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Abstract—Axonal plasticity describes the biological phe-
nomenon in which the myelin sheath thickness and the amplifi-
cation of a signal change due to experience. Recent studies show
this to be important for sequence learning and synchronization
of temporal information. In spiking neural networks (SNNs), the
time a spike travels from the presynaptic neuron along the axon
until it reaches a postsynaptic neuron is an essential principle
of how SNNs encode information. In simulators for large scale
SNN models such as CARLsim, this time is modeled as synaptic
delays with discrete values from one to several milliseconds. To
simulate neural activity in large-scale SNNs efficiently, delays are
transformed as indices to optimized structures that are built once
before the simulation starts. As a consequence, and in contrast
to synaptic weights, delays are not directly accessible as scalar
data in the runtime memory. In the present paper, we introduce
axonal delay learning rules in the SNN simulator CARLsim that
can be updated during runtime. To demonstrate this feature, we
implement the recent E-Prop learning rule in a recurrent SNN
capable of flexible navigation. Compared to other studies for
axonal plasticity that are based on LIF neurons, we also develop
the SNN based on the more biologically realistic Izhikevich neural
model. The present work serves as reference implementation for
neuromorphic hardware that encode delays and serves as an
interesting alternative to synaptic plasticity.

Index Terms—Axonal Plasticity, Backpropagation Through
Time (BPTT), Cognitive map, E-Prop, Hippocampus, Myelin
Sheath, Navigation, Path Planning, Preplay, Simulation, Spiking
Neural Network (SNN), Synchronization, Vicarious Trial and
Error (VTE).

I. INTRODUCTION

Experience-dependent axonal plasticity changes the con-
ductance delays and has been shown to be important for
learning skills and other cognitive behaviors [1]. Recently, a
computational model of axonal plasticity was introduced that
learned its environment, rapidly adapted to change and planned
efficient routes to goals [2]. The model extended the spiking
wavefront propagation path planner [3] by incorporating the E-
Prop learning algorithm [4], that learns by adjusting the axonal
delays, also called axonal plasticity, sketched in Fig. 1. The
estimated time to travel between locations was captured in the
axonal delays between neurons representing place. Thus, faster
signal propagation reflected more efficient paths through the
environment.

Axonal plasticity is fundamentally different compared to
other SNN learning algorithms like STP or STDP, which alter
synaptic weights (i.e., synaptic plasticity). To simulate neural
activity in large-scale SNNs efficiently, delays are transformed

(b)
Experience
Neuronal Motor Social
activity learning _ interaction i
sec (P g A e
a2 %, Lgs Lo ¥ \
‘—9} » éﬂﬂ%
-*ij- Adaptive
L"\\ 1 7 Myellnatlon (C)
AN {:ng m
st A o
¥ e
OPC ’ P
@ !
,<lL _<L R K,
,5”'/';»‘“ o N4 s

Fig. 1. Axonal Plasticity. Hypothetical circuit adopted from [1], [5]. The
speed of spike transmission depends on the thickness of the myelin sheath and
the number of signal amplifiers, called nodes of Ranvier. (a) Non-synchronous
spike arrival as the myelin sheath is thin [1]. (b) Experience and neural activity
cause axon alterations carried out by the glial cells oligodendrocyte precursors
(OPCs) that differentiate into oligodendrocytes (OLs). (b) Thicker myelin
sheath results faster conductance velocity, which can synchronize activity and
causes the post-synaptic neuron to fire more reliably.

into indices to optimized structures that are built once before
the simulation starts. Simulators like CARLsim use sparse
representations of synaptic connections in which they are
internally ordered by their axonal delays [6].

CARLSsim has an intrinsic state model with transitions from
CONFIG — SETUP — RUN [7]. Fig. 2 shows the methods
applicable at each state.
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Fig. 2. The CARLsim state model extended with axonal plasticity function-
ality. Adapted from the CARLsim user guide [8], extensions in red font.

In the CONFIG state, the whole network is configured and
located in host memory. The weight and the delay of each
synaptic connection can be accessed directly. The following
code snippet shows the C++11 iterator as it is used internally
in setupNetwork().



for (std::list<ConnectionInfo>::iterator
connlt = postConnectionList.begin();

uint8_t d = connlIt->delay;

In order to prepare a network for execution, the CARL-
sim method setupNetwork() compiles the network model
to highly optimized runtime structures in backend memory,
e.g., GPU device memory. In the resulting SETUP state, the
explicit delays between the pre- and post-synaptic neurons
are dissolved into optimized memory structures, for example
runtime[netld].postDelayInfo.

