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Abstract—Neuromorphic systems are typically designed
as a tile-based architecture where inter-tile data commu-
nication is facilitated using a shared global interconnect.
Congestion on this interconnect can increase both inter-
connect energy, which increases the total energy consump-
tion of the hardware and latency, which impacts the per-
formance e.g., accuracy of the application that is being
executed on the hardware. Mesh-based Network-on-Chip
(NoC) that is used in most hardware prototypes is not the
optimal interconnect solution for neuromorphic systems.
This is because of the following two reasons. First, power
consumption and average latency of a NoC increases expo-
nentially with the number of tiles in the hardware. Second,
a NoC cannot exploit an application’s data communication
pattern efficiently. Once designed for a target hardware,
the bandwidth on each NoC link stays the same, inde-
pendent of the volume of data traffic between different
tile pairs of the NoC. In other words, a NoC cannot be
customized at a finer granularity based on an individual
application running on the hardware. We show that these
NoC limitations prevent opportunities to further improve
energy and latency of a neuromorphic hardware. To ad-
dress these limitations, we propose Dynamic Segmented
Bus (SB) interconnect for neuromorphic systems. Here, a
bus lane is partitioned into segments with each segment
connecting a few tiles. Connection of tiles to segments and
those between segments are bridged using our novel three-
way segmentation switches that are programmed using the
software before admitting an application to the hardware.
We partition an application by analyzing its workload and
place partitions intelligently onto segments. This exploits
application characteristics to use the segments without
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any routing collisions while exploiting the latency and en-
ergy savings in the design-time mapping phase. At a high-
level, our mapping algorithm places tiles that communicate
the most on shorter segments utilizing fewer number of
switches, thereby reducing network congestion. It can ad-
just the bandwidth by controlling the number of segments
connected to a destination tile. At run time, our controller
dynamically executes the predefined routing paths without
requiring any additionally routing decisions, unlike a NoC.
This allows us to improve both energy and latency. Using
parallel segmented busses, our proposed interconnect ar-
chitecture can support a large number of tiles without sig-
nificantly increasing the design cost, energy, and latency.
Simulation results show that compared to the most widely-
used mesh-based NoC design, our interconnect architec-
ture, which we call NeuSB, reduces the switch area by 20x,
average interconnect energy by 6.2x, and latency by 23%.

Index Terms—Segmented bus, neuromorphic, spiking
neural networks, network-on-chip (NoC), non-volatile mem-
ory (NVM).

I. INTRODUCTION

HARDWARE implementation of neuromorphic computing
has shown significant promise to fuel the growth of ma-

chine learning [1], thanks to the low-power design of under-
lying computing circuitries [2], distributed implementation of
computing and storage [3], and novel technology integration in
the form of Non-Volatile Memories (NVMs) [4]. The aim is to
build architectures that can execute machine learning applica-
tions designed using Spiking Neural Networks (SNNs). These
are the third and more bio-inspired generation of neural net-
works [5], implemented as neuromorphic computing platforms
that are inherently memory-centric, and which critically rely on
in-memory compute and in-place synaptic storage. Unlike an
artificial neural network (e.g., a convolutional neural network)
where neural units communicate using tensors, communication
between neurons in an SNN takes place via spikes. SNNs enable
powerful computations due to their spatio-temporal information
encoding capabilities [6].

To address scalability, neuromorphic systems are designed as
a tile-based architecture, where each tile consists of circuitries
to implement neurons and synapses. Typically, neurons and
synapses in each tile are organized in a two dimensional grid,
called crossbar [7]–[9]. Pre-synaptic neurons are implemented
along rows of a crossbar and post-synaptic neurons are placed
along columns. A memory cell is placed at the intersection of a
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Fig. 1. (a) A Network-on-Chip (NoC) with 9 tiles and 9 switches. These
switches are organized in a 3 × 3 mesh. (b) The detailed design of a
network switch with buffers and routing table (LUT). There are five ports
– east, west, north, south, and local. A tile is connected to the local port
of a switch, while the east, west, north, and south ports are used to
connect to other switches in the NoC.

row and a column. Synaptic weights are programmed on these
memory cells. A crossbar is not the only architecture to design
a neuromorphic tile. There are also other designs proposed in
literature such as the three layer μBrain architecture [10] and
the tightly-coupled logic and memory design of Loihi [11].

Since the late 1980 s, major efforts have been in designing
tile-based hardware platforms that can be deployed for inference.
Examples include TrueNorth [12], Loihi [11], DYNAPs [13],
and μBrain [10]. In all these systems, inter-tile data communica-
tion is facilitated using a Network-on-Chip (NoC) [14], which is
an onchip communication infrastructure comprising the physical
layer, the data link layer and the network layer of the Open
Systems Interconnection (OSI) protocol stack [15]. Even though
shared bus (e.g., AMBA [16]) has been the interconnect choice
for multi-/many-core system-on-chip (SoC) due to its simplicity,
it can lead to a high latency overhead to arbitrate the bus between
different system components. NoCs are now replacing shared
bus for modern SoCs that integrate a large number of system
components. [17]–[21].

Inside a NoC, tiles are connected to channels via switches,
which are organized as mesh (a Manhattan-like structure) [22].
Fig. 1(a) illustrates an example of a neuromorphic hardware with
9 tiles organized in a 3x3 mesh. Tiles (T) communicate with one
another by sending data packets that are routed through the mesh
network to reach their destinations. A network switch (S) buffers
data packets and facilitates their routing using a lookup table
(LUT), which is used to store the tile mapping information. We
illustrate the design of a switch in Fig. 1(b). With the exception
of the switches in the periphery, every other switch in the mesh is
connected to four other network switches in the east, west, north,
and south directions as shown in Fig. 1(a). A tile is connected
to a switch using the local port as shown in Fig. 1(b). Data
buffers and the LUT inside each switch are implemented using
SRAMs. They constitute a significant fraction of the total power
consumption of a NoC [23].

While a NoC eliminates the communication bottleneck intro-
duced by a shared bus, it is not the optimal interconnect solution
for neuromorphic systems for the following three reasons. First,

for scaled machine learning applications where the data traffic
(i.e., spikes) is high, the internal network contention in a NoC
may 1) introduce variable (and high) packet delays, leading to
inter-spike interval (ISI) distortion, and 2) reroute data packets,
leading to spike arrival disorder at the receiving tile. ISI distor-
tion and spike arrival disorder can lead to a significant loss of
accuracy (quality in general) of an SNN-based machine learning
application [24]–[26]. This is contrary to a shared bus, where the
bus latency is the fixed wire-speed once the arbiter has granted
control of the bus. However, the bus arbitration itself can become
the critical latency bottleneck due to the presence of multiple
masters, i.e., tiles that transmit data packets simultaneously on
the bus.

