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Abstract

Supported by recent computational studies, there is increasing evidence that a wide range

of neuronal responses can be understood as an emergent property of nonnegative sparse

coding (NSC), an efficient population coding scheme based on dimensionality reduction and

sparsity constraints. We review evidence that NSC might be employed by sensory areas to

efficiently encode external stimulus spaces, by some associative areas to conjunctively rep-

resent multiple behaviorally relevant variables, and possibly by the basal ganglia to coordi-

nate movement. In addition, NSC might provide a useful theoretical framework under which

to understand the often complex and nonintuitive response properties of neurons in other

brain areas. Although NSC might not apply to all brain areas (for example, motor or execu-

tive function areas) the success of NSC-based models, especially in sensory areas, war-

rants further investigation for neural correlates in other regions.

Author summary

Brains face the fundamental challenge of extracting relevant information from high-dimen-

sional external stimuli in order to form the neural basis that can guide an organism’s behavior

and its interaction with the world. One potential approach to addressing this challenge is to

reduce the number of variables required to represent a particular input space (i.e., dimension-

ality reduction). We review compelling evidence that a range of neuronal responses can be

understood as an emergent property of nonnegative sparse coding (NSC)—a form of efficient

population coding due to dimensionality reduction and sparsity constraints.

Introduction

Brains face the fundamental challenge of extracting relevant information from high-dimen-

sional external stimuli in order to form the neural basis that can guide an organism’s behavior
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and its interaction with the world. To support complex patterns of behavior, populations of

interconnected neurons must implement a rich repertoire of linear and nonlinear operations

on their synaptic inputs that take into account context, experience, and anatomical constraints

[1]. For example, anatomical bottlenecks often force the information stored in a large number

of neurons to be compressed into an orders-of-magnitude-smaller population of downstream

neurons [2–4], such as storing information from 100 million photoreceptors in 1 million optic

nerve fibers or resulting in a 10–10,000-fold convergence from cortex to the basal ganglia [3].

One potential approach to addressing this challenge is to reduce the number of signals

required to transmit information in the network—for example, through sparse-coding schemes

(text in bold appear in the Glossary section), in which information is represented by the activity of

a small proportion of neurons in a population [5–7]. A number of different definitions of sparsity

can be found in the literature [8, 9], which can sometimes lead to controversy as to which codes

can still be considered sparse [8]. An extreme example is the so-called local code, in which each

unique event, or “context,” is encoded by a single active neuron, or “grandmother cell” [10] (illus-

trated in the left column of Fig 1A). Local codes not only suffer from low representational capac-

ity, because they allow a population of N neurons to encode at most N contexts, but also require a

large number of neurons to cover the space of possible contexts. On the other hand, a dense code

represents each context by the combined activity of all neurons in the population (Fig 1A, right

column). In theory, dense codes lead to high representational capacity (at M activity levels, allow-

ing for MN contexts to be encoded), but they also suffer from neuronal cross talk because every

neuron is involved in every context. Alternatively, sparse codes (Fig 1A, center column) can be

described as a trade-off between the benefits and drawbacks of dense and local codes, in which

each context is encoded by a different subset of neurons in the population. [5]. In general, sparse

coding reduces the overall neural activity necessary to represent information.

Another approach to address this challenge is to reduce the number of variables required to

represent a particular input, stimulus, or task space, a process known as dimensionality reduc-

tion. Although responses of individual neurons are often complex and highly nonlinear, a

Fig 1. NSC promotes population codes that are both sparse and parts based. (A) Hypothetical activity in a population of neurons during presentation of two different

external stimuli (“contexts”). A sparse code is a trade-off between a local code (in which a context is represented by the activity of a single neuron, and different contexts

are represented by different neurons) and a dense code (in which all neurons are active, and their combined activity is used to encode each context). Dense codes possess

great memory capacity but suffer from cross talk among neurons, whereas local codes do not suffer from interference but also have no capacity for generalization (inspired

by [8]). (B) In a holistic representation of faces, individual neurons in the population respond themselves to faces as a whole [11], whereas in a parts-based representation,

individual neurons explicitly encode individual face components [12], such as the eyes, nose, and mouth (inspired by [13]). NSC, nonnegative sparse coding.

https://doi.org/10.1371/journal.pcbi.1006908.g001
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population of neurons might share activity patterns because of individual neurons in the popu-

lation not being independent of each other. Dimensionality reduction methods have proved

useful in elucidating these shared activity patterns and thus effectively explaining population

activity using a lower number of variables than there are neurons in the population (for a

recent review, see [14]).

Neurons often encode several behaviorally relevant variables simultaneously [15–18], allow-

ing for multifaceted representations of high-dimensional stimulus spaces. For example, a pop-

ulation of neurons tasked with encoding human faces might opt to represent each individual

face as a combination of a set of standard faces (Fig 1B, left column). In such a holistic repre-

sentation of faces [11], each individual neuron would itself respond to a face as a whole (i.e., a

face “template”) without explicitly representing individual face components, and an arbitrary

face could be represented by combining different face templates (e.g., by adding 10% of tem-

plate 1 to 20% of template 2 and subtracting 30% of template 3). On the other hand, faces can

also be represented as a combination of individual face components, such as eyes, noses, and

mouth, in what is known as a parts-based representation (Fig 1B, right column) [12, 19].

Both approaches allow for representing arbitrary faces as a combination of neural activity but

have drastically different consequences on the set of stimulus features each neuron responds

to. Although visual information from the eyes, nose, and mouth would of course be included

in a holistic face representation, that information would not be explicitly represented as struc-

tural units in their own right [11]. Linear combinations of holistic components often involve

complex cancellations between positive and negative contributions and thus lack the intuitive

meaning of adding parts to form a whole. In contrast, a parts-based representation allows for

only nonsubtractive combinations of stimulus features [12]. Although the relevant stimulus

dimensions are often not known a priori, several sophisticated mathematical techniques exist

that allow us to discover these representations directly from experimental data [14, 19–23].

In this article, we review evidence from experimental and theoretical studies suggesting that

a number of neuronal responses can be understood as an emergent property of nonnegative

sparse coding (NSC), an efficient population coding scheme based on dimensionality reduc-

tion and sparsity constraints. In particular, we review evidence for NSC in sensory areas that

efficiently encode external stimulus spaces, for associative areas to conjunctively represent

multiple behaviorally relevant variables, and for the basal ganglia to coordinate movement.

Nonnegative sparse coding as a modern variant of the efficient

coding hypothesis

Efficient coding

The fundamental principle of efficient coding is that a sensory system is adjusted to the spe-

cific statistics of the natural environment from which it encodes and transmits information

[24–27]. Efficiency, in this context, is an information-theoretic term that should not be con-

fused with “minimizing energy expenditure.” Instead, a sensory pathway is treated as a noisy

communication channel, in which the goal is to maximize the rate at which information can

be reliably transmitted by minimizing the redundancy between representational units.

Early theories of efficient coding [24, 25] were developed based on the visual system. Att-

neave [25] pointed out that there is a significant degree of redundancy in natural visual images

because of correlations in both the spatial and temporal domains (for a recent review, see

[28]). For example, the luminance values of a pair of pixels separated by a fixed distance in a

natural image are likely to be highly correlated (Fig 2A). These statistical regularities constrain

the images a visual system is likely to encounter to a tiny fraction of the set of all possible

images. It was therefore argued that the visual system should not waste resources on processing
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arbitrary images but instead use statistical knowledge about its environment to represent the

relevant input space as economically as possible.

Extending this idea to the neural level, Barlow [24] proposed that the goal of early neurons

in sensory processing is to transform raw visual inputs into an efficient representation such

that as much information as possible can be extracted from them given limited neural

resources. This efficient coding principle has been able to explain a wide variety of neuronal

response properties in the early visual system, such as the center-surround structure of recep-

tive fields (RFs) in the retina [30], temporally decorrelated signals in the lateral geniculate

nucleus (LGN) [31], and the coding of natural scenes in the primary visual cortex (V1) [9].

At the level of single neurons, efficient coding suggests that the information carried by a

neuron’s response can be maximized by using all response levels with equal frequency [29, 32,

33]. For example, in the case of a neuron representing a single input variable with a single out-

put variable, information is maximized when the input–output function corresponds to the

Fig 2. Efficient coding hypothesis. (A) Sensory stimuli in the environment, such as an image of an anteater, display significant statistical structure. For example, the

luminance value of nearby pixels in the image is significantly correlated, an effect that exists even for nonadjacent pixels (inspired by [27]). Neural systems can improve

their coding efficiency by accounting for and reducing such information redundancy. (B) For a given distribution of sensory characteristics in the world (top), a neuron’s

information capacity is maximized when all response levels are used with equal frequency (inspired by [29]). Intervals between each response level encompass an equal

area under the intensity distribution, so each state is used with equal frequency.

https://doi.org/10.1371/journal.pcbi.1006908.g002
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cumulative probability function for the different input levels [29], as shown in Fig 2B. Note

that this coding procedure amplifies inputs in proportion to their expected frequency of occur-

rence rather than reserving large portions of its dynamic range for improbable inputs [29, 32].