The new method wupdateDelays(AD)  therefore
modifies the runtime structures mentioned above (e.g.
runtime[netld].postDelayInfo) directly in back-end
memory. Or in other words, updateDelays can be imagined
as a highly efficient incremental compile of the delta defined
by sparse delay changes between pre- and postsynaptic
neurons. Fig. 3 visualizes the induced requirement of
maintaining the structural integrity at a conceptual level.
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Fig. 3. Validation of the structural integrity for update Delays. The runtime
data structures RT = (pre/postSynapticlds,postDelayInfo) are the
result of setupNetwork(). S1 is a SNN and AD defines the change of
delays that transforms S; to the SNN S> in the state CONFIG. Applying
updateDelays in the state RUN with the same delay change A D results in
the same runtime data structure.

In [2], a specific LIF neuron was adopted from [3] that used
a delay counter with a discrete precision of 1ms to generate
the spike given by (1).

D;; if v;(t) <1
dij(t+1)=4q " o<1
" max(d;;(t) —1.0) otherwise
The input current [ at time ¢ + 1 is given by (2).
N .
Lt+1)= / 2
il ) jZ::O {O otherwise @

The input current drove the membrane potential v; as shown
in (3).
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The recovery variable u; of the LIF neuron at time ¢ 4 1 was
given by (4).
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otherwise
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In contrast to [2] and [3], we use CARLsim to simulate
more biologically realistic spiking neurons and allow axonal

plasticity to be used in complex, large-scale networks. For
instance, instead of discrete delay counter, CARLSsim applies a
generic kernel for generating spikes for several neuron models.
The numerical integration to resolve the differential equations
can be configured by a single line. The following code snippet
shows how a simulation CARLsim can be configured using the
Runge-Kutta numerical method with 1—10 ms for the differential
operator %. [8]

sim.setIntegrationMethod (RUNGE_KUTTA4,10);

To demonstrate axonal plasticity on larger and complex
SNNs we present a model that shows flexible path plan-
ning utilizing E-Prop learning and the Izhikevich neuron.
The Izhikevich neuron model offers good trade-offs between
biological accuracy and computational feasibility [9]. While
CARLsim also supports LIF, this simple neuron model may
not be adequate for biologically realistic networks. When it
comes to integration of more sophisticated properties, such as
neuromodulation or the integration of other neuron types like
a resonator, for large-scale SNNs with high biological detail,
the Izhikevich neuron model is a preferred choice.

In this paper, we advance the computational model for
flexible navigation [2] as an extension for CARLsim, that
enables large-scale SNNs. This work provides two major
contributions:

o« We extend the CARLsim kernel and interface by the
method updateDelay(..) that can update delays during
simuation (RUN state), the method findPath(..) that
extracts the path from the spiking wavefront propagation
including the calculation of the eligibility traces, and
the an implementation of E-Prop, that orchestrates the
methods above.

e We simulate the path planning and navigation results
of [2], which used LIF neurons, with SNNs based on
the Izhikevich neuron model. We can reproduce these
results with similar performance and minimal impact to
computation.

II. METHODS

A. Spiking Neural Network Model

1) Izhikevich Neuron Model: We use the 4-parameter model
of Izhikevich neurons that is described by the following
equations [10].

v = 0.040> +50+140 —u+1 (5)

@« = a(bv—u) (6)

ifv>3o{”:c 7
u=u-+d

The dot notation indicates the differential operator %. The

4-parameter model is dimensionless and well suited for pa-
rameter tuning.




2) Place Cells: Place Cells were configured as regular spik-
ing (RS) neurons with a = 0.02,b = 0.2,¢ = —65,d = 8.0
for the 4-parameter model. As we need 1 ms precision, we
applied current-based (CUBA) synapses in CARLsim to the
neuron group modeling the place cells.

N
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The weights between two place-cells, w;;, were set to 85,
so that the postsynaptic neuron fires once it receives a single
presynaptic spike.