Second, a NoC introduces a significant energy and area over-
head due to 1) large buffers to store data packets and LUT to
store routing table inside each switch, and 2) relatively long
time-multiplexed connections that need to be near-continuously
powered up and down, reaching from the ports of data produc-
ers/consumers (inside a tile or between different tiles) up to the
ports of communication switches. The energy consumption in a
NoC increases exponentially with an increase in the size of the
mesh [27]–[29].

Third, once a NoC is designed for a neuromorphic hardware,
there remains a limited opportunity to customize it based on the
application executing on the hardware. Take for instance the data
communication bandwidth, which remains the same for every
link of a NoC. However, once an application is mapped to the
hardware, the data communication between different tile pairs
may vary based on the application characteristics. Therefore,
some NoC links may remain underutilized due to low data traffic,
while others may be bandwidth limited due to a high traffic
volume, which may increase the latency. Another limitation of a
NoC is its inability to manage power consumption at a granular
level. For instance, it is not possible to power-down links that
are unused by the application in order to save energy. This is
particularly important for neuromorphic computing due to the
following two reasons. First, communication energy constitute
a large fraction ( 40%–50%) of the overall energy consumption
as highlighted in many recent studies [30], [31]. Second, inter-
tile communications in neuromorphic computing are sparse and
therefore, full connectivity between the tiles is rarely exercised.

We propose a novel interconnect architecture for neuromor-
phic systems that leverages the simplicity of a shared bus yet
addressing the three bottlenecks of a NoC and also the bottleneck
associated with bus arbitration due to the presence of multiple
masters on the bus. Our proposed solution is the following. We
start with a bus lane consisting of multiple physical wires. We
partition the bus lane into slices using our novel segmentation
switches, which we describe in Section IV-C. Each switch has
three directions – east, west, and north; east and west directions
are reserved for interconnection with other switches on the bus
lane, while the north direction is connected to a tile (see Fig. 4).
Switches are controlled via the software. Slices can be combined
using the switches to form segments, where each segment can
have only one master tile and several slave tiles (see Fig. 4➊). In
this way, each bus lane can support several segments that can be
exercised in parallel and driven by their respective masters. Since
no segment arbitration is needed at run-time after mapping an

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 17,2024 at 21:31:06 UTC from IEEE Xplore.  Restrictions apply. 



BALAJI et al.: SCALABLE INTERCONNECT ARCHITECTURE FOR SPIKING NEUROMORPHIC HARDWARE 375

application to the hardware, the proposed segmented bus (SB)
design saves significantly on the data communication latency
and energy.

Following are our key contributions.
� We propose an application mapping (software) framework

that partitions an application into clusters, minimizing
the inter-cluster data communication. Clusters are then
placed to tiles that are connected using the proposed SB
interconnect.

� We design the segmented bus controller the uses the work-
load information to configure the segmentation switches
based on the application running on the hardware such
that each segment can have at most one master. Unused
segments and switches are powered down to save energy.

� We propose a novel segmentation switch design, which
eliminates the buffer and LUT of a NoC switche, thereby
significantly reducing the area, energy, and latency over-
heads.

� We extend the framework to support multiple parallel
segmented bus lanes to further increase the parallelism.
The proposed architecture can support a large number of
crossbars without significantly increasing the design cost,
energy, and latency.

We integrate our proposed segmented bus-based interconnect
architecture, which we call NeuSB, inside NeuroXplorer [32], a
cycle-accurate simulator of neuromorphic systems. Evaluations
with seven machine learning workloads show that compared to
the most widely-used mesh-based NoC design, NeuSB reduces
the switch area by 20x, average interconnect energy by 6.2x, and
latency by 23%.

The concept of segmented bus for neuromorphic hardware
was first introduced in our earlier works [10], [33], which focus
only on the data plane. Here, we introduce the control plane,
which is the core of NeuSB.

The remainder of the paper is organized as follows. A brief in-
troduction to SNNs and their performance analysis is presented
in Section II. The core concepts associated with segmented bus
is introduced using a motivating example in Section III. The
detailed design of segmented bus, including the mapping frame-
work, segmented bus controller, and the segmentation switch
design is presented in Section IV. Evaluation methodology is
presented in Section V. Results are presented in Section VI.
Related works are discussed in Section VII. Finally, the paper is
concluded in Section VIII.

II. BACKGROUND

SNNs are computation models designed using spiking neu-
rons and synapses. A neuron can be implemented using some
form of integrate and fire logic [34]. In an SNN, pre-synaptic
neurons communicate information encoded in spike trains to
post-synaptic neurons, via synapses. Performance, e.g., accu-
racy of an SNN model, is assessed in terms of the inter-spike
interval (ISI), which is defined as inverse of the mean firing rate
of the neurons.

On the hardware front, SNNs are implemented on NoC-based
neuromorphic hardware, which is illustrated in Fig. 1(a). Here,
each tile consists of a network interface (NI) to communicate

Fig. 2. Impact of ISI distortion on image smoothing application per-
formed using an SNN. (a) Output of the SNN with no ISI distortion.
(b) Output of the SNN with ISI distortion. The PSNR reduces due to
ISI distortion.

data packets to the switch. A data packet consists of the address
event representation (AER) of a spike generated from a neuron
inside the tile. Fig. 1(b) illustrates the internal architecture of
a switch. It has five ports (east, west, north, south, and local)
to send and receive data. The local port connects a switch to
the network interface of a tile. The three critical components of
interest are 1) buffer space associated with each port to store data
packets, 2) switch (crossbar) network to route data packets from
an incoming to an outgoing port based on the routing algorithm
and coordinates of destination tiles, and 3) a lookup table to store
the mapping of neurons to tiles.

These switch components introduce significant area, energy,
and latency overheads. We take the example of the LUT. To map
n neurons to m tiles, the LUT size needed is n× log2 M , where
n could be in the order of millions. Such a large LUT consumes
significant silicon area and power. It also takes a significant
amount of time to access its content, thereby increasing the
latency. In many recent designs such as DYNAPs and TrueNorth,
architects address the LUT limitation of switches by enabling
broadcast messages, where instead of routing incoming data
packets to a specific output port, each packet is broadcasted
on the NoC via all available ports. This eliminates the need for
storing the neuron mapping table inside the LUT. However, the
network traffic increases in this case.

