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Clubs, local public goods, and transportation models are analyzed within a unified model. The 
emphasis is on the derivation of optimal allocation, pricing and the size of the sharing group. 
We derive the conditions under which optimal prices will yield surplus or deficit, as well as 
those under which competitive provision will be efficient. Given heterogeneous tastes we prove 
that segregation according to tastes is generally efficient although several cases where this result 
does not hold are also discussed. We show that the existing literature is unnecessarily restrictive 
and that the unified approach suggested here considerably extends the existing analysis of clubs’ 
local public goods and the transportation problems. 

1. Introduction 

Clubs, local -public goods and transportation models have a similar basic 
structure in the existing literature. Yet they have been treated as separate 
branches of economic theory, yielding sometimes conflicting results. Our 
purpose is to elaborate on these theories within the context of a unifying, 
more general model of resource allocation. The main issues are then 
reviewed and some general results are derived. 

The basic unifying model in this paper differs from the classical 
conventional model of private goods by allowing for congestion-prone goods. 
These are goods which are consumed collectively by a group of consumers 
all of whom derive utility from sharing the services of a common facility 
(swimming pool, road, library, etc.) and disutility from the size of the sharing 
group. 

We distinguish between private goods, club goods, and local public goods, 
according to the optimal size of the sharing group relatively to the size of the 
community. A private good is one for which the optimal sharing group is the 
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smallest possible. A club good is one of which the optimal size of its sharing 
group is finite but still small relatively to the community size. The optimal 
sharing group of a local public good is the community itself. The 
classification is shown to be endogeneously determined rather than being 
inherent in the facility itself. 

The model is used to derive the conditions for optimal allocation in the 
cases of clubs and local public goods for both homogeneous and 
heterogeneous population. We reiterate an earlier result - for an optimal 
sharing group the cost of providing the facility is fully recovered by the 
revenue from user charges ~ and we suggest a more rigorous proof to show 
that in this case the market can provide the service efficiently rendering 
nonmarket institutions unnecessary. 

We provide a more general proof for the desirability of a system of 

segregated clubs when the population is heterogeneous, thus extending 
another earlier result to the case when the use of the facility is variable. 

The optimal financing and the segregation issues are systematically 
examined for the case of a local public good. It is shown that in an optimal 
community optimal pricing can yield surpluses in the production of some 
goods (both private and local public goods) and deficits in the production of 
others. The optimal rule, however, is that the total sum of deficits should be 
equal to the total sum of surpluses (pure profits). The well-known Henry 
George rule for financing local public goods is implied as a special case. 

Regarding segregation we show that in contrast to the case of clubs, in the 
case of an optimal community mixing different socioeconomic groups may be 
consistent with and even indispensible for optimal allocation of resources. 

Using the results derived from the theories of clubs and local public goods 
we show that existing transportation models are unnecessarily restrictive. We 
offer therefore a more general formula for the relation between the revenue 
from user charges and the cost of providing road services. Using the results 
of the theories of clubs and local public goods we discuss the cases for 
providing people of different tastes with different facilities (e.g. neighborhood 
roads) or common facilities (e.g. main arteries). 

The question of returns to scale plays an important role in the theory of 
nonpure public goods. A standard result is that efficient congestion tolls will 
exactly cover total cost in the case of constant returns, and lead to excess 
revenues (losses) in the case of decreasing (increasing) returns to scale. 
However, the literature does not sufficiently clarify what is meant by returns 
to scale: we define it in terms of homogeneity of optimal utility in population 
size and composition. This definition is sufficient to derive all the standard 
results. It includes all the cases that have appeared in the literature as special 
examples. 

We sometimes introduce an analogue to the firm with a U-shaped average 
cost curve, thus dealing with returns to scale as a local rather than global 
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characteristic. This proves very useful in solving simultaneously for the 
optimal number and other physical characteristics of roads (traffic lanes) 

connecting two regions. 
The plan of the paper is the following. Section 2 presents the model and 

its main implication regarding the optimal pricing and financing. Section 3 

presents the theory of clubs. Local public goods and optimal communities 
are the subject of section 4. In section 5 we apply the results of the two 

preceding sections to transportation. 

2. The model 

In this section we assume that all people have the same utility function 
and the same factor supply (income). We further restrict our analysis to the 
(optimal and market) solutions where identical (all) people end with identical 
utility. 

Consider an isolated community with N individuals and a fixed amount of 
land, A. Each individual is assumed to supply one unit of labor services, to 
consume a private good x, and to use (with n other individuals, v times per 
period) a congestion-prone facility of size y. His utility increases with the 
consumption of the private good x, the frequency with which he uses the 
facility (u), and the size of the facility, (y). It declines with total use, that is, 
the combined usage frequency (nu) of all the individuals with whom he 
shares the facility. Accordingly, the individual’s utility can be represented by’ 

u=u(x,u,y,nu). (1) 

Using subscripts to denote partial derivatives it is assumed that 

u1 -u,>o; u,-u,>o, 

Land and labor are used to produce two types of commodity: a private 
good, and a congestion-prone facility such as a road, a swimming pool, a 
park, or a library. 

Labor is also required for servicing the congestion-prone facility. This 
requirement increases with total frequency of use, and may decrease with the 
size of the facility. 

‘This utility formulation is an extension of the Buchanan (1965) model which was introduced 
into the literature by Oakland (1972) and Berglas (1976b). 
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Combining these production functions with the resource constraints yields 
the following: 

Nx= g(A,, N,), (3) 

N,+;N,+Ns(y,no)=N. 
n 

where A, and N, are the land and labor input per facility y, and A, and N, 
are the land and labor used in producing Nx. Since all people are identical, x 
is the consumption of the private good by any one individual, and, the total 
consumption of the community, N, is Nx. N/n is the number of congestion- 
prone facilities, each of which is of size y, and s is the labor requirement for 
the servicing of each facility y.’ This can represent labor used to maintain 
the swimming pool or the road. It could also represent consumer time spent 
on the road, in which case the costs are borne directly by the user. In order 
to simplify the analysis we assume that these labor services s( ) are hired by 
the firm that operates the facility. The operating firm may also require land 
services but this would burden the presentation unnecessarily. 