On the other hand, if the input–output function sensitivity is chosen as too low, high levels of

the stimulus feature will be indistinguishable as the response function saturates; if the sensitiv-

ity is set too high, low levels of the stimulus feature cannot drive responses [29].

At the level of neuronal populations, neural responses should be both decorrelated (i.e.,

independent from one another) and sparse (i.e., involve only a small fraction of neurons in the

population) [27].

Sparse coding

Taking these ideas a step further, Olshausen and Field [34] noted that natural images contain

statistical dependencies beyond linear pairwise correlations among image pixels and argued

that these higher-order correlations should be taken into account when developing an efficient

code. Their goal was thus to find a linear coding strategy capable of reducing these higher-

order forms of redundancy.

Linear sparse coding is one such strategy, in which monochromatic images I(x,y) are

described in terms of a linear superposition of a number of B basis functions, wb(x,y):

Iðx; yÞ ¼
XB

b¼1

wbðx; yÞhb; ð1Þ

where hb are stochastic coefficients that are different for each image [35, 36]. Learning a sparse

code for images thus involved determining the values of both wb(x,y) and hb for all b and (x,y),

given a sufficient number of observation of images, under the constraint that hb be sparse. In

this context, hb was considered sparse if it took very small or very large (absolute) values more

often than a Gaussian random variable would [36]. This sparsity constraint allowed for basis

functions that were not needed to describe a given image structure to be weeded out.

When Olshausen and Field applied linear sparse coding to natural images, they found that

the emerging basis functions were qualitatively similar in form to RFs of simple cells in V1 [35,

37], thus giving empirically observed RFs an information-theoretic explanation. In this con-

text, hb in Eq 1 corresponded to the (signed) activation value of a particular V1 neuron, and

wb(x,y) were the connection weights (or synaptic weights in an artificial neural network) that

were closely related to that neuron’s RF.

Sparsity, in this context, is an information-theoretic concept related to how efficiently and

completely information is encoded with the basis functions described previously. Please note

that this is different from empirical observations of brain areas being “sparsely” activated; that

is, sparse population activity does not necessarily imply that a brain area implements a sparse-

coding scheme. This confusion is fueled in part by the wide variety of definitions of sparsity

used in the literature [8, 38]. For example, even though sparse coding (as a theoretical frame-

work) applied to natural images yields V1-like RFs, recent evidence suggests that neural activ-

ity in V1 might not be as sparsely activated as previously thought [39, 40]. However, V1 still

codes stimuli efficiently [40].

Olshausen and Field went on to show that the set of basis functions that best described V1

RFs was greater in number than the effective dimensionality of the input (which they termed

an overcomplete basis set) [37]. It is worth noting that sparse coding with an overcomplete

basis set is typically associated with an anatomical fan-out motif, such as expanding 1 million

optic nerve fibers into more than 100 million V1 neurons or from a small number of mossy

fibers to a 100-fold–larger number of granule cells in the cerebellum.
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However, as pointed out by Hoyer [41], linear sparse coding falls short of providing a literal

interpretation for V1 simple-cell behavior for two reasons: (1) every neuron could be either

positively or negatively active, and (2) the input to the neural network was typically double-

signed, whereas V1 neurons receive visual input from the LGN in the form of separated, non-

negative ON and OFF channels.

In order to transform Olshausen and Field’s sparse coding from a relatively abstract model

of image representation into a biologically plausible model of early visual cortex processing,

Hoyer [41, 42] thus proposed to enforce both input signal and neuronal activation to be non-

negative (though still allowing inhibitory connections). This seemingly simple change had

remarkable consequences on the quality of the sensory representation: whereas elementary

image features in the standard sparse-coding model could “cancel each other out” through

subtractive interactions, enforcing nonnegativity ensured that features combined additively,

much like the intuitive notion of combining parts to form a whole. The resulting parts-based

representations resembled RFs in V1 much more closely than other holistic representations.

These considerations led to the formulation of NSC in its current form.

Nonnegative sparse coding

As a special case of linear sparse coding, NSC shares the same goal of accurately describing

observed data as a superposition of a set of sparsely activated basis functions, as well as enforc-

ing dimensionality reduction. In addition, NSC requires all basis functions and activation val-

ues (i.e., wb(x,y) and hb in Eq 1) to be nonnegative. However, NSC is more than just linear

sparse coding with nonnegative weights. For example, whereas linear sparse coding typically

uses a larger number of basis functions than there are dimensions in the input (thus achieving

dimensionality expansion), NSC makes use of nonnegative matrix factorization (NMF) to

achieve dimensionality reduction. This has interesting implications for the kinds of basis func-

tions that can be learned. Most prominently, the nonnegativity constraints used in NMF force

the different basis functions to add up linearly, thus leading to the distinctive parts-based

representations.

Consider S observed stimuli or data samples, each composed of F observed feature values,

such as a collection of S images I(x,y)s (s2[1,. . .,S]) from the previous example, each consisting

of F different grayscale values. If we arrange the observed feature values of the s-th observation

into a vector v!s (i.e., by flattening each observed image), and if we arrange all vectors into the

columns of an F×S data matrix V, then linear decompositions describe these data as

V �WH; ð2Þ

where W is an F×B matrix that contains as its columns the B basis functions of the decomposi-

tion (i.e., the b-th column of W corresponding to wb(x,y) 8x,y in Eq 1), and H is a B×S matrix

containing as its columns the activation values of each basis function for a particular input

stimulus (i.e., the b-th column of H corresponding to hb 8b in Eq 1). The difference between V

and WH is termed the reconstruction error.

The goal of NSC is then to find a linear decomposition of V that minimizes the reconstruc-

tion error while guaranteeing that H is sparse. This can be achieved by minimizing the follow-

ing cost function [42]:

min
W;H

1

2
kV � WHk2

þ l
X

ij

f ðHijÞ; ð3Þ

subject to the constraints 8ij:Wij�0, Hij�0, and kw!ik ¼ 1, where w!i denotes the i-th column

of W. Here, the left-hand term describes the reconstruction error, whereas the right-hand
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term describes the sparsity of the decomposition. The trade-off between accurate reconstruc-

tion and sparsity is controlled by the parameter λ (where λ�0), whereas the form of f defines

how sparsity is measured (a typical choice is the L1 norm on H).

Analogous to efficient coding, Eq 3 forces prediction errors to be amplified in proportion

to their expected frequency of occurrence because a more frequent event would show up more

frequently in V. Hence, accounting for a rare observation at the expense of ignoring a more

common one would result in an increased reconstruction error.

In the case of λ = 0, Eq 3 reduces to the squared-error version of NMF. Although NMF

enforces all elements of W and H to be nonnegative, the resulting decomposition might not be

sparse, depending on the number of basis functions B. In order to emphasize decompositions

in which H is sparse, Eq 3 should be minimized with λ>0 [42].

Another open parameter is the number of basis functions, B, which controls the predictive

power of the model and must be determined empirically. With a small number of basis func-

tions, NSC is unlikely to achieve a low reconstruction error, be it in familiar contexts (training

data) or in novel contexts (held-out test data). In this case, the error depends on the systematic

bias of the model, and the model is said to underfit the data (left-hand side of Fig 3). With

increased model complexity, the model can learn subtle differences between different contexts

with high accuracy, leading to a reduced bias (training) error. However, with increased com-

plexity, the model is more likely to learn patterns between training contexts that arise either

from underlying noise or from spurious correlations. As a result, the model will respond

according to these learned patterns when a novel context is presented (rather than according

to the underlying actual relationships), in which case the model is said to overfit the data

(right-hand side of Fig 3). Hence, the goal of a successful model is to find the ideal compromise

in the bias–variance error trade-off [43] (labeled “best model” in Fig 3).

Analogously to [35, 37], the basis functions obtained in NSC can be interpreted as the con-

nection weights of a population of simulated neurons in an artificial neural network. In other

words, under NSC, the number of basis functions B corresponds to the number of output neu-

rons, and the response of the b-th model output neuron (b2[1,. . .,B]) to a particular input

stimulus s, termed rbs, can be computed by feeding the dot product of that neuron’s connection

weights (i.e., the b-th column in W, w!b) and a data vector (i.e., the s-th column in V, v!s) to an

activation function Θ:

rbs ¼ Yðw!b � v
!

sÞ; ð4Þ

where “�” denotes the dot product. For example, the linear response of a model neuron can

be calculated by setting Θ to the identity function Θ(x) = x. Note that the response of the

model neuron to different stimuli s2[1,. . .,S] involves different columns of V but always

relies on w!b.