Irrespective of the exact mechanism to route packets, a NoC
interconnect does not scale when an SNN application with high
data traffic is mapped to the hardware. This is because the
internal network contention of a NoC can lead to some spikes
encountering higher delays than others. This may lead to ISI
distortion and spike disorder, which can lead to a loss in appli-
cation quality. Fig. 2 shows this impact for image smoothing
application implemented using an SNN [35]. Fig. 2(a) shows
the output without ISI distortion. The peak signal-to-noise ration
(PSNR) is 20. Fig. 2(b) shows the output of the image smoothing
application with ISI distortion. The PSNR is 10. A reduction in
PSNR indicates a loss in quality of image smoothing.

Spike disorder can also critically impact the performance.
To illustrate this, Fig. 3 shows the impact of spike disorder.
The top sub-figure shows a scenario where an output spike
is not expected based on the spikes received from the three
input neurons. Bottom sub-figure shows a scenario where the
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Fig. 3. Impact of spike disorder at the receiving neuron.

receiving order of spikes is altered via the NoC. This may result
in a spike generation at the output. Extra spikes may result
in misinterpretation of results, which may impact application
quality.

III. A HIGH-LEVEL OVERVIEW OF THE PROPOSED SOLUTION

AND A MOTIVATING EXAMPLE

A. A High-Level Overview

The proposed segmented bus framework consists of two log-
ical abstractions – control plane and data plane.

Control Plane refers to functions and processes that determine
the paths to send and receive data packets between different tiles.
For a conventional NoC, the control plane is responsible for
populating the routing table in the LUT of each NoC switch
according to a given routing strategy. For the proposed seg-
mented bus, the system software is responsible for finding routes
at compile-time. Our solution for the control plane consists of
the following key steps.

� Partitioning a machine learning model into clusters by
analyzing its workload (Section IV-A).

� Mapping clusters to different tiles of the segmented bus
interconnect (Section IV-B).

� Configuring segmentation switches to facilitate data com-
munication between tiles (Section IV-C).

Data Plane refers functions and processes that forward data
packets from one switch to another based on the control plane
logic. For a conventional NoC, the routing table, forwarding
table and the routing logic in each switch constitute the data
plane function. For the proposed segmented bus, our novel
segmentation switch design (Section IV-C) constitute the data
plane.

B. A Motivating Example

Fig. 4 provides a high-level overview of how segmented bus
can be used to overcome the critical area, energy, and latency
limitations of a conventional shared bus and NoC. In ❶, a bus
lane is partitioned into 6 slices using the segmentation switches
(S1–S5). Tiles are connected to the bus lane using these switches.

Imagine mapping an SNN application represented as the clus-
tered graph shown in ❷. A cluster is a subset of the neurons
and synapses of a given SNN application. In Section IV-A, we
discuss how these clusters are generated from an SNN workload.

In ❷, there are 4 clusters (A, B, C, and D). Communication
between these clusters are indicated using arcs with the arrow
head pointing to the direction of communication. First, we
consider mapping of the four clusters and only the arcs shown
with solid lines to the segmented bus (later we consider the
dashed arcs). To do this mapping, we generate two segments out
of the bus lane by combining the slices. Segment 0 is formed
using slices 1 and 2 while segment 1 is formed using slice 3.
This is shown in ❸. To understand this behavior, we observe
that there are two masters in ❷– A, which communicate data to B
and C, and D, which communicate data to C. This is considering
only the solid arcs. Since there can be at most one master in any
bus segment, we form two segments – one connecting tiles that
map clusters A, B, and C, while the other one connecting tiles
that map clusters C and D. Correspondingly, ❸ also illustrates
the actual data communication subsequent to mapping the four
clusters to the hardware.

Imagine that the clustered SNN graph also includes the three
dashed arcs to communicate data from cluster B (master) to
clusters A, C, and D. These arcs cannot be mapped to the two
existing segments because each of these segments is already
assigned a master tile. Therefore, a second bus lane is introduced
and a segment is formed out of it connecting tiles that map
clusters A, B, C, and D, with the tile where B is mapped serving
as the master. This is illustrated in ❹.

Finally, in ❺, we illustrate how the switches are configured
in software to support data communication within the three
segments. The internal architecture of a segmentation switch
is introduced in Section IV-C. We note that some of the switch
directions (ports) are disabled when admitting an application.
This is because some slices of a bus lane may not be utilized by a
particular mapping of clusters to tiles. By disabling switch ports
through software we save energy as the unused slices are not
driven unnecessarily as is the case with a NoC interconnect. We
make the following four key observations that set the foundation
of NeuSB.

1) Segmented bus allows multiple masters to communicate
simultaneously on the same bus lane using different seg-
ments as shown in ❷. Here, tiles that map clusters A and
D are the masters. This is contrary to a shared bus, where
there can only be a single master at any given time.1

2) Communication patterns between clusters are analyzed
at compile time using representative workloads. These
patterns are then used to generate segments and map
clusters to these segments such that each segment can
have only one master. In this way, no run-time arbitration
of segments is necessary, which significantly reduces
energy and latency, compared to both a shared bus and
a NoC (see our evaluations in Section VI).

1The concept of segmented bus is explored in prior works in the context of
multi-/many-core systems [36]. Here, we optimize segmented bus design for
neuromorphic computing.
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Fig. 4. Illustration of the proposed segmented bus-based interconnect solution using a simple example. ❶ A bus lane partitioned into 6 slices.
❷ Slices joined to form segments. ❸ An SNN partitioned into four clusters. ❹ Mapping of clusters to tiles. ❺ Switch configurations to support the
inter-cluster communication.

3) The spike delay in a segmented bus is deterministic, and is
equal to the sum of wire and switch delays on a segment.
Therefore, there is a minimal ISI distortion. Moreover,
data packets are serially communicated from the master
tile on to a segment and therefore, there is no spike arrival
disorder at the receiving tile. Finally, communication on a
segmented bus is localized to a few segments, i.e., multi-
cast compared to broadcasting mechanism, which is used
in a shared bus and in some flavors of NoC. Multicasting
reduces network congestion. Moreover, the interconnect
energy is significantly reduced as not all tiles need to be
activated to receive data packets all times.

4) Switch ports in the proposed segmented bus interconnect
architectures are programmed during compile time before
admitting an application. This is performed using the
workload information by analyzing the communication
pattern between the tiles. In this way, unused switch ports
and bus slices are disabled to save energy.