3) Interneurons: As the navigating agent can move from
one location to another adjacent location, this must be reflected
in the synaptic connections between place cells. For instance,
Fig. 4b shows connectivity of an SNN simulating a 4z4
environment. As a consequence, the network is recurrently
connected and a forward excitement of the presynaptic neu-
rons, produces direct and indirect cyclic excitements which
would ultimately result in an exponential neural activity. Thus,
when a place cell neuron fires, it needs to be inhibited to
prevent the immediate feedback excitement from neighboring
neurons.

Therefore, a layer of interneurons was added to the network
with (1:1) recurrent connections, as shown in Fig. 4c. The
design was inspired by the interneurons observed in the Hip-
pocampus. If the place cell excites its neighbors, the inhibitory
interneuron is excited slightly in the future. Then the interneu-
ron inhibits the place cell neuron. The parameters for the
inhibitory neurons were ¢ = 0.02,b = 0.2,¢ = —50,d = 2.75,
which is used to model fast spiking interneurons. The weights
were set at a high value (i.e., 200) to temporarily silence the
place cell even if all presynaptic neurons fired at the same
time.

As the loopback could be delayed up to a certain time
defined by the simulator (e.g., 20ms as default in CARLsim),
the synaptic connections between the interneurons and place
cells are conductance-based (COBA). In contrast to CUBA,
see (8), for which the input current lasts for a single time
step, in COBA, the input current decays exponentially over
time. The ion channel of the synaptic receptors are described
by the equations (9)-(12) (see [8]).
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The inhibitory interneurons are exited with each i;; as the
total of the current i 457p4 and the voltage dependent current
INMDA-

iampa =  gampaA(V —Viarpa) (10)
[1:480]2

INMDA QNMDAw( —vNnpa) (1)
60

f denotes the firing of a neuron as distinct spike event and
t; represents the time of this spike event. The Heaviside step

function © select spike events in the past.

ge =Y e TTO(t —ty) (12)
f

The following code snippet shows how the conductances is
set interneurons and parameter are tuned so that the spiking
wave front traverses the network without such unwanted echo
effects at around 20 ms.

sim.setConductances (gInter,
2, 25, 3, 25);//AMPA, NMDA,

true,
GABAa/b

4) Maze Environments and Traversal Costs: The environ-
ments in [2] were defined by cost matrices denoting the
traversal cost between spatial locations. It is assumed that the
agent can observe those environment costs while traversing
through the maze. Fig. 4a shows the 4x4 example maze of [2]
and Fig. 4b how it is mapped to a corresponding SNN with
with 4x4 place cell neurons. The optimal path from the spatial
locations defined in Cartesian coordinates from (1,1) to (4,4)
is marked in red.

Fig. 4c shows the inhibitory neurons that are recurrently
connected to each place cell neuron that enables the spiking
wave propagation through the network. In the example maze
and other mazes like in the Boone and Tolman experiments,
the agent can move in four cardinal directions (North, East,
South, West). Fig. 4d shows the resulting bidirectional con-
nections in black for a minimalistic 3x3 network. In other
environments, like the Morris water maze, the agent also can
move diagonal (e.g., Northeast) which is marked in blue in Fig.
4d and resulting in eight cardinal directions for the neuron.

B. Spiking Wavefront Propagation and Path Extraction

Fig. 5a shows the propagation of the spiking wavefront in
an SNN with 1,024 place cells. It maps an open field maze
with the dimension 32x32 with costs as random variable of
the discrete uniform distribution /{1,7} ms. During path
planning, the starting place cell (S) near the center of the
bottom right quadrant was excited. The spiking expands like a
wave until it hits the the target place cell (E). Fig. 5b shows the
resulting path in magenta. The environment costs map(x,y)
of the maze are in Cartesian coordinates and presented as heat
plot.

As the neural activity in the place cells was well controlled
by the interneurons (see II-A3), the spiking wavefront prop-
agated over time and each neuron yielded an eligibility trace
as defined by the following equation.