We assume that the g function exhibits constant returns to scale, but no 
such restriction is necessary for the congestion-prone good (the function ,f).3 
More specifically, there is no need to require that doubling the size of a 
swimming pool or the width of the road will double its costs, a requirement 
that is frequently in contrast to empirical observations [see, for example, 
Mohring (1976)]. We assume that the two production functions f and g are 
twice differentiable, and all marginal products are positive and decreasing. 

In deriving the conditions for optimal allocation using the assumption that 
equals should be treated equally,4 we maximize (1) subject to (2) through (5). 
Maximization is done in two stages. First, we assume that the consumption 
group size n is given, and u( . ) is maximized over x, v’, y, L,, N,, L, and N,. 

‘The servicing function is introduced separately in order to facilitate comparison with other 
models. We could instead introduce nv as an additional variable in the function 1: 

3As in the classical analysis of competitive general equilibrium all the following propositions 
can be derived in the case of decreasing returns. This in our model means that g exhibits 
decreasing returns, and f can be written as 4’=3(A,,N,,N/n), where ~-CO. In a more general 
formulation, 4’ can represent a vector of characteristics. In this case (2) should be replaced by 

$(A,,Njn,L.r,L(Z ,..., y)=O. 
4This assumption is implied, for example, by the Rawlsian social welfare function and is 

required for stable market equilibrium. 
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The resulting necessary conditions can be reduced to: 

145 

In order 

u2/u1 = g2s2 - nu41u1, (6) 

nu31u1 = g2/f2 + g2sl l (7) 

g,/g, =filfi’ (8) 

to facilitate the interpretation of (6) and (7), we define x as the 
numeraire and fix its price, P, = 1. It follows that g,, the marginal product of 
labor in x, is the wage rate. The RHS of (6) represents the social cost of 
increasing the use of the facility by one unit (u). The first term g,s, is the 
additional labor input requirement multiplied by the wage rate. The second 
term, nu,/u,, is the decrease in total utility as a result of increased congestion 
(all social costs are measured in terms of the private good). Thus, according 
to (6) marginal subjective evaluation of the use of the facility must equal its 
marginal social cost. 

Eq. (7) is the well-known Samuelson condition. The LHS represents the 
sum of the marginal evaluations of the facility while the RHS represents its 
marginal cost, made up of the marginal cost of the facility g2/f2, and of its 
effect on maintenance costs, g,s,. Eq. (8) is the usual production efficiency 
condition. 

Now turn to the second stage of optimization. Let u*(n) be the optimal 
utility level as a function of n where (2) through (8) are satisfied. Using the 
envelope theorem, 

I 
. (9) 

With x as a numeraire, g, is the rent per unit of land and g, is the wage 
rate. It follows that (N/n)(g,A,+ g,N,+ g,s) is the total cost of providing 
the club service. Furthermore, it follows from (6) that in order to induce 
utility-maximizing consumers to consume the optimal consumption mix, the 
price per unit of use of the facility should be P,= g,s,-nub/u,. The last term 

in (9) is thus total revenue of the club services. u,/(Nn) is a positive number, 
c(. Given these (shadow) prices, eq. (9) says that du*(n)/dn=a(cost-revenue) 
or,5 

Cost 5 Revenueodu* (n)/dn 5 0. 

5Boadway (1980) has claimed that full coverage of costs requires a linear transformation 
curve. This is clearly not the case in the present formulation. Furthermore, the reader may be 
worried about the case wherefin (2) exhibits increasing returns to scale; Berglas (1981) provides 
a numerical example of the existence of an optimum with costs exactly covered by user charge, 
given economies of scale. 
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Some alternative configurations of u*(n) are illustrated in fig. 1. The optimal 
consumption group size for the congestion-prone good a consists of one 
consumer. This implies that it is best to use facility a privately. In other 
words, there is no reason to distinguish between a and x. 

The optimal size of the consumption group for b is nz. It follows from (9) 
that the optimal user charge is just sufficient to cover the cost of providing 

the service. If, in addition N/n,* is a (large) integer, b is defined as a ‘market 
club good’, for in this case (as we later show) the service can be efficiently 
provided through the market. 

Fig. 1 

The optimal consumption group of facility c is N, i.e. the total community. 
We define a commodity the sharing group of which is the total community 
as a ‘local public good’. Observe that this definition covers the case where n* 

is somewhat smaller than N but where (given N) one sharing group is 
nevertheless optimal. Later, when we let N vary, this case of local public 
good where n* <N will prove to be very important. Given eq. (9), it follows 
that whenever n* #N the provision of local public goods will generate 
deficits or surpluses - these will later be analyzed in detail6 

Finally, the optimal consumption-group size of congestion-prone facility 
good d is indeterminate. The services can be provided as a ‘private good’, a 
‘market club good’, or a ‘local public good’. In all these cases, optimal user 
charges will exactly cover cost. 

‘This classification is incomplete since it does not cover the case where the optimal number of 
sharing groups is larger than one, but is a small number; and the case where N/n* is not an 
integer. The role of these goods will become clear as we proceed. 
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It is worth noting that classification of a good in one of these categories is 

not necessarily inherent in the good itself but may be endogeneously 
determined. For example, a swimming pool may optimally be a private good 
in an affluent community, where the demand for privacy is high. It may be a 
market club good in a middle-class community, while in a relatively poor 
community it may even be a local public good. 

To be more realistic the model (l)-(5) can be extended to include 

congestion prone facilities of different types. Each facility may service a 
different optimal consumption group n* and may be of different type. Thus 
within a community we may have simultaneously commodities of types a, b, 
c, and d. The optimal size and consumption group of each facility will be 
determined endogenously. 