C. Key Considerations and Future Directions

Following are the critical considerations and opportunities to
further improve energy and latency of NeuSB.

� The worst-case mapping scenario of NeuSB is the one
where each SNN cluster transmits spikes to all other
clusters. Since, NeuSB requires a separate segment for
each master, such worst-case condition may increase the
number of segments and bus lanes. However, we mitigate
this situation in the SNN partitioning step, where clusters
are generated from an SNN by minimizing the inter-cluster
spike communication (see Algorithm 1).

� NeuSB uses training data to first generate workload and
then use the workload to analyze connection pattern and
map clusters to tiles of the segmented bus. During in-
ference, new connection patterns may emerge. This is
particularly the case with on-chip learning, which is not the
primary focus of this work. Nevertheless, we can mitigate
such scenario by finding the best route from source to
destination tile at run-time via the segmentation switch
that connects the bus lanes themselves. This is left as a
future work.

Fig. 5. A segment formed using tiles A-E, spanning across multiple
bus lanes in the proposed segmented bus architecture. Here, bus lanes
are interconnected using lane switches, which are essentially the seg-
mentation switch that we present in Section IV-C.

� In NeuSB, a segment may span multiple bus lanes. In
this scenario, our mapping algorithm which we describe
in Section IV-B, enables the inter-lane switches. This is
illustrated in Fig. 5 where a segment is formed using tiles
A-E that span across three bus lanes. An inter-lane switch
is essentially our proposed bus segmentation switch which
we introduce in Section IV-C (see Fig. 8). The east, west,
and north ports of the switch are connected to bus lane
(i− 1), (i+ 1), and (i), respectively as shown in the
figure.

We now provide a detailed description of the segmented bus
architecture architecture.

IV. DETAILED DESIGN OF NEUSB

Our segmented bus design for neuromorphic hardware
(NeuSB) consists of five key components – application clus-
tering, segment generation, cluster mapping, switch design, and
port configuration. We now describe these components.

A. Application Clustering

A tile in a neuromorphic hardware accommodates a fixed
number of neurons and synapses. We take the example of
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Fig. 6. Example of partitioning an SNN application with 8 neurons (left)
into four clusters (right).

DYNAPs [13], where each tile can map a maximum of 128 input
and 128 output neurons, and 16,384 synapses. On the other hand,
each μBrain [10] tile can map 336 neurons and 17,408 synapses.
A typical SNN application can have many neurons and synapses,
well beyond the capacity of a single tile (see our evaluated SNN
applications in Table V). Therefore, an SNN application needs to
be partitioned, where each partition can then be mapped to a tile
of the hardware. We call each partition a cluster. Fig. 6 illustrates
the concept of partitioning. We start with an SNN (left) having
8 neurons (N1-8). Numbers on an edge between two neurons
represent the number of spikes communicated between them.
Using the proposed Hill Climbing-based clustering algorithm
(Algorithm 1), we partition this SNN into 4 clusters (C1-4).
Cluster C1 is formed with neurons N1 & N2, cluster C2 with
N3, N5, & N8, cluster C3 with N4 & N6, and cluster C4 with N7.
This is shown to the right of the figure. The number represented
on each inter-cluster edge represents the total number of spikes
generated from neurons inside the cluster.

Partitioning a large SNN application into clusters is essentially
a graph partitioning problem and has been studied extensively in
literature [37]. For non-trivial partitioning objectives (e.g., min
cut), this is an NP-hard problem and therefore, heuristics are
needed to solve this within a finite time bound. Recently, several
graph partitioning approaches are proposed for SNNs targeting
different optimization objectives. Examples include minimizing
the number of clusters [38]–[40], minimizing inter-cluster spike
communication [41], minimizing neuron and synapse circuit
aging [42] and improving synaptic memory endurance [43].
See [44] for a comprehensive overview. Our objective is to
reduce the number of channels between clusters. We introduce
following definitions to formulate the partitioning problem.

Definition 1. (SNN) An SNN application GSNN = (N,W )
is a directed graph consisting of a finite set N of neurons and a
finite set W of synapses between the neurons.

Definition 2. (SYNAPSE) A synapse wi,j is a tuple
〈ni, nj , si,j , ωi,j〉 consisting of the source neuron ni, the des-
tination neuron nj , the number of spikes (si,j) communicated
from ni to nj for a given workload, and the synaptic strength
(ωi,j) between neurons ni and nj .

Definition 3. (CLUSTERED SNN) A clustered SNN
GCSNN = (C,L) is a directed graph consisting of a finite setC
of clusters and a finite set L of links between the clusters. Each

cluster Ci ∈ C is a tuple 〈Ni,Wi〉, where Ni ⊆ N is the set of
neurons of the cluster and Wi ⊆ W is the set of synapses of the
cluster. Each link Li,j ∈ L is a channel connecting cluster Ci

with cluster Cj , where Ci, Cj ∈ C.
The partitioning problem is to perform the graph transforma-

tion of GSNN to GCSNN , i.e.,

f(Optimization Problem) = GSNN → GCSNN (1)

A link Li,j ∈ L represents a synaptic connectivity from a
neuron ns in the set Ni ∈ Ci to a neuron nd in the set Nj ∈ Cj .
If there is no such connectivity, then Li,j = ∅. The total number
of spikes on this link is

spike(Li,j) =
∑
s,d

ss,d | ns ∈ Ni and nd ∈ Nj (2)

Once clustering is completed, the total number of inter-cluster
spikes is given by

S (total spikes) =
∑

i,j∈{0,1,...,|C|}
spike(Li,j) | Ci, Cj ∈ C

(3)
We note that when clusters are mapped on to tiles, the

inter-cluster data communication is mapped to the interconnect
(shared bus, NoC, or segmented bus). Therefore, inter-cluster
communication is the major source of energy and latency in a
neuromorphic hardware. In fact, in our recent work [30] we have
shown that data communication energy can be as high as 70%
of the total energy consumption of a neuromorphic hardware.
Accordingly, we set our optimization objective to minimize the
total spikes S in (3).

Furthermore, since a cluster is to be placed on a tile of the
hardware, the constraint of the optimization process is that the
total number of neurons and synapses in each cluster must be less
than or equal to the corresponding constraints of the hardware,
i.e.,

|Ni| < NT and |Wi| < WT , for 〈Ni,Wi〉 ∈ Ci and ∀Ci ∈ C,
(4)

where NT and WT are the maximum number of neurons and
synapses that can mapped to a tile, respectively.