13
otherwise (13

eit+1)= {1

Fig. 5c shows the resulting eligibility trace as heat map and
with the path as reference. Interestingly, the eligibility trace
can be intuitively associated with a wave traveling through
the maze with decreasing strength into the past. This is the
basis for the E-Prop learning rule. The amount of training
loops and errors induced by time constant 7 in (13) was
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Fig. 4. Mapping an environment to an SNN. (a) 4x4 maze with traversal costs leading to an optimal path from (1,1) to (4,4). (b) Corresponding SNN with
4x4 place cells and their corresponding connection delays. (c) Interneurons of the 4x4 network. They are recurrently connected to place cells. Blue marks the
inhibitory synaptic connection. (d) A minimal 3x3 SNN to show the synaptic connections in a maze with four (black) and eight agent movement directions

(black+blue).
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Fig. 5. Spiking network with 1024 neurons for an open field environment with
edge length 32 and costs of a uniform distribution 2/{1, 7}. The delays of the
spiking network map the corresponding traversal costs in ms. (a) Propagation
of spiking wavefront in the SNN after the start neuron (S) was excited. Spiking
neurons are marked red to visualize the discharge of the electrical action
potential. The wavefront propagates through the network until it hits the end
neuron (E). (b) Extracted path from S to E is shown in magenta. The traversal
cost of each location of the maze is shown in a heat map with the range from
1 to 7 (which corresponds to the delays). (c) Eligibility trace induced by the
propagating wavefront. Its values decay back over time from 1 to 0, see eqn.
(13), and are colored according to the heat map.

investigated in [2] and fixed to the value of 25 for minimal
errors. Consequently we use the same value to reproduce those
results.

Fig. 5a shows the neural activity of the place cells, that
propagates as a wave with the starting point as its center. The
following code snippet shows how the extended interface of
CARLsim is used to extract the path after the wavefront has
hit the end point.

std::vector<int> path;

std::vector<float> eligibility;

sim.findWavefrontPath (path, eligibility,
netId, gPC, startNId, endNId);

As the path can be of variable length it is written into a
C++11 vector that holds the neuron indices of the place cells
in corresponding order. The start and end points are passed as
neuron ids (startNId, endNId) and the neuron group with
the place cells is identified by gPC'. For efficiency reasons,
the method also covers the calculation of the eligibility trace.
As defined in equation (13), each place cell is assigned a float
value € [0, 1]. The resulting eligibility traces are presented as
heat map plots as shown in the Fig. 5c example and in later
experiments.

C. E-Prop and BPTT

The eligibility trace of a place cell neuron provides the basis
for the E-Prop learning rule, which is defined by the following
equation.

Dij(t +1) = Dij + 8(ei(t))(mapzy — Di;j(t))

The delays D;; encode the traversal costs of the environment
as it was last observed by the agent. The difference of the
actual traversal cost defined by the maze as map(z,y) and
the last observed cost defines the loss function in (14). The
eligibility traces e;(t) encodes the temporal aspect of when
the spike in the wavefront occurred, which is applied to the
loss function in equation (14). In this way, E-Prop is a form of

(14)




Back-Propagation-Through-Time (BPTT). The learning rate §
is constant value set to 0.5. It is assumed, that the agent can
observe the features of the environment along the path taken
[2].

E-Prop updates the delays along the path and thus resolves
the credit assignment problem. The eligibility trace e;(t) is
applied for each neighbor j of the place cells neuron ¢ that
is contained in the path. For instance, if N; in Fig. 4d was
contained in the path and the agent can move in four cardinal
directions, it has three neighbors resulting in six updates in
total. The following code snippet shows the E-Prop algorithm
defined by equation (14). The eligibility trace was calculated
when extracting the path. E-Prop recalculates D; and then calls
updateDelays() to write them back in runtime memory.

std::vector<std::tuple<int,int,uint8_t>>

connDelays; //container for new delays

for (auto iter = //all connections

int pre = std::get<0>(*xiter);

int post = std::get<l>(xiter);

uint8_t cost = maze->map.find(std::tuple
<int, int> (pre, post))->second;

float e_i = eligibility[post];

uint8_t d_old = std::get<2>(xiter);//D(t)

if (alongPath) { //D(t+1)
uint8_t d_new = d + delta * e_1i =
(cost — d); //loss

connDelays.push_back (std::tuple
<int,int,uint8_t> (pre, post, d_new));

sim.updateDelays (gPC, gPC, connDelays);

D. updateDelays

Sparse representation of synaptic connections enable simu-
lation of large-scale SNNs as it reduces the required memory
from O(NDM) to O(N(M + D)), where N is the number
of neurons, M the number of synapses, and D the maximal
axonal delay [6]. Fig. 6a illustrates the sparse representa-
tion utilizing a minimalistic SNN with four neurons and
three synaptic connections. The algorithm of updateDelays
modifies arbitrary delays (denoted as AD) in runtime mem-
ory and is presented in Fig. 6b. The other parameters of
the method identify the context by supplying the network
partition (netld), and the pre-/ postsynaptic neuron groups
(gGrplIdPre, gGrpldPre). Fig. 6¢ (6d) shows how a change
from 4 ms to 2 ms (1 ms) of the synaptic connection between
neuron 0 and 2 affects the data structures in runtime memory.

