expected cost.  Thus, on correct trials, an aggressive strategy 

would increment its weights relative to a conservative one, 

making it more likely to be picked on the next trial.  

Conversely, on incorrect trials, an aggressive strategy would 

decrement its weights due to lower than expected reward.   

Weights between OFC and BF.SI and ACC and BF.MS 

capture short-term dynamics.  In particular, when actual 

reward exceeds predicted reward (i.e., when correct), OFC 

weights to BF.SI increase (Table I, row 7).  This causes BF.SI 

to fire more, which in turns engages lateral inhibition within 

OFC, sharpening its units.  This positive feedback loop creates 

a perseverative or exploitive effect as previously selected 

strategies continue to be chosen.  When incorrect, ACC 

weights to BF.MS increase (Table I, row 10), causing BF.MS 

to fire more, which in turns disengages lateral inhibition 

within ACC, flattening its units.  This leads to an explorative 

effect by choosing strategies that were previously considered 

too costly. 

C. Trials, simulated agents, lesions, and scenarios 

A trial consisted of a set of group attack probability 

estimates being generated, followed by troop allocation and 

feedback.  Each simulated agent performed 100 consecutive 

trials.  To simulate different subjects, 50 random initial weight 

sets were used.  The Appendix lists parameters for this 

initialization process. 

Selective lesions were performed on neuron populations in 

the Neuromodulatory and Action areas as described in Table II 

by setting the output of those neurons to zero. 
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TABLE II – LESION TABLE 

Condition OFC ACC BF.MS BF.SI 

Control N N N N 

OFC Lesion Y N N N 

ACC Lesion N Y N N 

BF.MS Lesion N N Y N 

BF.SI Lesion N N N Y 

 

We also created two scenarios.  In the first scenario, 

referred to as Accurate, the attacking group matched the 

highest group attack probability estimates 75% of the time 

while in the second scenario, referred to as Inaccurate, it only 

matched 25% of the time.  For example, in the Accurate 

scenario, given group attack probabilities of 80%, 10%, 5%, 

5%, the attacker would be the first group in 75% of the trials 

and any of the other groups in 25% of the trials.  Conversely, 

in the Inaccurate scenario, the attacker would be the first 

group in 25% of the trials and any of the other groups in 75% 

of the trials.  A successful agent should pick PM+ more often 

in the first scenario as group probability attack estimates 

predict attack perpetrators well, and choose PM- more often in 

the second scenario because attack estimates do not accurately 

predict actual attacks. 

 

III. RESULTS 

A. Intact Model 

In general, simulated agents were able to choose the 

strategy that maximized (minimized) expected reward (cost).  

In the Accurate scenario, PM+ was used an average of 74% of 

the time across all trials and all simulated agents.  Conversely, 

in the Inaccurate scenario, PM+ was used 46% of the time, a 

difference that is statistically significant (Kolmogorov-Smirov 

test, p < .05).  These results are listed in Table III. 
 

TABLE III – MEAN PERCENTAGE OF PM+ CHOICES ACROSS ALL 

TRIALS, ALL SIMULATED AGENTS 

CONDITION\SCENARIOCONDASDFASDFASDF Accurate Inaccurate  

Control 74% (37%) 46% (17%) 

OFC Lesion 38% (49%) * 27% (23%) * 

ACC Lesion 89% (11%) * 51% (15%) 

BF.MS Lesion 67% (32%) 44% (16%) 

BF.SI Lesion 66% (37%) 50% (14%) 

Values in parenthesis are standard deviations.  A * represents a statistically 

significant difference (Kolmogorov-Smirov test, p < .05) with respect to the 

control condition.  For the control condition, the difference between the 

Accurate and Inaccurate scenario is also statistically significant. 

 

In terms of short-term dynamics, in the Accurate 

(Inaccurate) scenario, BF.SI was driven by OFC, which in turn 

triggered OFC sharpening in an average of 36.7% (0.1%) of 

trials across all simulated.  This is because group attack 

probability estimates were good predictors of attackers and 

hence there was no reason to shift strategies on subsequent 

trials.  This is a preservative effect across trials.  BF.MS 

firings were inversely correlated with BF.SI firings—an 

average of 0.5% (68.7%) of trials across all agents for the 

Accurate (Inaccurate) scenarios.  This corresponds to 

exploration of new strategies after the simulated agents 

incurred losses, which was more common in the Inaccurate 

scenario. 

Analyzing per trial choices averaged across all simulated 

agents showed that the models were indeed learning.  For 

example, in the first 15 trails of the either scenario, random 

behavior was observed across all simulated agents—roughly 

50% percent of choices were PM+.  However, as trials 

continued in the Accurate scenario, more and more aggressive 

choices were made, ending in an average of 87% of all 

simulated agents choosing PM+ for the last 15 trials.  For the 

Inaccurate scenario, the number of aggressive choices fell so 

that 46% of simulated agents choose PM+ for the last 15 trials.  

These results are illustrated in Fig. 2. 

 

 
Fig. 2 – Mean percentage of simulated agents choosing PM+ for each trial in 

the Control condition.  In both scenarios, the percentage of agents choosing 

PM+ in early trials was close to random (the dotted line represents 50%).  

However, in later trials, simulated agents were more likely to pick PM+ when 

group probability estimates were accurate (top) than inaccurate (bottom). 