The above analysis can be reformulated using cost functions. This will 

both considerably simplify the following analysis and will make it easier to 
compare results with the existing literature. 

Given factor prices P, and P,, the cost function of the provision of club 
services can be written as c =C(y, nv, P,, Pa). Taking prices as given (P,= 1, 
P, = g,, and P, = g, ), the cost function can be written as c = c(y, nv). 

Furthermore, the assumption of identical consumers implies a given 
income, I = g, A/N + g,. The maximization problem now reduces to selecting 
y, v, and n to maximize (1) s.t. 

nx+c(y,nv)=nl. (10) 

The solution to this problem (n*,y*,u*) is, of course, the same as that 
derived for problems (1) through (5). The necessary conditions are 

u2/u1 = c2 - w/ul, (6’) 

nu3/ul =cl, (7’) 

du*(n)/dn=$ [c-nv(c, -nu4/u1)]. (9’) 

The explanations of these necessary conditions are exactly those for (6), (7) 
and (9). Costs are exactly covered when du*(n)/dn =O, or when there exists 
an optimal n* that maximizes utility. 

Several studies of congestion-prone services impose restrictions on the 
homogeneity of the cost and/or utility function. To understand why, it will 
be useful to reformulate (9’) in terms of the homogeneity parameters of the 
utility and cost functions. Define Y, and r, as the degree of homogeneity of 
the utility and cost functions in variables y and nv respectively. Using (7’), we 
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can then rewrite (9’) as 

Ul U 
du*(n)/dn=-c(1 -r,)+-- r, 

n2 n 
(11) 

A typical restriction in the literature is to assume that congestion is a 
function of the number of users divided by the size of the facility; in the 
terms used here, utility (or service cost) is a function of y/no, and the cost per 
unit of y is constant. This implies that rc= 1 and r,=O, regardless of n. Given 
(ll), du*(n)/dn in this case is identically zero regardless of group size. This 

restriction implies that we are dealing with commodity type Q in fig. 1; group 
size is irrelevant for optimality and the product could be efficiently provided 
as a private good. This formulation will prove useful in the analysis of the 

transportation problem. 

3. The club theory 

Club theory occupies a very important place in recent economic literature. 
[See Sandler and Tschirhart (1980).] We shall prove the basic theorems of 

club theory using a different, somewhat more rigorous approach than that 
used in the literature. Our proof of the optimality of market provision of 
club goods will be a variant of the model of market provision of goods with 
variable quality. In the case of the optimality of segregation we introduce for 
the first time the proof for the case where individuals change the intensity 
with which they use the club facility. The usefulness of this approach will be 
apparent in the subsequent analysis of local public goods and of the 

transportation problem. 
Given that u*(n) assumes a maximum at a finite nonzero consumption 

group of size n*, it is possible to prove the following proposition [see also Berglas 

(1976b)]. 

Proposition 1. If there exists an optimal consumption group n*, and if the 
total population N can be divided into an integer number k of optimal 

consumption groups of size n*, then there exists a price system that supports 

the optimal allocation. An outline of the proof is provided below [for a 

detailed proof see Berglas and Pines (1978)]. 

Consider the service of a club commodity, distinguished by two 
characteristics y and nv, and let the price of the service be defined as the 
solution to 

max p 
g,X,” 

s.t. u(x,v,y,nv)=u*(n*), 

x+op=l, 

where u*(n*) is the optimal utility determined by the solution of the 
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maximization of (1) s.t. (10). The solution of this problem yields p =p(y, no), 
i.e. a price function of quality towards which consumers and producers react 
as price takers.7 If each agent maximizes his objective function (utility in the 
case of consumers, profits in the case of producers) the resulting allocation 
will be optimal.8 

We can conclude, therefore, that if the divisibility assumption is satisfied, 
and if, in addition, exclusion is possible, congestion-prone goods need not be 
supplied by clubs [as Buchanan (1965) implied] ;9 rather, the market can 
support the optimal allocation. 

The club commodity may be characterized by several quality attributes. 
Swimming pools may be of different sizes, offer different services, or differ in 
water temperature. All these parameters can be introduced into the model by 
allowing y to be a vector. The necessary condition (7’) must then hold for 
each characteristic separately. 

The preceding analysis assumed a homogeneous population both in terms 
of preferences and initial holdings. This allowed unique definition of an 
optimum resource allocation. We now consider a heterogeneous population 
and Pareto-efficient allocations. 

One of the main issues of club theory with respect to heterogeneous 
populations is whether Pareto-efficient allocations require a segregated 
system of consumption groups, i.e. whether a consumption group should be 
composed of members with identical income and preferences, whom we 
identify as belonging to the same class. Turning to this question we assume 
that the congestion effect is identical across classes, i.e. u( ) and c( ) of each 
class depend on the total frequency of use of a given facility xjnjzij (where a 
superscript denotes the class), rather than on the socioeconomic composition 
of the user population. The assumption that congestion is a function of the 
number of users regardless of their personal characteristics is the most 
appropriate for the discussion of segregation according to tastes. It is 
straightforward that if blacks and whites prefer not to share the same facility, 
segregation is optimal; similarly, if men and women derive utility from 
sharing a mixed swimming pool, segregation is not optimal. By adopting the 
congestion variable xjnjv’, we prove that when people are indifferent about 
co-users, segregation according to taste is optimal.” Under this assumption 
it is possible to prove the following two propositions. 

‘This approach is an application of Rosen (1974). 
*In this approach agents are assumed to react to a given price system whereas Berglas (1976b) 

and Boadway (1980) assume maximization of profits by producers knowing the consumer’s 
utility function, an approach consistent with Nash equilibrium, but not with competitive 
equilibrium in the strict sense. 