III. RESULTS
A. Structural Integrity of Runtime Data

Unit tests were developed for minimal SNNs up to full scale
SNNs with random generated delays and changes to validate
that updateDelays keeps the structural integrity intact. As
outlined above, CARLsim uses sparse representation of synap-
tic connections. The method setup(), called in state CONFIG,
translates the delays of the SNN model to the runtime data

structures pre/postSynapticlds and postDelayInfo. Fig. 3
outlines the principle of the validation of structural integrity:
When the SNN is changed by updateDelays() in the state
RUN, the resulting runtime structures are the same as if the
delays are changed in CONFIG state first and then translated
by setupNetwork.

Let S; be an SNN with n neurons N; and 7 € 1..n. Its
synaptic connections between N;, Nj, (4,7) € (1..n,1..n)
have delays of D;; ms. ADjy,; defines the change of delays as
subset (k,1) C (4,4) of those connections. RtDs results by
applying update Delays(ADy,;) in the state RUN of S1. It has
to be equal to setupNetwork on Sy which has the same N;
but altered synaptic connections A Dy, in the state CONFIG.

While this procedure validates the static structure of the
network, its dynamics were investigated with concrete appli-
cations for axonal plasticity as presented next.

B. Validation by Flexible Path Planning Applications

The functionality of the SNN model was validated by
replicating human and rodent navigation experiments in the
mazes described in [2]. The environment costs were mapped
to the delays of the SNN. The VTE activity, spiking wave
propagation, and paths in the present work were similar to
those reported in [2]. updatedDelays was called from E-
Prop (BPTT) during runtime of the simulation and without
interruptions.

1) Human navigation studies by Boone: Fig. 7a shows the
virtual environment used in human navigation studies [11]. It
can be seen as a maze in which each location has an (z,y)
coordinate and is assigned a traversal cost as shown on the
heat map. The borders of the maze (yellow color) and non-
traversalable areas (green color) are mapped to high costs
(equivalent to a 5 ms delay), while the traversal areas (purple
color) are mapped to the minimal cost (equivalent to a 1 ms
delay).

As in the human study, agents were learned a fixed route
over multiple training loops. Route sections during training
are marked in cyan in Fig. 7a. Each route segment has start
point S=(x,y) and end point E=(x,y) in Cartesian coordinates
of the maze. For instance, in the example above the route
segment starts at S=(12,12) and ends at E=(12,6). All delays
were initialized with high values that were < max Delay, here
7 ms. The agent preplays the possible paths with a spiking
wave through the place cells, e.g. starting at S=(12,12). When
the spiking wavefront hits the target neuron, e.g. E=(12,6), the
eligibility traces resulting from path extraction, are applied by
the E-Prop learning algorithm. An eligibility trace resembles
BPTT as it cools down from 1.0 — 0.0 over time to the values
displayed in the heat map. Fig. 7b - 7d shows how the agent
learns optimal paths through the maze.

After the training was complete, the navigation task was to
find a path from a randomly chosen start and end points, which
were located on the route, but not necessarily the shortest way
to reach the goal. As in the human study [11] and the modeling
study [2], the agent sometimes followed the trained routes,
while other times it took novel shortcuts (see Fig. 7e and 7f).
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synaptic connections by swapping the first two synapses. Delay Start becomes 0 and references the first synapse.

Fig. 7g shows how neural activity and loss decreases while
the agent explores and learns the maze.

2) Rodent navigation in the Tolman detour task: In the
Tolman detour task the navigation, the rat must adapt to
find the appropriate detour when a learned path is blocked
[12]. We reproduced similar results to [2] though with a
slightly altered experimental setup due to address the default
maxDelay = 20ms of CARLsim. The delays in the network
were initialized with a random uniform distribution /{2, 3}
and the absolute lengths of the detour were slightly reduced.