Therefore, the application clustering problem is

f : Minimize S
s.t. Equation 4 is satisfied (5)

To solve the application clustering problem, we use an itera-
tive algorithm that uses a Hill Climbing approach incorporating
the Kernighan-Lin (KL) graph partitioning algorithm [45]. A
conventional KL algorithm is a heuristic that partitions an undi-
rected graph into two disjoint subsets in a way that minimize
the total weights on all edges crossing one subset to another. We
extend this as follows. We represent our SNN as an undirected
graph where the neurons are the vertices and the synapses are
the edges of the graph. The weight of each edge is the number of
spikes communicated on that edge. We then iteratively partition
each subset using the KL algorithm to smaller subsets such
that each subset satisfies the hardware constraints ((4)). This
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Fig. 7. Illustration of segment generation (left) and mapping of clusters to the segments (right).

generates the starting solution, which our Hill Climbing heuristic
then improves upon.

Algorithm 1 provides the pseudo-code of our application
clustering algorithm.

It starts with the KL block (lines 1-2), which generates an
initial graph partitions using a modified KL algorithm. In the
Hill Climbing exploration stage, it performs trial swaps of
neurons from each pair (Ci, Cj ∈ C) of clusters (lines 4-16). In
particular, each neuron ns ∈ Ci is swapped with another neuron
nd ∈ Cj (line 5). A trial swap operation involves moving neuron
ns to cluster Cj and neuron nd to cluster Ci. For this trial swap,
the optimization objective is evaluated using (3) (line 7). A trial
swap that leads to the minimum reduction of the optimization
function is selected (line 11). In case of a tie, it selects a trial
swap randomly. Once a swap is finalized, it makes the swap
permanent by updating the clustering information (lines 12-15).
The heuristic then iterates through the steps for the next pair
of clusters. A pass in this heuristic consists of performing trial
swaps for every pair of clusters. If during a pass, the optimization
objective reduces, then another pass of the heuristic is performed
(lines 17-18). Otherwise, the heuristic is said to be stuck at
a local minimum. To come out of this local minimum, the
clustering is perturbed, which involves making a fixed number
of random swaps and restarting the iterative procedure (lines
19-21). Finally, the algorithm terminates after performing a fixed
number of random perturbations (line 3). This is controlled using
the user-defined parameter η, which is set empirically to 10.

Table V reports the number of clusters generated using our
clustering technique for all evaluated applications.

Time Complexity Analysis: The time complexity of Algo-
rithm 1 is computed as follows. TheKL block (line 1) complexity
is O(r · |N |3), where r is the number of passes and |N | is the
total number of neurons [46]. The time complexity of lines 3-23
is O(η · |N | · |C|2), where |C| is the total number of clusters.
The overall time complexity is

O(Alg 1) = O(r · |N |3) +O(η · |N | · |C|2) ≈ O(r · |N |3)
(6)

This is considering r ≈ η and |C| < |N |, i.e., the number of
clusters is less than the number of neurons.

B. Bus Segmentation and Cluster Mapping

Algorithm 2 provides the pseudo-code for segment generation
and cluster mapping step of our design flow. To explain this

Algorithm 1: Application Clustering Algorithm.

algorithm, we provide a simple illustration in Fig. 7. Consider
that the clustering step (Algorithm 1) generates 11 clusters as
illustrated in Fig. 7(a). We start by grouping these clusters (lines
2-9). The grouping algorithm works as follows. If a cluster has
an outgoing edge, we generate a group and assign the cluster
as the centroid of the group. All clusters that are connected to
an outgoing edge of the centroid are also added to the group
(lines 5-7). In Fig. 7(a) we generate 4 groups (G1-4) from 11
clusters. The centroids of these groups are cluster 0, 4, 6, and
10, respectively. Groups may overlap as shown in this figure.
For instance, groups G1 and G2 share clusters 3 and 4. We also
note that each group will have one and only one centroid. This is
essential to segmented bus implementation because every group
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Algorithm 2. Segment Generation and Merging.

needs a segment to communicate, with the centroid of the group
becoming the master of the segment. Therefore, by having only
one centroid, we enforce only one master of the segment.

Without any further optimization, each group can form a bus
segment and can be mapped to an individual bus lane. However,
this will significantly increase the number of bus lanes, which is
challenging for place and route. So, the next step of the algorithm
is to merge segments to bus lanes such that the architecture
has the minimum number of bus lanes needed to facilitate
data communication. To this end, we use a greedy approach as
follows. We start with the first group. Since there are no existing
bus lanes yet, we assign G1 to bus lane 1 (lines 12-14). This is
shown in Fig. 7(b). For all other groups, we check to see if the
group can be merged with another group on a bus lane (lines
16-22). If the group can be merged, then we assign the group to
the bus lane (lines 23-24). Otherwise, a new bus lane is created
and the group is assigned to this new bus lane (lines 25-28).

Time Complexity: The time complexity of this algorithm is
computed as follows. Lines 2-9 (the first for loop) iterates for
the number of clusters and therefore, has a time complexity
of O(|C|). For lines 11-30, the outer for loop iterates for the
number of clusters while the inner for loop (lines 17-22) iterates
for the number of bus lanes. Therefore, the time complexity is
O(|B| · |C|), where |B| is the number of bus lanes. The overall

time complexity is

O(Alg. 2) = O(|C|) +O(|B| · |C|) ≈ O(|B| · |C|) (7)

The criteria for merging is explained using the example of
Fig. 7. Referring to the groups in Fig. 7(a), we next consider
group G2. Since G2 shares more than one clusters with G1 and
one of the shared clusters (4) is the centroid of G2, we assign
the new bus lane 2 for G2. Therefore,

Criterion 1:Merge(Gj , Gi) iff |Gi ∩Gj | < 2&

centroid(Gj) /∈ Gi ∩Gj (8)

Next, we consider group G3. We note that G3 cannot be
merged with G2 because the shared cluster 6 is the centroid
of G3 (see criterion 1 in Eq. 8). However, groups G3 and G1
do not share any cluster. Therefore, G3 can be merged with
G1 on bus lane 1. This is illustrated in Fig. 7(b). Finally, G4
cannot be merged with G3 as it violates criterion 1. However,
G4 and G2 do not share any cluster and therefore, they can be
merged on bus lane 2. Therefore, the two bus lanes are sufficient
to allow communication between the 11 clusters of Fig. 7(a).
For simplicity, we have not show the switches on the bus lanes.
Table IV report the total number of bus lanes generated using
our segmentation and cluster mapping algorithm.