‘Buchanan (1965, footnotes 7 and 8) mentions the possibility of market provision, but 
develops his paper claiming that these commodities will be supplied by clubs. 

“This proof is unaffected if U( .) and c(. ) depend on CjajnJd, where d are positive 
coefficients. More complicated cases can also be allowed for, although not the case in which one 
socioeconomic group derives positive utility from association with other groups. 
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Proposition 2. It is suboptimal to have two or more identical mixed 

consumption groups. (This proposition assumes two classes, but muy easil)) be 
extended to any number of classes.) 

Proof: Suppose there are two identical mixed consumption groups. Pareto- 
efficient allocation within each consumption group can be shown to imply: 

u;/Ll; = u;/u”, = c2 - n%:/uT - nbub,/ub, , (6”) 

n%i/ui; + nbub,/ub, = cl, (7”) 

where superscripts a and b represent the two classes. Eqs. (6”) and (7”) are 
straightforward extensions of (6’) and (7’) respectively.” 

It can be shown that the population mix of the two clubs (consumption 

groups) may be changed without affecting the consumption of any individual 
or the total frequency with which the facility is used.” Hence, both the level 
of utility of each individual and the cost of providing the facility in each 

consumption group remain constant. However, since the composition of the 
population is now different, conditions (6”) and (7”) no longer hold, which 
means that resources within each club can now be reallocated so as to 

“Eqs. (6”) and (7”) are derived from the following maximization problem, where xs, xb, c”, t?, 
and y are the optimization variables: 

max ua(xo, t” y nV + n*t+) , 1 

St. - I2 (2, I?, )‘, nv + dd) + Lib = 0, 

naxa + n*x* + c( I’, naGa + nbvb) - rw - IV = 0 

This model does not assume that types a and b pay the same fee for the club service; it is the 
conditions necessary for maximization that dictate that the price per unit of service u will be the 
same. Sandier and Tschirhart (1980) fail to understand this result. They claim that optimal 
segregation proofs presuppose that all consumers pay the same fee and are thus second-best 
results. This assumption is clearly not required for our proofs of propositions 2 and 3. 

“Let nf and U: be, respectively, the number of club members and the rate of facility use of 
class k in club i (i= 1,2) in two identical clubs. Initially, n: =ni and U: =u: where (k = a, b). 
Transfer one member of class a from club 1 to club 2, and I?/u’ members of class b from club 2 
to club 1. The resulting total use of the facility in club 1 is 

(no- l)c”+ (n* + t.“/vb)vb = nyru + nbvb, 

and in club 2 

(n” + 1)~” + (nb - va/vb)ab = nnu’ + nbub. 

Even though the composition of the users in each of the clubs has changed, there is no change 
in the use of the facility in each of the two clubs. The initial transfer of one individual of type a 
was arbitrary; we could have shifted two or more. In the case where initially nV < nbub we could 
even shift all type a individuals to club 2. 
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increase the utility of each member in the community. Therefore the original 
clubs are necessarily suboptimal.’ 3 Q.E.D. 

Proposition 2 can be used to prove that mixed clubs are suboptimal in the 
case where utilities are homogeneous of degree zero in club size. Let 
u*“(n”, nb,tib) represent the maximum utility of a, given that ub=cb, and that 
the club is composed of na consumers of type a, and nb consumers of type b. 

Defining u *a it is assumed that v’, vb, and y change as we change no and nb. 

Then if u*~(. ) is zero homogeneous in n” and nb, it can be divided into two 
identical, half-size clubs without affecting the utilities of either a or b. By 
proposition 2, these two clubs are not optimal. Thus, given the homogeneity 
assumption, mixed clubs are not efficient. As we later show, several well- 
known transportation models, as well as Oakland (1972) assume that the use 
of the same facility by consumers whose tastes differ is optimal even though 
the underlying model implies that u*‘( ) is homogeneous of degree zero in 
the composition of population. 

This result can be extended to the case where optimal club sizes are finite. 
It can be shown that provided some integer conditions hold, a system of 
segregated clubs is superior to a system in which there are mixed clubs. 
Suppose that total income is divided arbitrarily between types a and b, such 
that Z”=p and Z’=p. By the earlier procedure it is then possible to define 
two types of segregated clubs that will maximize utility for types a and b. 
These clubs will have optimal membership n*’ and n*b, and yield utilities u*’ 
and Use, respectively. The integer assumption requires that NO/n*’ is an 
integer, and Nb/neb is an integer. If this is the case, we claim that the 
allocation is optimal. In order to prove this result suppose that the 
allocation is not optimal; we can then solve 

max ub( . ) 

s.t. (1) U,(.)=U*=, 

(2) naxn + nbxb + c ( y, vana + vbnb) = n”f” + nbla. 

Denoting the solution to this problem tib, it follows that r?‘> Use. Ignoring 
the integer problem, consider the case of two identical clubs that yield utility 
tib and u*‘. B y proposition 2, utility can be increased beyond Ub (holding ua 
=u*‘) which is a contradiction since ~~ is the maximum, given u*‘. For an 
alternative proof see Berglas and Pines (1978). We formulate this result as 
follows. 

13A similar argument appears in McGuire (1974) and Berglas (1976b). However, their 
demonstration refers to cases in which the congestion effects depend on the number of users 
rather than on the total use of the facility, i.e. the use of the facility does not vary among 
groups. 
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Proposition 3. If there exists a finite optimal club size n*i for each consumer 

class (as defined above), and if the total population of each class, N’, can be 

divided into an integer number, k’, of optimal clubs of size n*‘, then a 
segregated club system (i.e. with each club having a homogeneous population) 

is Pareto-superior to any nonsegregated one (i.e. a system which includes 

mixed clubs). 