Thus, we can utilize W (which must remain fixed once learned) and Eq 4 to simulate a

model neuron’s response to arbitrary input stimuli by replacing the column in V with new

input. This allows us to investigate the response properties of individual model neurons much

in the same way that experimental neuroscientists study biological neurons. This is important

because it means that NSC can be used to model neural activity in the brain, and the resulting

activity patterns generated by NSC can be compared to and evaluated against experimental

findings.

It is important to note that the absence of negative weights in Eqs 2–4 does not preclude the

modeling of inhibitory connections or even posit that inhibitory connections cannot partici-

pate in NSC. Rather, one important aspect of NSC is the parts-based, NMF-like decomposition

of V; one way to achieve this is by enforcing nonnegativity constraints on W and H. Several
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studies have successfully incorporated inhibitory connections into their NSC-based models.

One approach is to model them as nonnegative synaptic conductances. For example, Hoyer

[41] used NSC to model V1 neurons as receiving input from both excitatory ON and inhibi-

tory OFF cells in the LGN. Using prewhitened natural images, Hoyer sampled 12×12 pixel

patches from the images and then separated positive and negative values into separate chan-

nels. Each image patch was thus represented by a 2×12×12 = 288 dimensional vector, each ele-

ment of which mimicked the activity of an ON or OFF cell in response to the image patch.

These vectors were then arranged into the columns of V. This procedure not only preserved

the parts-based quality of the encoding but also allowed the modeling of the convergence of

ON and OFF pathways. Another approach is to drop the nonnegativity constraint on W and

thus effectively operate with both positive and negative synaptic weights. Only recently did it

become clear that this approach was able to preserve the parts-based quality of the encoding

(as long as nonnegativity of H was enforced) [44], thus simplifying the construction of more

complex network topologies.

Fig 3. The bias–variance dilemma. With increased model complexity (i.e., with an increased number of basis functions), the reconstruction error on a

set of familiar (training) data typically decreases until it reaches zero. In contrast, the reconstruction error on a set of unfamiliar, held-out (test) data

typically goes through a minimum as a function of model complexity. A successful model chooses the number of basis functions such that the

generalization (test) error is minimized (labeled “best model”).

https://doi.org/10.1371/journal.pcbi.1006908.g003
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Empirical evidence for NSC in the brain

In this section, we review evidence for NSC in several brain regions. In particular, NSC has

been observed in sensory areas, an association cortex area, and the basal ganglia. Although

these findings suggest that NSC might apply elsewhere in the brain, thus warranting further

investigation, we are aware that NSC does not apply to everywhere in the brain. We will fur-

ther discuss the limits of NSC in the Model limitations section of the Discussion.

Because of its roots in efficient coding theories of natural image processing, there is a large

body of research highlighting the role of NSC in visual cortex function (e.g., [24, 35, 41, 45,

46]). More recently, NSC-like computational models have found application outside visual

cortex, where they have started to provide compelling evidence that a wide variety of neuronal

response properties might be understood as an epiphenomenon of efficient population coding

based on dimensionality reduction. Examples include elucidating the dimensions along which

perceptual space is organized in the olfactory system [47, 48], the coordination of movement

in the cortico-basal ganglia-thalamo-cortical loop [3, 49], and the combined representation of

allocentric and route-based spatial navigation cues in retrosplenial cortex (RSC) [50].

In the following subsections, we review studies describing evidence for NSC that either suc-

cessfully explains response properties of individual neurons or has been instrumental in eluci-

dating the dynamics at the population level. We start this section with some early modeling

work that shows parts-based dimensionality reduction analogous to neuronal responses in

inferotemporal cortex (IT).

NSC in the inferotemporal cortex

The notion of parts-based object recognition is compatible with hierarchical models of vision,

in which activation of simple features feeds into the activation of complex features [51]. There

is a long history of debate as to whether humans detect faces based on their individual parts or

as correctly arranged wholes (for reviews, see [11, 52, 53]). The working hypothesis is that the

brain might use holistic face information as an early gating mechanism to allow visual stimuli

access to the face processing module but that most cortical circuitry relies on parts-based

information [53]. Converging evidence from human imaging studies and primate physiology

suggests that faces are processed in localized “patches” within IT [54], where cells detect dis-

tinct constellations of face parts [55, 56], such as eyes [57], and that whole faces can be recog-

nized by taking linear combinations of neuronal activity across IT [19, 58].

An influential paper by Lee and Seung [13] found that applying NMF to a database of face

images yielded sparse, localized features that resembled parts of a face (Fig 4A) in a similar

fashion to responses in area IT. In their case, NMF acted on an F×S data matrix V, whose rows

corresponded to distinct features of the input (e.g., F different pixels of an image) and whose

columns corresponded to different stimuli or observations of those features (e.g., S different

images). NMF was used to decompose the matrix into two reduced-rank matrices (Fig 4, inset)

whose linear combination could be weighted such that the product of W and H provided an

accurate reconstruction of V (see Eq 2).

A particular image, in this case encoded by F = 19×19 = 361 pixels could be accurately rep-

resented by a linear combination of a small number (B = 49) of encoding variables or “basis

images” (Fig 4A). Such a representation is reminiscent to neural processing in IT, an area in

the ventral visual “what” stream involved in encoding high-level object identity [58, 59], in

which images of whole faces can be linearly reconstructed using responses of approximately

200 neurons that each respond to a certain set of physical facial features [19].

Interestingly, such a parts-based representation is not specific to face processing in IT; the

same principle can be extended to body-selective regions in IT [60, 61].
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Fig 4. Sparse and parts-based representations recovered by NMF resemble RFs across brain regions. NMF (inset) can reconstruct a data matrix V (F features × S
stimuli) from two reduced-rank matrices W (containing B basis functions) and H (containing the hidden coefficients of the decomposition). Any individual input

stimulus (i.e., column in V, red) can be reconstructed from a linear combination (i.e., column in H, blue) of a set of basis functions (i.e., all columns in W, green). (A) A

facial image can be reconstructed from a sparse activation of simulated IT neurons that preferentially respond to parts of faces (inspired by [13]). (B) An optic flow field

can be reconstructed from a sparse activation of model MSTd neurons that prefer various directions of 3D self-translation and self-rotation. (C) A rat’s 2D allocentric

position and route-based direction of motion can be reconstructed from a sparse activation of model RSC neurons that prefer an intricate combination of LV, AV, HD,
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Although there seems to be a consensus that information-theoretic explanations are rele-

vant when investigating early sensory areas, higher-order brain areas are often considered to

be specialized for performing tasks (e.g., recognizing objects, making decisions, navigating an

environment) rather than the efficient encoding of information. It is therefore possible that

the essential components of NSC might well be present in higher-order areas but, to date, have

gone unnoticed.

NSC in the retina

Because of its roots in efficient coding theories of natural image processing, NSC figures prom-

inently in the vision neuroscience literature. For example, NMF-based models were able to

reconstruct in vitro neuronal spike trains from the salamander retina [44, 62]. By combining

spike-triggered average with NMF, Liu and colleagues [44] were able to identify the subunit

layout of retinal ganglion cells (Fig 5). This technique, termed spike-triggered NMF (STNMF),

involved applying NMF to the collection of those stimulus patterns contained in a spatiotem-

poral white-noise sequence that caused a given neuron to spike. Akin to common reverse-cor-

relation analysis, the researchers averaged the collection of spike-eliciting stimulus segments to

form the spike-triggered stimulus ensemble (Fig 5A). STNMF then decomposed the ensemble

of effective spike-triggered stimuli into a matrix W containing a set of modules (or basis func-

tions) and a matrix H containing a set of hidden coefficients.

Intuitively, the modules derived by STNMF should capture the subunit decomposition of

the cell’s RF because the spike-eliciting stimuli should have essential statistical structure

imprinted on them by the subunits, such as correlations between pixel values [44]. And indeed,

the identified modules corresponded to individual presynaptic bipolar cells, as verified by mul-

tielectrode array recordings with simultaneous recordings from individual bipolar cells

through sharp microelectrodes [44]. This allowed the researchers to improve predictions

about how ganglion cells respond to natural stimuli without the need to guess a specific model

structure that may be constrained in terms of the size, shape, number, or nonlinearity of gan-

glion cell subunits.