We note that for large SNN applications there may be many
clusters that are part of the same group. Therefore, merging
groups (segments) using Algorithm 2 may lead to longer bus
lanes, which can increase the spike delay on wires and switches.
Therefore, we introduce a second merging criterion.

Criterion 2: Merge(Gj , Gi)

iff
(∑

|bi|
)
+ |Gj | < Bs (9)

Here, Bs is the constraint on the number of segmentation
switches on each bus lane and |Gj | is the total number of clusters
of the group Gj . Observe that the total number of switches
needed in implementing a group on a segment is equal to the
number of clusters in the group. Furthermore, the number of bus
slices (see Fig. 4❶) is one more than the number of switches.
Therefore, setting a constraint on the number of switches per
bus lane sets a constraint on the length of the bus lane. In (9), bi
is the bus lane of group Gi, i.e., Gi ∈ bi. Once the group (and
clusters) are assigned to bus lanes, switch configurations are set
to enable the data communication. This is discussed next for our
proposed segmentation switch design.

C. Segmentation Switch Design

Fig. 8 illustrates the internal architecture of a segmentation
switch. There are three ports – north port (N), east port (E),
and west port (W). This switch architecture can be used to
connect a tile to a bus lane and also bridge multiple bus lanes.
For connecting a tile to a bus lane, the north port of the switch is
connected the tile, while the east and west ports are connected to
the bus lane, i.e., to other switches. We illustrate this in Fig. 9(a).
For bridging multiple bus lanes, the east, north, and west ports
are connected to bus lanes (i− 1), i, (i+ 1), respectively as
illustrated in Fig. 9(b).
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Fig. 8. Design of a segmentation switch with 6 inverters. The controller
is used to configure (enable/disable) these inverters. The inverter con-
figuration is loaded into this controller using the system software before
admitting an application. The configuration is generated during the bus
segmentation and cluster mapping step (Section IV-B). At run-time, the
switch operates using this pre-loaded configuration.

Fig. 9. Segmentation switch to connect a tile to a bus lane (a) and
bridging multiple bus lanes (b).

Internally, each switch port is connected to two IO buffers that
are used to route data to and from the internal data bus. These
six buffers can be individually turned ON/OFF to perform the
routing. Table I provides different buffer configurations and their
corresponding actions. We note that configurations correspond-
ing to simultaneously turning ON the two buffers connected to a
port will lead to data corruption and therefore, they are marked
as invalid. Similarly, turning OFF both the buffers of a port will
disable the corresponding port.

Using the configurations from Table I, Table II reports the
configurations of the switches on the two bus lanes, illustrated
in Fig. 4➍–➎. We note that switch S3 on bus lane 1 is shared
between segments 0 and 1, while switch S5 on bus lanes 1 and
2 are not part of any segments.

The configurations for IO buffers in each segmentation switch
is generated from the controller that sits inside the switch as
shown in Fig. 8. These configurations are generated during the
mapping as describe in Section IV-B. Finally, we disable unused
ports of a switch by setting both its buffers to OFF. This allows
us to save energy.

TABLE I
CONFIGURATIONS OF THE INVERTERS IN THE SEGMENTATION SWITCH AND

THEIR CORRESPONDING ACTION

TABLE II
SWITCH CONFIGURATIONS FOR THE EXAMPLE OF FIG. 4❹–❺

We show configurations for all 11 switches on the two bus lanes. There

are three segments generated from the bus lanes. All these three segments 

can enable data communication in parallel. This improves latency.

TABLE III
MAJOR SIMULATION PARAMETERS EXTRACTED FROM [13]

V. EVALUATION METHODOLOGY

A. Design Flow

Fig. 10 shows our design flow and evaluation framework.
It incorporates machine learning applications designed using
both convolutional neural networks (CNNs) and spiking neural
networks (SNNs). For the former, our design flow integrates a
frontend to integrated CNN models generated using Keras and
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Fig. 10. Our design flow with NeuSB integrated inside NeuroX-
plorer [32].

PyTorch. Subsequently, a CNN model is converted to SNN using
our in-house converter, which is described in [47], [48] before
presenting it to the rest of flow. On the other hand, a native SNN
can be specified using PyCARL [25] or Nengo [49].

Once an SNN is ready, it is simulated using CARLsim [35],
which facilitates SNN simulations with neurobiological details
at the neuron and synapse level using CPUs and multi-GPUs.
We use CARLsim to generate the workload for a given training
set, where a workload consists of

� Spike Data: the exact spike times of all neurons in the
SNN model. We let spk(i) represents a list of spike times
of the ith neuron in the model.

� Weight Data: the synaptic strength of all synapses in the
SNN model. We let w(i, j) represents the synaptic weight
of the connection between the ith and jth neurons in the
SNN model.

The workload information is used to generate the clusters
using Algorithm 1, which we describe in Section IV-A. Next,
we generate segments and map clusters to segments using Al-
gorithm 2. We describe this in Section IV-B. Finally, we per-
form simulations using our cycle-accurate simulator NeuroX-
plorer [32]. This simulator incorporates our segmentation switch
design, which we describe in Section IV-C and models for the
neuromorphic hardware such as DYNAPs [13] and μBrain [10].
In this work, we show results for the DYNAPs hardware. How-
ever, the simulator can be easily configured for μBrain and other
neuromorphic hardware such as TrueNorth [12] and Loihi [11].
Table III shows the major simulation parameters used in this
work.

The segmentation switch is designed using Cadence Spec-
tre with 45 nm technology libraries from [50]. The hardware
configurations are as follows.

B. Evaluated Applications

Table V reports the machine learning applications that are
used to evaluate NeuSB. For each of these applications, we
apply a pruning technique [51] to eliminate near-zero weights.
This is to keep the model size small. For each pruned model,
we report the total number of neurons (column 2), synapses
(column 3), and their baseline accuracy (column 4). We observe
that the baseline accuracy numbers are lower than application-
level simulation results. This is because of the ISI distortion
and spike disorder, which reduces accuracy considerably. We
have discussed this in Section II. Finally, column 5 reports the
total number of clusters generated using the proposed clustering

technique presented in Algorithm 1. We observe that the number
of clusters of an application is higher for applications with higher
number of neurons and synapses.

C. Evaluated Approaches

We evaluate the following approaches.
� NoC-Baseline: This is the DYNAPs hardware, which uses

Neu-NoC [52], a hierarchical network-on-chip (NoC).
Internally, it uses the X-Y routing algorithm to route
packets via the switches. For this purpose, the routing
table is stored in an LUT. SpiNeMap [24] is used to map
applications to this hardware.