By satisfying the conditions of proposition 3 we create a system of 
segregated consumption groups which can be supplied in a competitive 
market. The price of each club good will be specified as a function of quality 
characteristics, i.e. capacity y and intensity of use n’v’, and the different prices 
will induce different individuals to purchase services of different clubs. There 
is therefore no need for a nonmarket economic institution to guarantee 
efficient resource allocation. 

The club model theory was developed for the case where N/n” is a ‘large’ 
integer. The problem where N/n* is large but not an integer is essentially not 
different from the problem of a conventional industry which consists of 
identical firms with U-shaped average cost curve. Suppose in this industry 
minimum average cost is obtained at output x*, and let P* = min AC. Let the 
quantity demanded at P* be equal to X. If X/x* is not an integer, we have 
the same integer problem that we encounter in the club model. As is 
customary, we disregard this problem. 

Moving to the theory of local public goods and optimal communities we 
further consider the case for segregation between classes. We prove that in 
the case of local public goods mixed consumption groups are sometimes 
optimal. 

4. Optimal communities 

Thus far, we have assumed that the supply of the services of the 
congestion-prone facilities is made within communities. No attempt has been 
made to justify the existence of communities, nor to explain their size and 
socioeconomic composition. Without additional assumptions it would seem 
that the optimal community is identical to the total population of the 
country. Accordingly the production of the private good and the supply of 
the congestion-prone facilities would be determined according to their 
optimal size. Any individual would belong to a sharing group for each 
congestion-prone facility. In the case of nationwide public goods all 
individuals would form a single consumption group. But such an allocation 
would be extremely inefficient, if not infeasible. The reason is that the 
production of goods requires space, i.e. a physical location. The consumption 
of goods therefore requires either that goods must be shipped to people, or 
people to goods. The optimal allocation of resources should therefore take 
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into account these transportation costs as a function of the spatial 
distribution of the population and the supply of goods. The resulting 
allocation could then be formulated in terms of market areas for the various 
goods. This would require simultaneous solution of the problems introduced 
by Liisch (1954), Tiebout (1956), Buchanan (1965), and others, which is, of 
course, beyond the scope of this paper. 

Once we let N vary, we are immediately facing the question of what 
determines the optimal size of the community. One straightforward 
explanation is spatial considerations. We shall approximate this case when 
we assume that land per community is fixed (the model given by eqs. (l)-(5)). 
In order to clarify the underlying relationship it will prove useful to start 
with a model without land thus confronting other considerations restricting 
the optimal size of the community. The model to be discussed is a variant of 
the congestion-prone goods model. The simplest model is the one used in 
Oates (1972) where communities provide just one pure public good and that 
there are costs of concentration (such as congestion and pollution, etc.) 
which are a function of the size of the community. In short, the utility 

function of this case using our notation can be written as u(x, y, N).i4 The 
same idea applies to our model (when there is no land) with non-pure public 

goods. Suppose the only local public good is a road, the utility of which is 
given by (1) and suppose that the optimal user group of a road is n*. Now if 
there are no externalities, i.e. if all the benefits accrue to the user of the road 
one can say that the community size is indeterminate or that communities of 
the sizes n*, 2n*, kn* are equally efficient. But suppose now that there are 
externalities among users of the different roads, e.g. smoke. Then, formally, 
we have to add the variable N (or Nu) to our utility function (1). However, 
observe that in our example it will be obvious that the optimal community is 
n*=N* i.e. there will be just one facility, and the optimal consumption 
group determines the size of the community. Thus we can proceed with the 
analysis using (1) by substituting N for n. 

We start the analysis with the simplest case where each community 
provides a single local public good. This model proves to be very useful in 
illustrating the Tiebout hypothesis and in demonstrating its analogy with 
club theory. Later we introduce several local public goods and show that this 
change considerably affects the Tiebout hypothesis. 

We start by specifying the assumptions required for the proof of the 
Tiebout hypothesis. The last two assumptions will be relaxed later. 

Al. Mobility among communities of utility maximizing consumers is 
costless. 

A2. City developers or local governments are profit maximizing agents. 

14The implications of this model and its relationship to the more general model of this paper 
are fully analyzed in Berglas (1976b). 
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A3. The population of optimal communities (to be defined immediately) are 
small relative to the size of national population. Such that the optimal 
allocation requires many communities. 

A4. Individual income is independent of the size of the community. This is 
Tiebout’s assumption that income is received as dividends. In our 
formulation this can cover more interesting cases, e.g. the supply of land 
for each community may be infinitely elastic at its alternative price (say, 
the marginal product in agriculture is fixed); or perfectly mobile, capital 
can be substituted for land in the model (lt(5). 

A5. At the optimal allocation we have just one congestion-prone public 
good. 

Given these assumptions, it is straightforward that maximizing (1) subject 
to (10) with N substituted for n can be used to solve for the optimal 
community size N* and the optimal local public facility y*. If all individuals 
are identical it is optimal to divide the national population N into m/N* 
(assumed an integer) identical communities. These communities will provide 
facility of size y* which will be exactly financed by the optimal toll P, =c2 
-N&A,. This is, of course, in complete analogy with our club model. It 
follows that competition among communities will result in the optimal 
allocation. Furthermore, once we introduce different economic classes, by 
complete analogy to the club model the nation can be divided into p/N*” 
= k” and mblN*b= kb segregated communities. If k” and kb are integers this 
allocation can be supported by a competitive price system. These results are 
essentially the Tiebout (1956) hypothesis. 