NSC in the early visual cortex

NSC has been extensively applied to early visual cortex, where it has successfully explained ori-

entation and frequency tuning of simple and complex cells in V1 [41] as well as edge-like pool-

ing of spatial frequency channels in V2 [63], including RF properties such as end-stopping and

contour integration [64]. These theoretical findings are in good agreement with a large body of

research documenting the sensory response of V1 across animal models (e.g., [65–68]),

although they are not without controversy. For example, one study [67] criticized that some of

the early sparse-coding models generated RFs that looked like stereotyped edge detectors and

did not capture the diversity of RF structure observed in cat and monkey V1. However, by

adjusting these models to limit the number of active neurons (“hard” sparsity) instead of limit-

ing mean neuronal activity (“soft” sparsity), Rehn and Sommer [69] were able to account for

the diversity of shapes in biological RFs. Other researchers were concerned that the apparent

sparse activation of V1 was an artifact of using simple artificial stimuli such as sinusoidal grat-

ings and drifting bars, but Vinje and Gallant [9] were able to show that natural viewing condi-

tions actually increased the sparsity of V1 activation.

and P. For the sake of clarity, only the four most contributing hidden coefficients (out of 30) are shown. AV, angular velocity; HD, head direction; IT, inferotemporal

cortex; LV, linear velocity; MSTd, dorsal subregion of the medial superior temporal area; NMF, nonnegative matrix factorization; P, 2D position; RSC, retrosplenial

cortex. Adapted with permission from [46].

https://doi.org/10.1371/journal.pcbi.1006908.g004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006908 June 27, 2019 11 / 33

https://doi.org/10.1371/journal.pcbi.1006908.g004
https://doi.org/10.1371/journal.pcbi.1006908


However, a number of recent studies suggest that responses are neither sparse nor low

dimensional in V1 of the mouse [39, 40] and monkey [70]. Using high-density electrophysiol-

ogy, Stringer and colleagues [40] found that the response of more than 10,000 visual cortical

neurons to 2,000 image stimuli is high dimensional. In monkey V1, one needs to look at many

principal components to decode natural images, and these principal components reflect con-

tributions from most of the recorded neurons [70]. In addition, V1 neurons in the mouse

might encode both visual stimuli and behavior in a mixed representation: a recent study found

no separate sets of neurons encoding stimuli and behavioral variables, but each neuron multi-

plexed a unique combination of sensory and behavioral information [39]. These findings sug-

gest that efficient coding might render an incomplete picture of sensory processing in V1 and

that more studies are needed to reevaluate past findings. To this end, Stringer and colleagues

[40] suggested that the population code of visual cortex might be determined by two con-

straints: efficiency, to make best use of the limited number of neurons, and smoothness, which

allows similar stimuli to evoke similar responses.

Fig 5. Identification of retinal ganglion cell subunits with STNMF. (A) Samples of a ganglion cell’s effective spike-triggered stimulus ensemble (top), whose average

corresponds to the cell’s STA. For easier visual comparison with the subunits, STAs are displayed with negative pixel values set to zero and with zero corresponding to

white in the grayscale image. STNMF decomposes this ensemble into a set of modules and hidden coefficients (bottom). The example here shows four modules that

were identified for a sample ganglion cell. (B) Modules obtained for another sample ganglion cell by applying STNMF with 20 modules (bottom two rows). Some

modules have a strongly localized structure (blue frames); others are more noise-like (red frames). These modules make up the subunits within a ganglion cell RF. The

top row shows the cell’s RF, given by the spatial component of the STA, as well as the fitted RF outline (GC RF, black ellipse), together with outlines of the localized

subunits (blue ellipses). Scale bars, 100 μm. GC, ganglion cell; RF, receptive field; STA, spike-triggered average; STNMF, spike-triggered nonnegative matrix

factorization. Adapted with permission from [44].

https://doi.org/10.1371/journal.pcbi.1006908.g005
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In summary, there is a large body of research showing that computational models based on

efficient coding, such as NSC, can account for a variety of response properties in early visual

cortex. Although methods like spike-triggered average [71] and dimensionality reduction [72]

give us confidence that we have a good understanding of the sensory response in V1, this

understanding remains far from complete [73, 74] and in fact might be missing a number of

dimensions related to task, state, or behavior [39, 40]. With the exception of face processing in

IT [13, 19], NSC has yet to be applied to higher-order areas in the ventral visual pathway. The

success of NSC in explaining V1 and V2 response properties suggests that it might be possible

to extend the model to texture integration in V4.

NSC in the dorsal visual pathway

Our group found evidence for NSC in the dorsal subregion of the medial superior temporal

(MSTd) area [46], which is part of the visual motion pathway in the dorsal visual stream. Neu-

rons in MSTd respond to relatively large and complex patterns of retinal motion (“optic

flow”), owing to input from direction- and speed-selective neurons in the middle temporal

(MT) area (for a recent review, see [75]). Although MSTd had long been suspected to be

involved in the analysis of self-motion, the complexity of neuronal response properties has

made it difficult to experimentally investigate how neurons in MSTd might perform this

function.

When our group applied NMF to simulated neural activity patterns whose statistical prop-

erties resembled that of experimentally recorded MT neurons [46], we found a sparse, parts-

based representation of retinal flow (Fig 4B) similar to the parts-based representation of faces

encountered by Lee and Seung [13]. The resulting “basis flow fields” showed a remarkable

resemblance to RFs of MSTd neurons, as they responded to an intricate mixture of 3D transla-

tional and rotational flow components in a subset of the visual field. As a result, any flow field

possibly to be encountered during self-movement through a 3D environment could be repre-

sented by only B = 64 simulated MSTd neurons, as compared with F = 9,000 simulated MT

input neurons. This led to a sparse and parts-based population code in which any given stimu-

lus could be represented by only a small number of simulated MSTd neurons [46].

Fig 6 shows the distribution of direction preferences of MSTd-like model units (Fig 6A and

6B; [46]) for rotation and translation, respectively. Each data point in the scatter plots specifies

the preferred 3D direction of a model unit. Histograms along the boundaries show the mar-

ginal distributions of azimuth and elevation preferences. Not only did individual units match

response properties of individual neurons in macaque MSTd [76]), but the model was able to

recover statistical properties of the MSTd population as a whole, such as a relative overrepre-

sentation of lateral headings.

MSTd is known to encode a number of perceptual variables, such as the direction of travel

(heading) and eye rotation velocity. During forward movement, retinal flow radiates out sym-

metrically from a single point, the focus of expansion (FOE), from which heading can be

inferred. However, instead of consisting of a set of distinct subpopulations, each specialized to

encode a particular perceptual variable, MSTd has been found to consist of neurons that act

more like basis functions, in which a majority of cells were involved in the simultaneous

encoding of multiple perceptual variables (Fig 6C). A similar picture emerged when we investi-

gated the involvement of MSTd-like model units in the encoding of both heading and eye rota-

tion velocity (Fig 6C).

Interestingly, the sparsity regime in which model MSTd achieved the lowest heading pre-

diction error (Fig 6D) was also the regime in which MSTd-like model units reproduced a vari-

ety of known MSTd visual response properties (for experimental details, refer to [46]). In
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contrast to findings about early visual cortex, this regime does not use an overcomplete basis

set [35], yet it can still be considered a sparse coding regime [8] because only a few MSTd-like

model units were needed to recover the stimulus, and each model unit responded to a subset

of stimuli (see Fig 8C in [46]). Such an intermediary sparse code might be better suited (as

opposed to an overcomplete basis set) for areas such as MSTd because the increased memory

capacity of such a code might lead to compact and multifaceted encodings of various percep-

tual variables.

Taken together, the computational modeling work on MSTd described previously suggests

that NSC is not specific to primary sensory areas and may be observed in other downstream

sensory regions.

NSC in the auditory cortex

Analogous to early visual cortex, the auditory system is believed to decompose auditory signals

into a set of elementary acoustic features [77] such that the complete acoustic waveform can be

described by a sparse population code that operates near an information-theoretic optimum

[77–79]. It is therefore not surprising that computational models based on NSC have been

very successful at describing the spectro-temporal RF of neurons in the primary auditory cor-

tex (A1) [80, 81]. Response properties of A1 neurons are well described by a spectrogram; they

Fig 6. (A and B) Distribution of 3D direction preferences of MSTd-like model units in the NSC-based sparse decomposition model (rotation, [A]; translation, [B]).