 

B. Effects of Lesions 

Similar to the findings of [11, 12], we find that OFC (ACC) 

lesions are functionally similar to lesions of VTA (RN):  OFC 

(ACC) lesioned simulated agents could not properly assess 

reward (cost).  OFC lesions to simulated agents led to more 

conservative choices (Table III, row 3). On the other hand, 

ACC lesions led to more aggressive choices (Table III, row 4).  

For OFC lesioned agents, BF.MS firings were less common in 

the Accurate scenario (0.64% of trials across all simulated 

agents) than in the Inaccurate scenario (63.4%).  As in the 

control condition, this demonstrates an exploration of 

strategies after incurring loss.  (BF.SI did not fire because 

there was no OFC to trigger it.)  For ACC lesioned agents, 

BF.SI firings were more common in the Accurate scenario 

(32.5% of trials across all simulated agents) than in the 

Inaccurate scenario (0.14%), which is also like the control 

condition.  This corresponds to a preservative effect.  (BF.MS 

did not fire because there was no ACC to trigger it.) 

BF.MS lesions decreased sharpening in ACC but did not 

yield dramatic performance changes due to the stationary 

nature of each scenario.  Similarly, BF.SI lesions had little 
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overall affect in performance.  This is because both scenarios 

are static across trials.  (A dynamic scenario, for example, 

would change the accuracy of group probability estimates 

every 20 trials.) 

IV. DISCUSSION 

In this work, we presented a model that adapts to its 

environment, modulating its aggressiveness based on its 

successes.  Lesions of the simulated neuromodulatory and 

prefrontal areas resulted in performance changes with respect 

to the control condition. 

Just as dopamine and serotonin differentially affect reward 

and cost estimates, OFC and ACC perform similar roles in this 

task.  Without OFC, simulated agents were more conservative.  

Without ACC, simulated agents were more aggressive. 

ACh has been shown to be important to increment and 

decrement attention.  Upregulation of attention due to 

exploration after loss was more common in the Inaccurate 

scenario than the Accurate scenario.  Conversely, 

downregulation of attention due to exploitation after reward 

was more common in the Accurate scenario than the 

Inaccurate scenario.  However, due to the static scenarios, 

little change in end performance was evident.  Indeed, this is 

in agreement with the finding of Robbins and Roberts [23] 

that depletion of prefrontal acetylcholine impairs reversal 

learning, but not set formation or set shifting. 

 

A. Comparison to Other Models 

Reinforcement learning and evolutionary algorithms have 

also been used to model n-arm bandit and resource allocation 

tasks (e.g., [13, 24]).  Unfortunately, as there are large number 

of variants for each task (e.g., binary v. analog bets, stationary 

v. non-stationary environments, competitors and collaborators, 

etc.), comparison of this model’s performance with others is 

difficult.  Our primary motivation, however, was to understand 

how neuromodulation affects learning and performance in 

prefrontal cortical areas involved in decision making.  Perhaps 

the most comparable model to the present work is that of Litt 

et al. [25], which seeks to model prospect theory and decision 

affect theory using brain regions such as OFC, ACC, and 

dopaminergic and serotoninergic areas.  Their model, 

however, does not model acetylcholinergic influences and has 

only been demonstrated on binary decisions. 

B. Future Directions 

A number of extensions to this model are possible.  

Cognitive phenotypes such as degree of loss or risk aversion 

are one avenue to explore [26].  More loss averse individuals, 

for example, might have a higher gain on ACC to DLPFC 

connections leading to more conservative choices.  Similarly, 

more risk averse people might model the variance of a 

strategy’s payoff and suppress more risky choices.  In 

addition, while we have primarily explored phasic dopamine 

and serotonin levels, tonic components of these 

neuromodulators are also known to affect decision making 

[27].  A higher tonic dopamine level, for example, would be 

less sensitive to changes in reward and hence would be less 

likely to switch strategies.  Increasing the neurofidelity of the 

cortico-striatal-cortical connections between OFC, ACC, and 

DLPFC is yet another avenue to purse.  The two discrete 

strategies in this model could be merged into a single strategy 

with an analog parameter, and finally the role of noradrenaline 

in exploitation/exploration dynamics could also be 

incorporated [28]. 

 

APPENDIX 

Neuron and learning rate parameters were constant for all 

neuron populations.  Short-term plasticity was only used for 

specific connections as listed in Table I; otherwise its term 

was set to 1.  Initial weights across simulated agents were 

drawn from a normal distribution.  The number of boxes 

depicted in Fig. 1 were the number of neurons used for each 

region except for ACC Conflict; there six neurons were used. 
 

TABLE IV – PARAMETER VALUES 

Parameter Value Notes (e.g., 

equation 

reference) 

α for PM+ 2. (2) 

α for PM- 0.5 (2) 

   0.001 (3) 

  0.25 (3) 

Mean for initial 
weights 

0.25 (4) 

Standard deviation 

for initial weights 

0.0625 (4) 

  0.05 (5) 

  0.1 (5) 

  0.25 (6) 

Threshold for 
sharpening in OFC 

0.66 N/A 

Threshold for 

flattening in ACC 

0.66 N/A 

α for sharpening in 
OFC 

2. (2) 

α for flattening in 

ACC 
0.75 (2) 

α for competition 

in DLPFC 

100. (2) 
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