An interesting insight is gained by relaxing the assumption that in the 

optimum we have just one local public good. Thus, we shall now explicitly 
consider the case of two public goods; the extension to three or more goods 

is straightforward. Extending the model (1) and (10) to the case of two local 
public goods, using the same notation and adding superscripts to denote the 
two public commodities yields: 

S.t. Nx+Nc’(y’,n’v’)/n’+Nc2(y2,~z~~2)/~2-N~~~, (12) 

n1 =n2=N. (13) 

If there exists an internal solution to the above problem, the necessary 
conditions are: 

u2/u1 = c; - Nu,/u, , (14) 
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u,/u,=c:-Nu,Ju,, (15) 

Nu3/u1 =c;, (16) 

Nu,/u, =c:, (17) 

[Nu’(c;-Nu,/u,)-cl] +[Nu’(c; -Nu,/ul)-c21 =O. (18) 

Hence, where N = n, = n2, either the cost of each facility is just covered by 
the corresponding congestion toll, or the provision of one facility generates a 
deficit while the other generates a surplus of equal amounts. The surplus is 
thus used to finance the deficit. Alternatively a tax of 100 percent on the 
pure profit of the surplus generating service is called for.15 Since in practice 
it is difficult to collect these taxes it may lead to the conclusion that the 
service should be provided publicly although it can be profitably supplied by 
a private firm. 

It follows immediately from (18) that if one of the goods, say commodity 
1, is a pure public good such that u4 =ci =O, then good 2 must be a 
congestion-prone public good. In general, Tiebout’s (1956) community of 
finite optimal size implies that at least one of the goods supplied locally must 
be congestion-prone. 

It can also be shown that 

~u*(n’,n2)/an’ ~.~~,2=u1[c1-nu1(c:-nu~/u1)], (19) 

~~*(n’,n2)/~n21,,=.*=u,[c2-nv”(c~-nu,/u,)]. (20) 

Thus, at the optimum community size, either n1 and n2 are both optimal 
consumption groups, or one of them (say n,) is too small, so that 
&*(n’,n2)/dn’ >O and the other (say n2) is too large, such that 
&d*(n’,n2)/&x2 <O. 

If an optimum exists at N*, then dividing the nation into identical 
communities of size N* is a Pareto optimum, and can be supported by a 
competitive equilibrium. Competitive equilibrium is thus consistent even with 
several pure public goods, provided there exists at least one congestion-prone 
good. Thus this part of the Tiebout hypothesis holds with more than one 
public good. However, increasing the number of public goods may make 
segregated communities suboptimal. Using the example above, assume that 
public good 1 yields a deficit. By (18), public good 2 yields surplus revenues. 
Turning to (19) and (20) it follows that utility could be increased if there 
were more consumers of commodity 1 and less consumers of commodity 2. 

‘*This result is closely related to the Henry George Theorem that will be discussed later. 
Observe that in the derivation of these results it was not necessary to introduce land rents. 
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This cannot be done if all consumers are identical. But now suppose that 

there exists another class of consumers, type b, who do not consume 
commodity 2 at all. If their tastes with regard to the quality of commodity 1 
are identical (similar) to those of the first group,16 we (essentially) can 
increase n, and decrease n2, thereby increasing utility. It is possible to derive 
conditions where this case of mixed communities is consistent with 
competitive equilibrium, but this is beyond the scope of this paper. We can 
summarize this result as follows: the larger the number of local public goods, 
the larger the difference between classes in the quantity of different services 
demanded, and the smaller the difference in the quality demanded, the more 
likely that mixed communities will be optimal. 

In order to make our results comparable to those of Flatters, Henderson 
and Mietzkowski (1974), Stiglitz (1977) Arnott and Stiglitz (1979) and 
Arnott (1979) we reintroduce the assumption of A5 of only one public good 
and relax assumption A4 by introducing fixed land. Thus our problem is 
reduced to that of section 2, eqs. (1) through (5) where N is substituted for 
n.17 Applying the envelope theorem, we obtain 

du*(N)/dN=$[g,-x-v(g,s,-Nu,/u,)]. (21) 

Optimal community size N* requires, of course, du*(N)/dN =O. Thus, in the 
optimum the contribution of the marginal consumer to the financing of the 
provision of the public facility, g, -x, should equal his marginal social cost, 
v(g,s, - NM&L,). Consider first the case of pure public good uq =s2 =O. It 
follows from (21) that g, =x; thus wages exactly match private consumption, 

which means that land rents (the only other source of income) should exactly 
cover the cost of the public service, or that optimal tax is lOO”A on rent, and 
this tax should exactly cover costs of the public service. This result is termed 
the Henry George rule [see Flatters et al. (1974) Stiglitz (1977) and Stiglitz 
and Arnott (1979)]. 

Turning to the case where the public good is congestion prone, using the 
assumption of linear homogeneous g( . ) and some simple manipulations of 
(21) we get the following condition for optimum: 

Cg,A,+g,N,+g,s-Nu(g,s,-Nu,/u,)l-Ag,=O. 

“Identical in tastes with regard to quality means that if each class were to choose the quality 
of each services (given by 1’ and na) in a segregated consumption group of unrestricted n it 
would select the same pair y, na. The quantity demanded by each consumer type (a” and ab) are 
not necessarily identical. 

“Observe that since land per community is fixed, the marginal product of labor and per 
capita income charges with the size of the community. This may also represent the case where 
incresing the size of community increases local transportation costs. 



E. Berglas and D. Pines, Clubs, goods and models 157 

The expression in the brackets is the deficit associated with the provision 
of the public facility. Ag, is the aggregate land rent. Eq. (22) represents 
therefore an extended version of the Henry George suggested by Arnott 
(1979). 

We can now also remove restriction A5 (only one public good). It follows 
from the above analysis that the deficits of the local public goods should be 
financed by 100% tax on all pure profits, including land rent and the 
surpluses accumulated in the provision of some of the public goods. 

Furthermore, the principle that the deficits should be financed by the total 
sum of the pure profits is valid even when the production function of the 
private good g( . ) does not exhibit constant returns to scale, as assumed so 
far. In this more general case the deficits associated with the provision of 
public goods and perhaps production of the private good should be financed 
by the surpluses associated with the provision of other public goods and 
perhaps the production of the private good. It follows that even the extended 
Henry George rule is but a special case of the more general principle of 
financing losses and deficits in the optimal community. 