Each data point in the scatter plots corresponds to the preferred azimuth (abscissa) and elevation (ordinate) of a single neuron. Histograms along the top and right sides

of each scatter plot show the marginal distributions. Also shown are 2D projections (front view, side view, and top view) of unit-length 3D preferred direction vectors

(each radial line represents one neuron). (C) Distribution of FOE & P selectivities in macaque MSTd (dark gray) and model MSTd (light gray). Neurons or model units

were involved in encoding heading (FOE), eye velocity (P), both (FOE & P), or neither (none). (D) Heading prediction (generalization) error as a function of the

number of basis functions using cross validation. Vertical bars are the SD. FOE, focus of expansion; MSTd, dorsal subregion of the medial superior temporal area; NSC,

nonnegative sparse coding; P, pursuit. Reprinted with permission from [46].

https://doi.org/10.1371/journal.pcbi.1006908.g006
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are often tuned to stimulus frequency but are rarely phase locked to oscillations of the sound

waveform [82]. The cortical representation of auditory signals seems to not only be sparse but

also rely on statistically independent acoustic features [83].

Similar to visual cortex, auditory cortex is hierarchically organized, with neurons in A1

responding to simple acoustic features of natural sounds and higher-order areas responding to

more behaviorally relevant stimuli. The anterior superior temporal region of auditory cortex,

for example, responds to categories of acoustic objects, such as sounds produced by voices and

musical instruments [82]. An intriguing question for future modeling studies is therefore

whether NSC can be extended to the next level of the auditory hierarchy: Would it be possible

to construct more complex acoustic objects from a sparse, parts-based set of elementary,

A1-like acoustic features? And would the representation of such acoustic objects resemble neu-

ronal responses in the anterior superior temporal region of auditory cortex?

Taken together, we suggest that auditory cortex is a good example for efficient and NSC-

based coding in a sensory system other than the visual cortex, in which further study is

warranted.

NSC in the olfactory cortex

The olfactory cortex is another nonvisual cortical area worth investigating for NSC-like

responses. In contrast to most other sensory modalities, the basic perceptual dimensions of

olfaction remain unclear. In particular, the olfactory modality is intrinsically high dimensional

and lacks a simple, externally defined basis analogous to wavelength or pitch on which elemen-

tal odor stimuli can be quantitatively compared (for a recent review, see [84]). Odors evoke

complex responses in granule cells (located in the olfactory bulb) that evolve over hundreds of

milliseconds [85]. Granule cells use a sparse combinatorial code to convey information about

odor identity and concentration [86, 87]. Downstream from the olfactory bulb, odors tend to

activate a small but consistent proportion (approximately 10%) of cortical neurons in the piri-

form cortex [88], which is thought to form odor object percepts [89, 90]. Although piriform

cortex is not topographically organized, a spatial structure can be discerned when examining

the projections of output neurons, which are highly segregated and functionally specific.

Whereas the anterior piriform cortex is associated with the encoding of odor identity and odor

structure, the posterior piriform cortex is involved in associational aspects of odors, such as

valence and similarity [89, 91].

A compelling piece of evidence for NSC in the olfactory system was recently provided by

Castro and colleagues [48]: In an effort to elucidate the dimensions along which perceptual

space might be organized in the olfactory system, they applied NMF to a perceptual dataset

built from 144 monomolecular odors, each represented by a 146-dimensional vector (an “odor

profile”). Each dimension in the odor profile corresponded to the rated applicability of a num-

ber of semantic labels, such as “sweet,” “floral,” and “heavy.” By applying NMF to the odor pro-

file, they showed that a set of 10 sparsely activated basis functions could accurately describe

any odor in the dataset (Fig 7A). Interestingly, NMF revealed a prominent block diagonal

structure to the full matrix H (Fig 7B), indicating that (1) a given odor tended to be character-

ized by a single prominent basis function, implying that the basis functions recovered by NMF

were perceptually meaningful, and (2) all ten basis functions were being used approximately

with equal frequency, implying that the basis functions recovered by NMF could span the

space of behaviorally relevant odors. This suggests that a given odor percept may be considered

an instance of one of several fundamental qualities.

Furthermore, NMF recovered basis functions whose descriptors aligned with perceptual

dimensions highlighted in several previous analyses of odor space, including but not limited to
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relative pleasantness (e.g., “fragrant,” “sickening”) and potential palatability (“woody, resin-

ous,” “chemical,” “sweet,” and “lemon”). Odors clustered predominantly along these axes (as

illustrated in Fig 7C) for three specific basis functions [48].

In summary, although sensory processing in the olfactory system remains an area of active

research, there is evidence consistent with a sparse and parts-based encoding of odor identity

and concentration. Only recently have NSC-based methods been employed to elucidate the

neural code for olfaction. Future studies may provide additional supporting evidence.

NSC in the somatosensory cortex

In early areas of primary somatosensory cortex (S1), a number of parallels can be drawn to

sparse, reduced information processing observed in other primary sensory cortices. First,

activity in rodent barrel cortex, a region of S1 that is a major target for somatosensory inputs

from the whiskers via the thalamus, can be extremely sparse [92–94], similar to activity in A1.

Consequently, sparse-coding models have successfully explained the response properties of

individual neurons in rat barrel cortex (e.g., Hafner and colleagues [95]). Second, similar to

Fig 7. NMF recovers a sparse and parts-based representation of olfactory perceptual space. (A) Waterfall plot of the 10 basis functions constituting W

(same nomenclature as in Fig 4). (B) Heat map of the hidden coefficient matrix, H, in which each column of H corresponds to a different odor. Columns

of H are normalized and sorted. (C) Plot of all 144 odors in the dataset (each point is a column in H) in the space spanned by the first three basis

functions, w!1 (“fragrant”/“floral”), w!2 (“woody, resinous”/“musty, earthy”), and w!3 (“fruity, other than citrus”/“sweet”). Black, red, and blue points are

those with their largest hidden coefficient corresponding to the first, second, and third basis function, respectively. Gray points are all remaining odors.

Adapted with permission from [48].

https://doi.org/10.1371/journal.pcbi.1006908.g007
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V1, neurons in primate areas 3b and 1 of S1 act like Gabor filters for tactile orientation [96,

97]. The same is true for rat barrel cortex [98]. Third, similar to visual area MT, primate S1

contains a subpopulation of neurons that can infer the direction of tactile motion from a spa-

tiotemporal pattern of activation across a 2D sensory sheet (i.e., the skin) [99]. Specifically,

neurons in area 1 of S1 tend to respond to plaid textures in the same fashion that MT neurons

respond to visual plaids [99]. These findings suggest that much of what can be said about

sparse and parts-based information processing in visual cortex also applies to S1.

One NSC-like model that has enjoyed success in explaining complex S1 rodent response

properties is the rectified latent variable model (RLVM), a combination of nonlinear

dimensionality reduction with nonnegativity constraints. In an effort to elucidate the stimulus

dimensions that individual S1 neurons respond to, Whiteway and Butts [100] applied RLVM

to a two-photon imaging dataset of hundreds of simultaneously recorded neurons in mouse

barrel cortex while the animal was performing a tactile discrimination task. Interestingly, they

found basis functions that properly identified individual neurons. Similar to the recorded neu-

ronal responses, these basis functions were closely related to both the tactile stimulation as well

as nonstimulus aspects of the behavioral task. Furthermore, RLVM achieved a lower recon-

struction error than other linear dimensionality reduction techniques such as principal com-

ponent analysis (PCA), thus highlighting the benefit of using NMF-based decompositions

over PCA to explain neural data.

However, NSC has not been observed in nonhuman primate somatosensory cortex. Tactile

information from various submodalities converges at later stages of monkey S1 [101, 102] and

is multiplexed across different time scales using both rate and spike timing codes [103]. These

regions might represent different stages in the processing pipeline leading to form and texture

perception [104]. Primate area 2 of S1 is known to integrate both tactile and proprioceptive sti-

muli; for example, some neurons respond only to active reaching movements, some respond

only to passive movements (e.g., unexpected perturbations to the hand that generate passive

limb displacements), and others respond to both [105]. These complex response properties

may argue against a sparse and parts-based code in area 2.

Taken together, neurons in early somatosensory cortex respond to a small number of stim-

ulus dimensions, not unlike to sensory neurons in early visual and auditory cortex. However,

current evidence argues against NSC in higher areas of somatosensory cortex. The parallels to

the visual system are striking though: area 1, which resembles visual area MT by showing

Gabor-like responses to tactile motion, feeds into area 2, which resembles visual area MSTd by

showing intermingling of responses to tactile and proprioceptive stimuli (analogous to inter-

mingling of visual and vestibular stimuli in MSTd). It is therefore not unthinkable that an

NSC-like model that operates on neuronal inputs to area 2—constructed analogous to [46]—

could reproduce some of these response properties. However, until the neuronal mechanisms

underlying these complex response properties are better understood, one would have to con-

clude that NSC might not apply to later stages of somatosensory cortex.