� NoC-Broadcast: This is NoC-Baseline, where broadcast-
ing is used to communicate packets via a switch. There-
fore, the routing table (LUT) in Fig. 1(b) is not needed.
This saves on the dynamic energy of the switch. However,
the congestion of the network is significantly increased.

� NeuSB: This is our proposed segmented bus architecture,
where a single bus lane is partitioned into segments. The
application mapping flow first partitions an application
into clusters and then maps these clusters to segments
of bus lanes. Unused ports and slices of bus lanes are
disabled to save energy. The overall approach does not
require bus arbitration and routing table inside switches,
which reduces design area, energy, and latency.

VI. RESULTS AND DISCUSSIONS

A. Interconnect Design Area

Table IV reports the different components that contribute to
the area overhead of NoC and NeuSB. We make the following
five key observations.

� First, the number of switches and wire slices for NoC-
Baseline and NoC-Broadcast (see Fig. 1) increases as the
size of an application increases. This is because larger
applications need higher NoC sizes to accommodate their
neurons and synapses. So, switches and slices needed for
VGG-19 (which has more neurons, synapses, and clusters
as reported in Table V) are much higher than for LeNet.

� Second, between NoC-Baseline and NoC-Broadcast, the
switch area of NoC-Broadcast is significantly lower. This
is because unlike NoC-Baseline, it uses broadcast mecha-
nism to route data packets and therefore, routing tables are
not needed inside the switches. This result also shows that
the routing table is the biggest contributor of switch area
in a NoC. Overall, the area overhead of NoC-Broadcast is
on average 21.6x lower than NoC-Baseline.

� Third, NeuSB introduces more switches and slices than
both these NoCs. However, the switch area is significantly
lower. Individual switch area in NeuSB is 20x lower
than NoC-Broadcast and over 1000x lower than NoC-
Baseline. Therefore, the total switch area, which includes
all switches on all bus lanes, is on average 2.2x lower
than NoC-Broadcast and 55x lower than NoC-Baseline.
We provide breakdown of the overhead of NeuSB in
Section VI-E.
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TABLE IV
DESIGN AREA COMPARISON NOC VERSUS NEUSB

TABLE V
APPLICATIONS USED TO EVALUATE NEUSB

Fig. 11. Interconnect energy normalized to NoC-Baseline (log scale).

� Fourth, the switch area is the same for all applications
for NeuSB and NoC-Broadcast, while it is application
dependent for NoC-Baseline. This is because, each switch
in NoC-Baseline requires a routing table which essentially
contains information about mapping of neurons to tiles.
Therefore, the bigger the size of the application, the larger
is the routing table. Correspondingly, larger is the switch
size.

� Finally, the total number of active wire slices in the
proposed NeuSB is on average 70% lower than the total
wire slices. This is because, using our control mechanism,
which we describe in Section IV-C, we are able to disable
segmentation switch ports such that the associated wire
slices are not driven by voltages. This allows us to save a
significant amount of energy (see Section VI-B).

B. Interconnect Energy

Fig. 11 plots the dynamic energy on the interconnect for the
evaluated applications. Results are normalized to NoC-Baseline.
We make the following two key observations.

Fig. 12. Spike latency normalized to NoC-Baseline.

� First, between NoC-Baseline and NoC-Broadcast, NoC-
Broadcast has an average 375x lower dynamic energy. This
is because NoC-Broadcast does not need routing tables
inside each switch, which require a significant amount of
energy for table lookup.

� Second, the energy of NeuSB is on average 6.2x lower than
NoC-Broadcast. This energy reduction is due to 1) the pro-
posed segmented bus architecture, which does not require
bus arbitration and packet routing at run-time, and 2) the
proposed segmentation switch, which requires a simple
design to route packets between its ports. Compared to
NoC-Baseline, the energy of NeuSB is an average 478x
lower.

C. Spike Latency

Fig. 12 plots the spike latency of NoC-Baseline and NeuSB
for the evaluated applications. Results are normalized to NoC-
Baseline.

We observe that the spike latency of NeuSB is on average 23%
lower than NoC-Baseline. The reason for this improvement is
three-fold.

� First, we partition bus lanes into segments and restrict
inter-cluster data communication on a segment. These
segments are smaller in size, which reduces the latency. On
the other hand, data packets traverse longer distances (wire
slices) within a NoC, which results in a higher latency than
segmented bus.

� Second, as there is a single master for every segment and
data packets are communicated sequentially by the master
of the segment, there is no contention on the segment. On
the other hand, there can be significant contention in a
NoC, especially when the size of the model is large.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 17,2024 at 21:31:06 UTC from IEEE Xplore.  Restrictions apply. 



384 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

TABLE VI
ISI DISTORTION AND SPIKE ARRIVAL DISORDER OF NOC-BASELINE VERSUS

NEUSB

� Finally, there is no arbitration required in a segmented
bus because NeuSB analyzes data communication offline
at compile time and use that information to map clusters
to segments. This reduces the latency compared to NoC,
where arbitration decisions are made at run-time by look-
ing up the routing table within each switch.

D. ISI Distortion and Spike Disorder

Table VI reports the ISI distortion and spike arrival disorder of
NoC-Baseline and NeuSB. ISI distortion is measure in number
of cycles, while spike arrival disorder is measured as a fraction
of the total number of spikes. We make the following two key
observations.

� First, the ISI distortion of NeuSB is on average 22%
lower than NoC-Baseline. This is because the latency
of a spike on a segment in NeuSB is deterministic, be-
ing equal to the sum of latencies of the segmentation
switches and the latency of wire slices. On the other
hand, the latency of NoC-Baseline can be high and is
dependent on network congestion. Therefore, some spikes
may be delayed more than others, which increases the ISI
distortion.

� Second, the spike arrival disorder of NeuSB is zero. This is
because, spikes are serially communicated by the master
to tiles in the segment. Therefore, spikes arrive in-order
at the destination tiles. For NoC-Baseline, spikes from a
source can reach destination tiles via different routes due
to network congestion. So, the spike arrival disorder is
high.

E. NeuSB-Related Key Insights

Table VII reports design details of NeuSB. On average,
NeuSB introduces 135 bus lanes, 3 segments per bus lane, and
120 switches per segment.

We observe that the number of bus lanes is higher for large ap-
plications. This is to accommodate more neurons and synapses.
Furthermore, we limit the number of switches per segment to
250 (the constraint Bs in (9)). This is to keep the spike latency
small.