The introduction of land into the model has just minor effect on our 
discussion of the Tiebout hypothesis. If all potential locations are identical 
and the single local public good is a pure public good then a competitive 
equilibrium can exist and the population will segregate itself according to 
tastes. Once we introduce several public goods some of which are 
congestion-prone, then it follows from our analysis above that mixing of 
different classes may be optimal. 

Before concluding, it will be useful to discuss some other limitations of the 
Tiebout hypothesis. Individuals may differ not only in tastes but also in 
skills. If different skills are complementary in production this can lead to 
Pareto superiority of mixed communities.‘8 The implications of this case for 
market structure is discussed in Berglas (1976a). 

The optimality of competitive allocation will not hold if we relax two of 
the above assumptions. If the size of the optimal community population is 
large relative to the size of the total population and N/N* is not an integer 
then a stable competitive equilibrium is not possible. This case is discussed in 
Stiglitz (1977) and Helpman (1978). Another difficulty may arise if the 
potential areas for accommodating the communities differ one from the 
other. As shown by Buchanan and Goetz (1972), Flatters, Henderson and 
Mieszkowski (1974) and Stiglitz (1977), in this case optimal allocation 
requires a transfer of income from one community to another. Equilibrium 
without such transfers is suboptimal. 

“This statement does not do full justice to Tiebout. Berglas (1976a) and our analysis in this 
paper show that the distribution of people of different tastes among optimal communities is not 
random, and that people of similar tastes do tend to bunch together, though this process falls 
short of complete segregation. 
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5. Applications to transportation 

Roads are, by their nature, congestion-prone facilities. The utility of a road 
user depends on his use of the road (number of trips), the road’s attributes y 
(width, separation of traffic from different directions, surface quality, 
geometry, etc.), and total road use, nv (volume of traffic). Similarly, the costs 
of providing transportation services depends on road characteristics y, and 
the volume of traffic. Thus, the theory of congestion-prone goods, elaborated 
in sections 2 through 4, is directly applicable to the issues of resource 
allocation and road financing. We therefore use our findings to review and 
criticize some of the arguments in the existing literature. 

Transportation models customarily distinguish between user costs and 
costs borne by the authority that operates the road. This distinction can be 
introduced into our model by separating the cost function into two parts. 
With no private costs the optimal toll was given by (6’) regardless of n. 
When some of the costs are borne by the users, optimal toll is equal to total 
marginal cost minus private marginal cost. This is a straightforward 
extension. In order to facilitate comparisons with the rest of the paper we 
retain the formulation used in eqs. (1) and (10) and ignore private cost.” 
Once we allow y1 to change we can derive a theory of the optimal number of 
roads (N/n*). For the case of a given number of users n we get, by (9’), that 

cost - revenue 5 O-n* $ N. 

Furthermore by (11) we can relate the case of surpluses and deficits to the 
homogeneity of the utility and cost functions with respect to y and nv. 

It is useful to compare these results with existing transportation models. 
First, the above formulation emphasizes the importance of congestion in the 
analysis (and thereby of n). Thus, Mohring’s (1970) approach of lumping 
together ‘transportation, electricity generation and distribution, and most 
other facilities which are commonly classed as public utilities’ seems to 
obscure the fact that transportation is a congestion-prone good while the 
other commodities are not. Thus, in the case of transportation, it may be 
optimal to build different roads for different individuals [this is recognized in 

Mohring (1976)] which is not the case for other public utilities. 
The theory of congestion-prone goods tends to emphasize the advantages 

of adjusting characteristics to the tastes of the user and thus provide different 
roads and perhaps different transportation modes to people with different 
tastes. It is interesting, however, to investigate the conditions under which it 
will be optimal to provide a common facility to people of different tastes. To 
abstract from problems of optimal communities consider the case of 

‘9Observe that the cost of time is taken care of by introducing y and no into the utility 
function. 
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highways. Assume two economic classes a and b and let utility increase with 
the size of population. In terms of our analysis, this means that ~*‘(a’, nb, u”) 
is homogeneous of degree k > 0 in n” and P?‘,~’ and in the case of determinate 
size clubs that n*a > N” and n*b > Nb. In these two cases, mixing allows for 
increased utility as a result of the benefits of scale, but at the same time 
reduces utility as the two groups are forced to share the same road y. 
However, the benefits of economies of scale may be dominant; in this case, 
mixed roads will be optimal. Observe that if mixing is optimal then (6”) and 
(7”) are the necessary conditions. This implies that the optimal toll, p,, =c2 
- (n’upl/u~ + nbuf:(ub,), should be equal for every user [see also Oakland (1972) 
and Berglas (1976b)]. 

Furthermore, suppose again that n*‘>N” and n*b> Nb, and suppose that 
u*‘(nY,nb,iib) exhibits locally homogeneity of degree zero. In this case the 
optimal toll exactly covers the total cost. It may still be the case that two 
roads servicing homogeneous consumers will yield greater utility for both a 
and b. This causes the planner considerable problems: separate facilities 
whose optimal tolls do not cover their total cost may be preferable to one 
common facility whose toll does cover its total cost. The cost-benefit analysis 
of these two alternatives may be extremely difficult.21 

To summarize this argument one might say that the larger the differences 
in tastes and the smaller the degree of increasing returns, the more likely it is 
that segregated roads are optimal. This case for mixed consumption groups 
may be appropriate also for local public goods once we allow for mixed 
communities. 

In the existing transportation literature we find several additional 
restrictions that considerably affect the analysis. We turn now to the 
discussion of these restrictions: 

Rl. A congestion variable appears either in the utility function [as in Strotz 
(1965)], or the cost function [as in Mohring and Harwitz (1962)], but 

not in both. 
R2. The congestion function is defined to be homogeneous of degree zero in 

y and nv; more explicitly, the congestion variable is defined as nv/y. 
R3. The cost function is further restricted to the form22 

c(y,nv)=p,y+nv.t(nv/y). (23) 

“It is worthwhile to emphasize that increasing returns to scale here do not necessarily imply 
or are implied by increasing returns in the production of the club service. 