NSC in the retrosplenial cortex

In our own work, we found evidence that NSC can explain response properties in RSC, an

area important for navigation and spatial memory [106–108]. Neurons in the RSC conjunc-

tively encode multiple variables related to the environment and one’s position and movement

within it (e.g., position, head direction, linear velocity, and angular velocity), allowing the

representation of spatial features of the environment with respect to multiple reference frames

[109].
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Using a similar methodology to [46], we applied NMF, with a sparsity constraint, to param-

eterized behavioral variables extracted from electrophyisiological recordings of RSC neurons

in the rat [109] while the animal ran back and forth on a W-shaped track (for experimental

details, see Supporting information). We found a sparse and parts-based representation for

behaviorally relevant variables such as the animal’s position, head direction, and movement

direction (Fig 4C). Interestingly, model RSC neurons encoded these variables with respect to

multiple frames of reference (e.g., head direction: allocentric reference frame, linear velocity:

route-based reference frame). The dimensionality of the stimulus space was drastically

reduced from F = 417 input neurons to a set of B = 30 model RSC neurons.

The basis functions recovered by NMF were then used to generate simulated responses of

model RSC neurons according to Eq 4, and the simulated responses were compared with neu-

ronal responses from the electrophysiological recordings. Interestingly, simulated neuronal

activity could be classified into three broad categories, with remarkably similar population sta-

tistics to rat RSC: (1) responding to left and right turns on a specific position along the route,

(2) responding to left and right turns regardless of the position along the route, and (3) exhibit-

ing complex and robust firing patterns without turn sensitivity (see Fig 8A and 8B as well as

Supporting information).

Taken together, this study suggests that neuronal population activity in RSC is consistent

with NSC. This is an example that NSC can apply outside sensory cortex, even where responses

have not traditionally been considered sparse or parts based.

Reinforcement-driven NSC in the basal ganglia

There is computational evidence for a reward-driven variant of NSC in the basal ganglia, a

cluster of deep forebrain nuclei that are involved in the processing of motor, associative, and

limbic information (for recent reviews, see [3, 110]). The basal ganglia network may be viewed

as multiple parallel loops where cortical and subcortical projections interact with internal reen-

tral loops, forming a complex network ideally designed for selecting and inhibiting simulta-

neously occurring events and signals (for a recent review, see [111]). To achieve this function,

the basal ganglia connect most cortical areas to the frontal cortex through a series of conver-

gent and sparsely connected pathways [112], in which signals from tens of millions of cortical

neurons are projected onto a 10–10,000-fold smaller population of neurons in different subnu-

clei of the basal ganglia [3]. Similar to the convergence of 100 million photoreceptors onto 1

million optic nerve fibers in the retina, these highly convergent pathways from cortex to the

basal ganglia suggest a potential role for dimensionality reduction.

One possible model, termed the reinforcement-driven dimensionality reduction (RDDR)

model, suggests that dimensionality reduction in the cortico-basal ganglia pathway is achieved

via a combination of Hebbian and anti-Hebbian learning rules that are implemented by feed-

forward excitatory and lateral inhibitory connections [3, 49]. These learning rules control the

strength of synaptic weights in the network by altering the weight of a given synapse in propor-

tion to the correlation between the firing rates of its presynaptic and postsynaptic neurons. In

Hebbian learning, synaptic weights are strengthened given a positive correlation (leading to a

phenomenon referred to as long-term potentiation [LTP]), whereas synaptic weights are

depressed if the firing rate correlation is negative (leading to long-term depression [LTD]). On

the other hand, in anti-Hebbian learning, which is typically applied to inhibitory connections,

correlated activities are subjected to LTD, and uncorrelated activities are subjected to LTP. In

order to implement dopamine-modulated Hebbian learning in this model, a reinforcement

signal was used to dictate the level of dopamine in the circuit (1 for reward-related events, 0

for the absence of reward-related events, and negative values to simulate dopamine depletion)
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[49]. The value of the reinforcement signal then determined the sign and magnitude of each

synaptic weight change.

In the RDDR model, a reinforcement signal corresponding to dopamine modulates the

Hebbian learning rule of the feedforward projections, allowing the network to learn to extract

Fig 8. Comparison between experimental data and two computational models of rat RSC suggest a functional similarity between STDPH and NMF. Rats used two

turn sequences (inbound: LRL; outbound: RLR) to traverse a W-shaped track located at two different allocentric locations (α, β). (A) Experimental data from [109]. (B)

Simulated using NMF with sparsity constraints. (C) Simulated by evolving STDPH parameters to fit experimental data [127, 128]. Left column: Functional neuron type

distributions. Right column: Location prediction errors. The prediction error is based on how well the neuronal population response can predict the rat’s location on the

maze. For details, see [50, 109]. Prediction error when comparing even and odd trials on the same maze in the same location in the room (prefix α or β) was much

smaller than when the same maze was in different locations (prefix αβ; Kruskal-Wallis and Tukey’s range test, ��� = p<0.001), demonstrating that the network can

distinguish similar routes that occur in different allocentric positions. For details see Supporting information. LRL, left-right-left; NMF, nonnegative matrix

factorization; RLR, right-left-right; RSC, retrosplenial cortex; STDPH, spike-timing–dependent plasticity and homeostatic synaptic scaling.

https://doi.org/10.1371/journal.pcbi.1006908.g008
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input dimensions that are associated with reward activity while suppressing behaviorally irrel-

evant input dimensions. Whereas the original RDDR model was a neural network–based

model for performing PCA [49], later iterations incorporated nonnegativity constraints on the

connection weights that effectively transformed the model into an NMF variant [3]. The

model predicted that these lateral connections facilitated learning by shaping correlations

between neurons in the corticostriatal projections using dopamine-modulated LTP and LTD,

which has yet to be experimentally validated.

In addition to suggesting a role for lateral connectivity in the basal ganglia, the RDDR

model also advanced understanding of basal ganglia dysfunction in movement-related disor-

ders such as Parkinson’s and Huntington’s disease. Previous studies had indicated that lesions

to functionally healthy basal ganglia had minimal impact on behavior. Bar-Gad and colleagues

[49] then suggested that this was an expected finding because of the network’s ability to reorga-

nize connections, whereas abnormal dopamine levels should significantly alter the reinforce-

ment signal that controls the model’s ability to discriminate behaviorally relevant input signals

(as in Parkinson disease). Accordingly, restoration of background dopamine levels via dopa-

mine replacement therapy alleviates the symptoms, consistent with results of dopamine deple-

tion and restoration in the model.

In summary, NSC is a prime candidate to allow the basal ganglia to compress information

in the cortico-basal ganglia pathway and extract input dimensions that are associated with

reward activity. However, the complexity of the basal ganglia network has so far prohibited a

deep scientific understanding of the multifaceted neural computations it performs.

Discussion

NSC in the brain

We reviewed compelling evidence that a wide range of neuronal responses can be understood

as an emergent property of efficient coding due to dimensionality reduction and sparsity con-

straints. In particular, NSC might be employed by sensory areas to efficiently encode external

stimulus spaces, by some associative areas to conjunctively represent multiple behaviorally rel-

evant variables, and possibly by the basal ganglia to coordinate movement.

NSC is tightly connected to a number of unsupervised learning techniques, such as NMF (a

popular tool for high-dimensional data analysis [113]), k-means clustering (an algorithm used

to partition n observations into k clusters [114]), and independent component analysis (ICA)

(a computational method for separating a multivariate signal into additive, statistically inde-

pendent subcomponents). Both NMF and ICA are capable of decomposing high-dimensional

data into parts-based representations—in contrast to PCA, which usually results in holistic

representations [13]. As originally noted by Hoyer [42], if the fixed-norm constraint is placed

on the rows of H instead of the columns of W, Eq 3 can be directly interpreted as the joint log-

posterior of the basis functions and hidden components in the noisy ICA model [64].

Similarly, NSC is closely related to compressed sensing (for a recent review, see [115]), and

a recent study has even suggested to combine the two [116]. Compressed sensing posits that

neurons might implement dimensionality reduction by randomly projecting patterns of activ-

ity into a lower-dimensional space—namely, by synaptically mapping N upstream neurons to

a downstream region containing M<N neurons. Analogously, compressed sensing supports

dimensionality expansion by projecting into a larger downstream area [115]. The theory of

compressed sensing then provides the mathematical tools to reconstruct the original space

from the random projections.

NSC, ICA, and compressed sensing often make similar predictions that only slightly differ

in the nature of the basis function representation necessary to achieve optimal reconstruction
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(for details, please refer to the Discussion of [115]). For example, whereas ICA emphasizes the

statistical independence of unmixed sources, and compressed sensing requires basis function

to be “maximally incoherent”[115], NSC does not make any such assumptions as long as the

basis functions are nonnegative.