Fig. 13 plots the total energy of NeuSB, distributed into 1)
dynamic energy in switches (average 24.4%), buffers (average
51.2%), and wires (average 13.7%), and 2) leakage energy

TABLE VII
BUS LANES, SEGMENTS, AND SWITCHES OF NEUSB

Fig. 13. Energy distribution of NeuSB.

TABLE VIII
COMPILATION TIME (IN SECONDS) OF NEUSB FOR THE PRE-PROCESSING

ALGORITHMS

(10.7%). We observe that the energy consumption in the switches
is significantly low (compared to the energy of switches in NoC-
Baseline) due to the elimination of routing tables. Buffers on tiles
are the major contributor of energy. Finally, the wire and leakage
currents are also considerably lower in NeuSB, compared to
NoC-Baseline.

F. Program Compilation Time

Table VIII reports compilation time overhead for mapping
different application on NeuSB. Algorithm 1 takes the majority
of time in the compilation steps while the processing time for
algorithm 2 is small. This corresponds to the time complexity
analyses of the algorithms provided in Section IV-A and B.
Algorithm 1 time complexity is proportional to the cube of the
number of neurons while algorithm 2 is only proportional to
the square of the number of clusters. Additionally, the num-
ber of clusters is more than two orders of magnitude lower
than the number of neurons, as seen in Table V. Regardless,
the total compilation time overhead for all the applications
on NeuSB still stay within acceptable limit. Even for large
application like VGG19 (with 603,198 neurons and 28,948,582
synapses), we only need approximately three hours to run both
algorithms.
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G. Energy Breakdown for NoC

Table IX reports interconnect energy consumption of NoC-
Baseline for different applications, distributed into wires (static
and dynamic), and buffers & switches (static and dynamic). We
observe that the major contributor of energy in NoC-Baseline is
buffers and switches. This is because of the significant amount
of energy used for routing table lookup inside the switches,
which increases exponentially with the increase of application
size.

VII. RELATED WORKS

This is the first work that addresses the design of segmented
bus (both the data plane and the control plane) for neuromorphic
hardware.

A. Other Interconnects Solutions for Neuromorphic
Hardware

As the size of neuromorphic hardware is scaling up, intercon-
nects is receiving growing attention in the research community.
Multi-stage/hierarchical NoC is used in many neuromorphic
hardware such as TrueNorth, DYNAPs, and Loihi. To this
end, several new flavors of NoC have been proposed. Exam-
ples include Neu-NoC [52], 3D-NoC for multicompartment
neurons [53], ring-based NoC [54], and restricted hierarchical
NoC for the TrueNorth chip [55]. Among these NoC solutions,
Neu-NoC is the most recent and relevant one. It is an optimized
NoC solution for many-core neuromorphic hardware platforms.
It outperforms many state-of-the-art NoC solutions in terms
of both energy and latency. Here, we compare NeuSB against
Neu-NoC and found that NeuSB significantly reduces design
area, latency, and energy. The improvements over a classical
NoC design is because 1) NeuSB enables more parallelism by
partitioning bus lanes into segments and executing the segments
in parallel, 2) NeuSB’s switches are lightweight compared to a
NoC switch, which helps to improve both area and energy, and
3) NeuSB configures the interconnect architecture by exploiting
application characteristics and therefore, does not need to make
any run-time routing decisions, which improves both energy and
latency.

B. Interconnect Solutions for Conventional
Multi-/Many-Core Systems

Several different interconnect architectures are proposed for
multi-/many-core systems. Examples include shared bus, exam-
ple AMBA [16], NoC [14], and segmented bus [36].

On the NoC front, both packet-switching flavor, e.g., HER-
MES [56] and circuit-switching flavor, e.g., SDM-NoC [57] are
explored in literature. Although circuit-switching NoC can pro-
vide performance guarantee, it often leads to poor resource uti-
lization as the reserved resources are assigned to only one trans-
action and remains reserved until the transaction is completed.
We compare NeuSB against circuit-switching NoC because the
large number of transactions (spike packets) in the context of
neuromorphic computing will significantly increase the resource

TABLE IX.
ENERGY DISTRIBUTION OF NOC-BASELINE.

requirements (switches and wires) in a circuit-switching NoC
with a correspondingly low utilization.

Segmented bus is previously studied for multi-/many-core
systems [58]–[60]. Here, we describe segmented bus for neu-
romorphic computing. Specifically, we show how partitioning
an application into clusters and mapping clusters intelligently
onto segments of a segmented bus can lead to a significantly low
area, energy, and latency. We also propose a very low overhead
segmentation switch. Overall, we describe both the data and
control plane of our interconnect solution for neuromorphic
computing.

VIII. CONCLUSION

Neuromorphic computing platforms are inherently memory-
centric, relying on technologies such as Non Volatile Memory
(NVM) to enable in-memory compute and in-place synaptic
storage. Crossbar interconnects and mesh-based Networks-on-
Chip (NoCs) have been proposed to support these architectures,
but suffer from increased power consumption and communi-
cation delays for scalable neuromorphic hardware designs. To
support newer families of neuromorphic hardware, we presented
NeuSB, an interconnect solution based on segmented buses,
where a single bus lane is partitioned into segments, with each
segment mapping a few tiles. Each segment in a segmented bus
can have one and only one master tile, which communicates
spikes to other tiles on the segment. In this way, we enforce
1) multi-casting of spike packets, which consumes less energy
than broadcasting. The delays on a segment is deterministic,
and is equal to the delay on the wires and switches on a seg-
ment. This allows to keep the inter-spike interval distortion low.
Furthermore, spikes packets on a segment are communicated
serially, which eliminates disorder of spikes at the receiving
tile. A low inter-spike interval and spike arrival disorder leads to
higher performance. Using multiple parallel bus, NeuSB allows
parallelism in spike communication, which allows to scale up the
hardware platform without significantly increasing the design
area. Finally, NeuSB uses a novel segmentation switch hardware,
which does not require routing tables, which lowers energy and
latency. Overall, the design flow of NeuSB involves partitioning
an SNN application into clusters and mapping the clusters to
segments of parallel segmented bus. The communication pat-
terns between clusters are analyzed at compile time to disable
unused switch ports, saving energy. Since no run-time arbitration
is necessary, the overall approach reduces energy and latency.
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We evaluate NeuSB, using several SNN applications. Simulation
results show that compared to the most widely-used mesh-based
NoC design, NeuSB reduces the switch area by 20x, average
interconnect energy consumption by 6.2x, and average spike
latency by 23%.
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