‘iThis issue is associated with the problem of optimal product differentiation in the face of 
increasing returns to scale [see, for example, Lancaster (1975)]. 

“The restricted cost function (where y and nv do not appear in the utility function) is 
common to Harwitz and Mohring (1962) and Mohring (1976), as well as to a group of urban 
models by Solow and Vickrey (1971), Hochman and Pines (1971) Mills and de Ferranti (1971) 
Dixit (1973), and others. 
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In a few cases decreasing costs are allowed for, in which case pYy is 
replaced by c’(y), where co’ > 0, co” < 0. 

R4. Consumers of different types (once they are allowed for) are forced to 
use the same road. 

R5. The discussion of the optimal consumer group is overlooked in the 
transport literature. 

Analysis of these restrictions helps to demonstrate the additional insight 
and results derived from the use of our model. Restriction Rl is an 
unnecessary abstraction of reality. It tends to obscure the fact that results 
with regard to both optimal price system and the analysis of surpluses and 
deficits depend on the characteristics of both utility and cost functions.23 

Consider now the restrictions of the congestion function R2 together with 
the cost function (23). In this case r, =0 and r, = 1, where, as before, ru and rc 

are the homogeneity of the utility function and the cost function with respect 
to y and nc. It follows from (11) that in this case the size of the optimal 
consumer group n is indeterminate. The optimal toll will then cover total 
icost regardless of n. Furthermore, by considering the restricted congestion 
and cost functions, it follows that individual utility is unaffected if there are n 
roads of size y/n and each individual uses his own road. It follows that these 
restrictions imply that roads can be considered as private goods, no utility is 
derived from sharing roads. 24 (Roads in this case belong to category 4 in 
terms of fig. 1). 

If, together with R2, we allow the cost of y to be decreasing in y (the cost 
per unit of width of the road falls with its width), it follows that r’,< 1 
everywhere, while r,=O. This implies that du*(n)/dn >O. It may be 
advantageous for the whole population to share the road, and revenues will 
always fall short of cost. This denies the possibility of an optimal population 
size n*, and the possibility that revenues may cover or even exceed costs in 
the case of decreasing costs. It seems to us that models assuming that either 
constant or decreasing average costs everywhere and imply that utility is 
always increasing (or at least not decreasing) in n are inconsistent with 
empirical observations. Therefore, it may be useful to consider models with 
variable returns to scale, as we have done. 

Turning to restriction R4, it is necessary to redefine congestion for a 
nonhomogeneous population. This is done by substituting cniui for no. 
Consider now the case of two types, a and b. It follows from R2 and (23) 
that u*‘(n”,nb,fib) is zero homogeneous in na and nb and therefore, by the 
analysis in section 3, it is optimal to have separate roads for type u and type 

230ne case should be perhaps emphasized in the case of transportation models. If working 
time is institutionally fixed, and congestion affects commuting time, then it follows that the 
congestion variable should be included in the utility function. 

?his was observed and used by Hochman and Pines (1971). See also Berglas (1981). 
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b. This is generally not recognized in the transportation literature.25 
Furthermore, it follows from our analysis that separation according to tastes 
and income may still be optimal where R2 and (23) do not hold, and even 
where r,,=O, r,< 1. 

The distinction made in this paper between club and local public goods 
also applies to the analysis of transportation. For example, neighborhood 
roads can be dealt with within the context of the club model. Thus it follows 
from section 3 that in the optimal allocation the toll can be expected to 
cover the cost of the infrastructure. Main arteries are local public facilities. 
Therefore it follows from our discussion in section 4 that they should be 
considered in conjunction with other local public goods. A priori their toll 
revenue minus cost can yield either surpluses or deficits.26 

The extension of the analysis to cover peak load problems is 
straightforward [see Berglas and Pines (1978)]. It can be demonstrated in 
this case that when roads are of the optimal configuration and the size of the 
sharing group is optimal then tolls will exactly cover deficits. Furthermore, 
given the appropriate conditions segregation according to preferences 
remains optimal. 

To sum up: we have shown that the transportation model is an 
application of the model of congestion-prone goods and that all the results of 
this model carry through. We have demonstrated that various restrictions 
imposed on the analysis of the transportation models in previous studies are 
not necessary for the analysis of the problem. Furthermore, these restrictions 
prevent the possibility of a full analysis of the effect of both size of 
population and diversity of tastes and incomes on the optimal transportation 
network and its financing. Although the analysis has relied heavily on utility 
functions, the results have been carefully interpreted in terms of demand 
curves, optimal prices, surpluses and deficits generated by optimal tolls. 
More specifically, we have shown that utility increases (falls) if optimal tolls 
generate surpluses (deficits). Thus the use of our results in cost-benefit 
studies does not seem insurmountable. 

25See for example, Harwitz and Mohring (1962) and Strotz (1965) who claim that roads with 
mixed population are optimal when their underlying model assumes both R2 and (23). 
Oakland’s (1972) more general model suffers the same weakness. Mohring (1976, ch. 4) provides 
a numerical example where it may be optimal to build separate roads for people who differ in 
their valuation of time. In his example he just minimizes total cost. Though his example is 
considerably less general than our analysis his example does illustrate the general principle 
derived in this paper. 

26Strotz (1965), who uses a model similar to ours and assumes that roads are the only public 
good and that the production of the private good does not exhibit increasing returns to scale 
also conjectures that ‘. in improving the urban road network, we encounter adverse 
economies of scale. If so, road expenditures should be less than toll receipts, such as in an 
industry of decreasing returns, costs net of rents should be less than sales receipts (rents 
positive).’ If this is the case, it follows from our analysis in section 4 that the community cannot 
be at its optimal size. 
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