Potential neural mechanisms. To operate efficiently, it has been suggested that the brain

might enforce geometrical and biophysical constraints on axonal wiring [117]. In addition to

reducing overall wiring length [118], the brain might also aim to minimize local delays by

favoring a high degree of local connectivity [119]. If connectivity reflects coding [120], it

would not be surprising to find that such ecological considerations carry over into brain func-

tion, favoring sparse population codes and neuronal representations that are local in func-

tional space (i.e., parts-based). However, wiring cost is likely to be only one of many

constraints on the brain connectome, perhaps supplementing competitive pressures for hub-

mediated information exchange between network modules [121].

In addition, evidence suggests that Hebbian-like synaptic plasticity rules allow neurons to

perform statistical inference on their inputs [47, 122–124]. One particular study demonstrated

through a mathematical proof that a certain form of spike-timing–dependent plasticity

(STDP) in combination with homeostatic synaptic scaling (i.e., STDP and homeostatic synap-

tic scaling [STDPH]) can approximate the NMF algorithm [123]. Similar to Oja’s rule [124],

which was developed to stabilize rate-based Hebbian learning (effectively resulting in PCA),

Carlson and colleagues showed that synaptic scaling acts as a homeostatic mechanism to stabi-

lize STDP (effectively resulting in NMF). Interestingly, we were able to apply these ideas to

electrophysiologically recorded neuronal activity observed in the RSC of rats during a spatial

navigation task (Fig 8; for experimental details, see Supporting information). Both STDPH

and NMF were able to recover key features such as encoding spatial reference frames (i.e., allo-

centric and route-centric firing patterns) and position discrimination by reducing the

dimensionality of behavioral variables (e.g., velocity, head direction, position). The neuronal

and population responses from NMF and STDPH were comparable to the experimental find-

ings [109]. Furthermore, the STDPH model contained a highly flexible and generalizable code

that could automatically encode new routes through the same environment without retraining

[50].

However, more research is needed to elucidate any potential connection between NSC and

the many different synaptic plasticity rules commonly found across brain regions, different

stages in the life of an animal, and animal species (e.g., [125, 126]).

Model limitations. Although NSC has proved useful in understanding a variety of neuro-

nal responses as an emergent property of efficient population coding based on dimensionality

reduction and sparse coding, it is clear that it does not apply to everywhere in the brain. In this

section, we discuss some of the limitations to this theory.

First, there is increasing evidence that several motor variables are encoded throughout the

brain, including early sensory areas [39, 129–131]. For example, in the mouse, running modu-

lates the gain of visual inputs [132, 133] and is critical for integration of visual motion [134,

135]. A potential explanation for these widespread effects is that certain movements reflect

changes in the animal’s internal state, such as increased arousal during running [133]. Interest-

ingly, these results were not specific to visual cortex but were seen across wide regions of the

mouse forebrain, suggesting that neuronal activity in these areas is more than just an efficient

encoding of sensory stimuli.

Second, a practical limitation of dimensionality analyses in general is that the apparent

dimensionality of the population response changes systematically with the complexity of the

input space [8, 72, 136]. For practical purposes, simulated models of neuronal circuitry are typ-

ically built with far fewer units than the number of neurons in the real network. By excluding
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input dimensions that are present in the brain, one will implicitly guide the simulated model

away from spurious interactions that the real circuitry would have to handle. As a result, the

simulated model might underestimate the true complexity of the task. Rather than trying to

put an absolute number to the dimensionality of neuronal population activity in a given brain

area, one should instead systematically vary the input to said brain area and ask whether the

outputs of dimensionality reduction change in a sensible manner [72].

Third, part of the confusion about the role of sparse coding in the brain may arise from the

wide variety of definitions of sparsity used in the literature [8, 38]: sparse population activity

does not necessarily imply a sparse-coding scheme. In its widest possible theoretical sense, a

neuron population exhibits sparse activity if the average activation ratio remains below 50%

for binary neurons or below 100% for thresholded, rate-based neurons [8]. However, it is not

surprising that different brain areas might employ different degrees of sparsity. For example, a

network of “grandmother” cells might be able to implement a maximally sparse code, but it

would have to do so by sacrificing representational capacity (as in Fig 1) and fault tolerance

(i.e., the capacity to handle neuronal noise or the loss of a subset of neurons) [5, 8]. Instead,

some brain areas might prefer to operate at a degree of sparsity that still allows for some level

of robustness or adaptability. It is conceivable that this “point of operation” might depend on

the complexity of the stimulus to be encoded or the task to be performed—for example, favor-

ing an extremely sparse code in V1 [35] but giving rise to a slightly denser code with greater

representational capacity in higher-order visual areas such as MSTd, which could lead to com-

pact and multifaceted encodings of various perceptual variables (see Discussion in [46]).

Furthermore, NSC does not apply to many regions of the brain, especially when the role of

the brain area is to cause behavior. Two prominent examples in which NSC has not been

observed are the prefrontal cortex (PFC) and motor cortex. For one, studies indicate that the

population code in these regions may be quite dense (as in Fig 1A). For another, dimensional-

ity reduction studies in these regions suggest that individually neurons typically encode multi-

ple task-related signals at once, such as the animal’s upcoming choice, state, and the strength

of sensory evidence [14, 15, 137–140]. Whereas feedforward neural networks are better predic-

tors of neuronal processing in early sensory areas, it is interesting to note that motor activity

seems to be well represented by recurrent neural networks [141] as well as models based on

random projection theory [142].

There is increasing evidence that responses in the primary motor cortex (M1) are neither

sparse nor parts based [137, 138, 143–146]. Instead, M1 neurons tend to be active during most

movements [145], and response patterns of individual neurons rarely match those of individ-

ual muscles [138, 144]. In addition, M1 neurons show temporally complex patterns of activity

leading to high-dimensional population activity [138], as measured by PCA during a reaching

task. These findings might be due to the role of the motor system, which is to cause behavior

rather than represent features. Motor cortex can be understood as part of a larger dynamical

system spanning many areas, including the spinal cord, and incorporating sensory feedback

(for a recent review, see [146]). In this view, correlations between activity and movement

parameters need not represent anything so long as the right patterns of activity are created at

the level of the spinal cord [147–149].

Potential for NSC in other brain regions

There are several nonsensory areas that may demonstrate NSC. In this section we point to evi-

dence that suggests this is the case but also discuss how sparse activity in these regions differs

from NSC in sensory systems. We suggest that further studies should be carried out to assess

the potential for NSC in these regions.
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Hippocampus. There are aspects of the hippocampus that are comparable to the ideas of

NSC proposed here. For example, the dentate gyrus is often associated with sparse activity

[150–152]. The expansion from a dense, enthorhinal cortex coding to sparse dentate gyrus

activity suggested a mechanism of pattern separation [153, 154]. Since these early theories,

accumulating evidence has supported the role of the dentate gyrus in pattern separation [150,

152, 155]. However, the dentate gyrus projects to a highly recurrent CA3 region, which does

not appear to be sparse or reduce dimensionality. Rather, the CA3 region has a role in pattern

completion through autoassociation [153, 154, 156]. Another feature of hippocampal process-

ing that is related to NSC may be the place cell itself. Sparsity has long been used as a metric

for place cell quality [157]. A place cell is said to be sparse if it fires in a small region of the envi-

ronment, and this is related to how much spatial information that cell encodes. In a sense,

each place cell can be thought of as a "part" of the environment, and these parts cover the entire

environment. Although this evidence points to sparse, parts-based, and reduced coding in

some hippocampal regions, it does differ from the NSC representations in sensory areas. That

is, sparse coding as defined previously for sensory areas is not necessarily the same as sparsity

or as sparse activity leading to pattern separation. Still, it would be of interest to apply NSC to

the hippocampal inputs, similar to the methods applied to RSC during a spatial navigation task

[50], to see if sparse, reduced basis functions emerge in other regions.

Parietal cortex. Analogous to our modeling work in MSTd [46], it might be possible to

apply NSC to other areas of the posterior parietal cortex that are involved in multisensory

heading perception. Areas such as the ventral intraparietal (VIP) area and the visual posterior

sylvian (VPS) area are also known to respond to optic flow, but they increasingly respond to

inertial vestibular stimulation as well [158]. Although the degree of sparsity of the population

code in VIP and VPS is not known, the fact that neurons in these areas respond to mixtures of

visual and vestibular heading cues make them prime examples to be examined with an NSC-

based modeling approach.

Elsewhere in parietal cortex, single neurons act as basis functions to represent the spatial

configuration of objects with respect to multiple reference frames (e.g., by transforming eye-

centered to body-centered coordinates) [18, 159, 160]. This is similar to the integration of mul-

timodal heading cues mentioned previously, as well as to other associative areas such as RSC,

which demonstrates conjunctive coding of various spatial navigation cues [50, 109]. There is

further evidence that actions are represented in parietal cortex with respect to arbitrary and

abstract reference frames, such as with respect to a planned route through an environment

[161]. From a theoretical standpoint, NSC seems a good candidate to find an efficient, refer-

ence frame–agnostic representation of various behaviorally relevant variables [27, 45, 162,

163], but future studies will have to address these issues step by step.