Fig. 8a shows a training trial for learning a straight path
from the start to the goal. After the training, barrier P1 or P2
was placed in the middle corridor and the agent had to learn a
detour to the goal. When the barrier P1 was set at the location
(9,7), the agent discovered the new path on the 7th trial as
shown in Fig. 8b. The high number of eligible traces (neural
activity) suggests a great deal of uncertainty that corresponds
with an early trial. When the barrier P2 was set at the location
(6,7), the agent learned the new path on the 5th trial as shown
in Fig. 8c. Both detours were learned loss free in less than
ten trials. Fig. 8d shows the convergence of loss and neural
activity while the agent learned the detour after barrier P1 was
set.

3) Rodent Navigation in the Morris Water Maze: The
Morris water maze is a standard test of hippocampal dependent
spatial learning in rodents [13]. A rodent has to find a platform
which is hidden beneath the surface of a circular area covered
with opaque water. To ensure the navigation is based on distal
cues instead of learned sequences of movements, each trial

starts from a random location.

The Morris water maze was simulated by a 13x13 SNN
which its neurons corresponding to the grid locations of the
costs map. The platform was located at (5,5) and had the cost
of 1. The cost of the area covered with water were assigned a
random value with discrete uniform distribution ¢/{2,5}. All
other locations are not traversal and therefore were initialized
with 120. The maze resembles an open field as the agent
can navigate to eight cardinals points (N, NE, E, SE, S, SW,
W, NW). For each of the 32 trials, the starting points were
randomly chosen from the wall at one of the maze’s four
quadrants.

Fig. 9 shows the paths in cyan as the agent navigated
from a randomly chosen start point on the east wall to the
hidden platform. The path became visually less circuitousness
in late trials and the number of eligibility trace respectively
loss decreased as the agent learned the traversal costs by distal
cues from former trials.

C. Performance

1) Performance Spiking Wavefront: The processing time
for the propagation of the spiking wavefront depends on the
utilized hardware!, on the complexity of the SNN, and on
the computational costs of the neuron model. In the present
examples, the complexity is driven by the amount of place
cells required to map the traversal costs of the environment,
see Fig. 10a. The experimental setup defines the edge length L

IGPU: NVIDIA Titan Xp, CPU: Intel Xeon E5-2667 v4 3.2 GHz



A 5 1
2 2
0.8
4 4 4
6 6 06
3
8 8 0.4
10 10
2 0.2
12 12
S S — 0

2 4 6 8 10 12 2 4 6 8 10 12

(a) Trained route (b) Eligibility #1

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

(d) Eligibility #4

(c) Eligibility #3

4

3

2 10
12

(e) Shortcut

N

IS

o

3

2 4 6 8

(f) Eligibility Trace

10 12

A.Loss B. Neural Activity
1000 1200 ¢

800 1000
600 £ 800
400 » 600
200 400
0 200

1 3 4 5

2
Training Loop

Loss
Activity

1 4 5

2 3
Training Loop
(g) Convergence for learning the maze
Fig. 7. Training of fixed route segments in the Boone maze. (a) Trained route
segment. (b) - (d) Eligibility traces of training session #1 to #4. (e) Found
shortcut between two landmarks during trial. (f)Eligibility trace of shortcut

prove learned features of the maze. (g) Loss and neural activity decrease
indicates learning of the maze features.

of the maze and the degree of freedoms the agent can move, in
this case, four or eight cardinal points C. For large mazes, the
order of the synaptic connections is O(C' * L?). For instance,
a maze with an edge length L = 32 has 1k neurons and 8k
connections.

To measure the performance of the wavefront propagation,
we activated the place cell at the top-left of each maze used in
the experiments S = (1,1) and measured the processing time
when the bottom-right £ = (L, L) was reached, e.g. S=(1,1)
and E=(13,13) for Boone, Tolman, and Morris mazes.

Fig. 10b shows that Izhikevich RS neurons do have the
equivalent performance as LIF for large models on GPUs in
CARLsim. For small models with several hundreds of neurons,
simulations on CPU run at the same speed or even faster. This
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Fig. 8. Tolman detour task to simulate rodent navigation from A=(2,7) to
B=(12,7). The resulting path is displayed the maze in cyan color (upper row)
with the corresponding eligibility trace below. (a) Agent was trained on to
go from A=(2,7) to B=(12,7). (b) Agent discovered new path after barrier P1
was set at (9,7) at the 7th trial. (c) Agent discovered new path after barrier
P2 was set at (6,7) at the 5th trial. (d) Convergence of loss and neural activity
while learning the detour for barrier P1.

corresponds to former performance analysis and other GPU
based simulators. The integration method was set to Runge-
Kuttad with 10 steps (dt = 0.1ms) that is recommended for
features for simulations with high biological detail such as
multi-compartment compartments neurons [8].