Future directions

In addition to the areas highlighted previously, the essential components of NSC might be

present in other brain regions not traditionally associated with the efficient encoding of infor-

mation. We offer three testable predictions of this theory:

First, we suggest that a variety of neuronal response properties can be understood as an

emergent property of efficient population coding based on dimensionality reduction. Depend-

ing on input stimulus and task complexity, we expect the dimensionality of the population

code to be adjusted according to the bias–variance dilemma (Fig 3). This point of operation

might differ across brain areas—for example, favoring neurons that respond to a small number

of stimulus dimensions in V1 [35] but giving rise to mixed selectivity in higher-order brain

areas such as MSTd [46] and RSC [50, 164].
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Second, we predict that parts-based representations can explain RFs of neurons in a variety

of sensory and associative cortices, including but not limited to those brain areas discussed

here. In agreement with the literature on basis function representations [18, 159, 160], we

expect parts-based representations to be prevalent in regions where neurons exhibit a range of

tuning behaviors [46], display mixed selectivity [165, 166], or encode information in multiple

reference frames [50, 109, 164].

Third, where such representations occur, we expect the resulting neuronal population activ-

ity to be relatively sparse in order to encode information both accurately and efficiently. As

noted previously, sparse codes offer a trade-off between dense codes (in which every neuron is

involved in every context, leading to great memory capacity but suffering from cross talk

among neurons) and local codes (in which there is no interference but also no capacity for

generalization).

Conclusion

In conclusion, there is increasing evidence that NSC can account for neuronal response prop-

erties in a number of sensory and associative cortices, as well as subcortical areas such as the

basal ganglia. Although NSC might not apply to all brain areas—for example, motor or execu-

tive function areas—the success of NSC-based models, especially in sensory areas, warrants

further investigation for neural correlates in other regions.

Data availability

The software used to generate some of the data presented in Figs 1B, 2 and 6A is archived on

Zenodo (10.5281/zenodo.2641351). The latest version is available on GitHub: https://github.

com/mbeyeler/2019-nonnegative-sparse-coding.

Glossary

• Allocentric reference frame. A spatial frame of reference that is defined with respect to a

broader environment (e.g., one’s location on a map). Hippocampal place cells are a textbook

example of neurons that are anchored to an allocentric reference frame

• Basis functions. A lower-dimensional set of linearly independent elements that can repre-

sent a high-dimensional input space given a weighted sum of these elements, in which the

weight of each element is defined by a separate hidden component. For example, according

to Fourier analysis, sine and cosine are basis functions for the space of all continuous peri-

odic functions.

• Dimensionality reduction. The process of reducing the dimensionality of a space to the

lowest possible space that encapsulates the variance of the original data via feature extraction.

In the case of neuronal firing rate patterns, this means representing all possible firing rate

patterns in the brain region using the smallest possible subset of the neurons

• Efficient coding. A theoretical model of sensory coding in the brain based on information

theory [24–26]. The efficient coding hypothesis posits that sensory pathways can be under-

stood as communication channels in which neuronal spiking aims to maximize available

channel capacity by minimizing the redundancy between representational units

• Holistic representation. Representation of a stimulus space that does not rely on explicit

representations of stimulus component parts. For example, a house might be represented by

the visual system as a set of house “templates.” Although visual information from individual
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house components (e.g., front door, windows, roof, etc.) would of course be included in the

house representation, that information would be not be contained in representational pack-

ets corresponding to the parse of the house into these features. Instead, houses would be rec-

ognized “all of a piece.

• ICA. A computational method for decomposing multivariate data into additive components

by assuming that the components are non-Gaussian signals and statistically independent

from each other. Independent components differ from decorrelated components by the fact

that the minimization includes higher-order and not only second-order statistics. A simple

application of ICA is the “cocktail party problem,” in which the underlying speech signals

are separated from a sample data consisting of people talking simultaneously in a room

• NMF. A computational method for decomposing multivariate data into additive compo-

nents by constraining the components to be nonnegative. This constraint results in a parts-

based representation because it only allows additive and not subtractive combinations of

subcomponents

• Parts-based representation. Representation of a stimulus space in terms of explicit repre-

sentations of stimulus component parts. For example, a house might be decomposed by the

visual system into a set of doors, windows, a roof, etc. The resulting representation of the

house would consist of representations of these parts, somehow linked together

• PCA. A computational method for decomposing multivariate data into linearly uncorrelated

components. PCA identifies an ordered set of orthogonal directions that captures the great-

est variance in the data [14]

• Representational capacity. The number of recognizably different patterns of neuronal activ-

ity that a population of neurons can generate in a useful time interval [167]

• Route-centric reference frame. A spatial frame of reference that is defined with respect to a

planned path through a broader environment. For example, neurons in some parts of the

brain fire for a particular location in a route, even if the route is repositioned or reoriented

in the broader environment [161]

• Sparse coding. A population coding scheme in which activity is represented by the strong

activation of a relatively small set of neurons. Sparse coding can be described as a trade-off

between the benefits and drawbacks of dense and local codes [5]

• STDP. A Hebbian-inspired learning rule in which weight updates are computed based on

the precise spike times of pre- and postsynaptic neurons that induce either LTP or LTD in

the synapse, depending on whether the total presynaptic spike count preceded the total post-

synaptic spike count, integrated over a critical temporal window

Supporting information

S1 Supplemental Information. Experimental details: Dimensionality reduction in RSC.

RSC, retrosplenial cortex.

(PDF)

S1 Fig. SNN architecture used in the RSC experiment. The SNN had four input groups and a

total of 417 excitatory input neurons (390 neurons for position, eight for head direction, 12 for

linear velocity, and seven for angular velocity). There were a total of 600 output Izhikevich

neurons, of which 80% (480) were excitatory neurons and 20% (120) were inhibitory neurons.
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Network connectivity was set at 10% probability across all connections (inp! inh, inp! exc,

inh! exc, and exc$ exc), and each connection type was governed by its own STDPH curve

(excitatory STDP on the inp! exc, inh! exc, and exc$ exc connections and inhibitory

STDP on the inp! inh connections). exc, excitatory; inh, inhibitory; inp: input; RSC, retro-

splenial cortex; SNN, spiking neural network; STDPH, spike-timing–dependent plasticity with

homeostatic synaptic scaling.

(PDF)
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López-Ibáñez M, Ochoa G, Paechter B, editors. Parallel Problem Solving from Nature–PPSN XIV:

14th International Conference, Edinburgh, UK, September 17–21, 2016, Proceedings. New York:

Springer International Publishing; 2016. p. 537–547.

165. Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Current opinion

in neurobiology. 2016; 37:66–74. https://doi.org/10.1016/j.conb.2016.01.010 PMID: 26851755

166. Eichenbaum H. Barlow versus Hebb: When is it time to abandon the notion of feature detectors and

adopt the cell assembly as the unit of cognition? Neuroscience Letters. 2017; 680:88–93. https://doi.

org/10.1016/j.neulet.2017.04.006 PMID: 28389238

167. Laughlin SB. Energy as a constraint on the coding and processing of sensory information. Current

Opinion in Neurobiology. 2001; 11:475–480. PMID: 11502395

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006908 June 27, 2019 33 / 33

https://doi.org/10.1016/j.nlm.2015.10.008
https://doi.org/10.1016/j.nlm.2015.10.008
http://www.ncbi.nlm.nih.gov/pubmed/26514299
https://doi.org/10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
http://www.ncbi.nlm.nih.gov/pubmed/8797016
https://doi.org/10.1523/JNEUROSCI.1266-11.2011
https://doi.org/10.1523/JNEUROSCI.1266-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21832191
https://doi.org/10.1016/j.nlm.2008.08.007
https://doi.org/10.1016/j.nlm.2008.08.007
http://www.ncbi.nlm.nih.gov/pubmed/18804545
https://doi.org/10.1016/j.cobeha.2015.08.008
https://doi.org/10.1016/j.cobeha.2015.08.008
http://www.ncbi.nlm.nih.gov/pubmed/26722666
https://doi.org/10.1016/j.conb.2016.01.010
http://www.ncbi.nlm.nih.gov/pubmed/26851755
https://doi.org/10.1016/j.neulet.2017.04.006
https://doi.org/10.1016/j.neulet.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28389238
http://www.ncbi.nlm.nih.gov/pubmed/11502395
https://doi.org/10.1371/journal.pcbi.1006908