2) Performance UpdateDelays: In the problem domain, the
majority of changes are sparse. For instance, changes are only
applied along the path [2]. Also other connections outside the
group like the interneurons needs to be considered. Fig. 11
shows the performance of the method updateDelays. which
meets the design goal, that it has no performance impact.

IV. DISCUSSION

We have introduced an implementation for axonal plasticity
for large scale SNN simulations based on the Izhikevich
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Fig. 9. Morris Water Maze with random start points from the east border.
(a) Early trial with the agent searching for the platform. (b) Straighter path
of late trial due spatial learning. (c) Convergence of loss and neural activity
in six simulations with eight sessions each.

neuron model. Although the present results used E-Prop as
its learning rule [4], the implementation is flexible and would
allow other learning rules, such as STDP, to be used to
dynamically update axonal delays during runtime. The key
was the development of the wpdateDelays method, that
enables CARLsim to update delays during runtime without
interrupting the running simulation. This allows for efficient
computation of large scale SNNs that support biological com-
plexity.

Although the spiking wavefront path planning algorithm
was inspired by recent findings in hippocampal replay [2],
[3], the original and present work is not suggesting that axonal
plasticity, such as that described by [1], is occurring during
adaptive path planning. Axonal plasticity is a slower process
than synaptic LTP and LTD and is probably more prominent
for developmental learning and learning on longer timescales.
However, axonal plasticity was introduced for SNNs to explore
this novel form of neuronal plasticity that may have advantages
for time-based coding algorithms and explainability (i.e, the
learning can readily be read out in the delays). By making it
available in CARLSsim, we hope that future users will consider
using this form of plasticity in their simulations.

Edge length
(b) Processing time

Fig. 10. The processing time for the spiking wavefront propagation depends
on the complexity of the SNN and the neuron model. (a) Complexity increases
quadratically both for neurons and synapses in relation to the edge length of
the maze. (b) Izhikevich neurons have an equivalent performance as the LIF
neurons for large models on GPUs in CARLsim. CPUs are do perform well
for small models. The integration method was set to Runge-Kutta4 with 10
steps (dt = 0.1ms).

One primary design goal was to avoid bottlenecks induced
by the delay update for axonal plasticity. We have achieved
this by strictly honoring the sparse representation of synaptic
connections and its intrinsic runtime data structures that avoid
searching by direct indexing. We expect the delay changes
induced by E-Prop to be sparse in the present examples, as they
only target those delays along the path. Furthermore, according
to the requirements we are aware of, we estimated the time
intervals to be similar to other learning rules like STDP or STP
which is several tens to hundreds of ms. We have measured the
performance for the known cases and pending applications and
met the expected results. If future applications have different
requirements, there are still feasible methods to optimize the
performance, for instance by tuning the cache used in the first
step of updateDelays.

Compared to prior work, which utilized a specialized LIF
neuron model [2], [3], we have achieved a higher biological
plausibility as we used Izhikivich neuron types in the present
work. For instance, our place cells were simulated with regular
spiking neurons since those are typically recorded in pyramidal
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Fig. 11. The processing time of method update Delays for AD of increasing
sizes and SNNs with edge lengths 4 and 13. As the implementation of the
method is highly optimized, we have provided the results for the Debug
version for better comparison.

cells found in the hippocmapus. The inhibitory interneu-
rons neurons, were fast spiking similar to those observed
in hippocampal area CA3 [14]. New features of CARLsim
version 6, which allow the configuration of COBA and CUBA
synapses at the group level, were necessary to reproduce the
results in the present examples. We only tuned parameters
manually and at a coarse level, to avoid the risk of over-
fitting. This minimalistic approach for the neural microcircuit
was deliberately chosen to show a functional equivalent to the
applications based on LIF of former work.

V. CONCLUSION

Axonal plasticity appears to be important for synchroniza-
tion and skill learning [1]. It can change due to practice and ex-
perience. It can also be impacted due to neurological disorders.
Despite its importance in brain function, it is rarely included
in neural network simulations. The present work provides
an efficient implementation of experience-dependent axonal
plasticity. In future work, we will explore other learning rules
that affect conductance delays and develop other applications.
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