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1 Introduction

It is now well known that dynamic general equilibrium real business cycle (RBC) models with

production externalities and other types of nonconvexities may admit equilibria that are locally

non-unique or indeterminate. Some researchers, following the lead of Farmer and Guo (1994),

have exploited this possibility to derive models where realizations of non-fundamental “sunspot”

variables play a prominent role in driving business cycle fluctuations.1 One critique of this ap-

proach has been that the calibrations of the structural models necessary to obtain indeterminacy

are empirically implausible.2 However, a more recent generation of RBC models with a variety

of different nonconvexities has been successful at delivering indeterminate equilibria using empiri-

cally plausible calibrations of the structural model. Furthermore, RBC models with indeterminate

equilibria in combination with sunspot and demand shocks can explain a variety of features of the

macroeconomic data at business cycle frequencies that more traditional RBC models with deter-

minate equilibria and technology (supply) shocks have a difficult time explaining (see, for example,

Wen (1998), Benhabib and Wen, (2004)). Consequently, many have come to view these models of

sunspot—driven business cycles as quite promising.

A second critique of sunspot equilibria in RBC models with nonconvexities is that these equi-

libria are unstable under adaptive learning dynamics. Specifically, suppose that agents possess the

correct reduced form specification of the model but must learn the true, i.e., rational expectations

equilibrium (REE) parameterization of the system using some kind of adaptive inference technique

such as recursive least squares. While agents are attempting to learn this parameterization, their

forecasts of future endogenous variables will necessarily differ from rational expectations forecasts.

The question, then, is whether their adaptive learning process leads them toward or away from the

REE. If the learning process leads agents to the REE, that equilibrium is said to be stable under

adaptive learning, or “expectationally stable” (E-stability).3 Otherwise the REE is expectationally

unstable. Clearly, stability under adaptive learning provides an important robustness check on the

plausibility of REE.

1See, e.g. Farmer (1999) or Benhabib and Farmer (1999) for surveys of this literature.
2See, e.g. Aiyagari (1995).
3See, e.g. Evans and Honkapohja (2001) for an introduction to the stability of REE under adaptive learning. The

stability of indeterminate REE under adaptive learning dynamics has been demonstrated, e.g., by Woodford (1990),
Duffy (1994) and Evans and Honkapohja (1994), in the context of simple, dynamic nonlinear models, e.g. overlapping
generations models. Demonstrating the stability of sunspot equilibria in multivariate, RBC—type models has proved
to be more elusive.
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Evans and Honkapohja (2001) report numerical calculations showing that the REE of the

Farmer-Guo (1994) model is unstable under adaptive learning when the model is calibrated accord-

ing to Farmer and Guo’s own parametric specification. Packalén (1999) goes further and shows,

numerically, that there exist calibrations of the Farmer-Guo model for which the REE is both in-

determinate and E-stable, but these calibrations are far away from those thought to be empirically

relevant.4 Rudanko (2002) explores the stability, under adaptive learning, of the indeterminate

REE of the Schmitt-Grohé-Uribe (1997) model. She shows, numerically, that the empirically plau-

sible sunspot equilibria of this model are unstable under adaptive learning. Evans and McGough

(2002) also examine the stability under adaptive learning of indeterminate REE in the Schmitt-

Grohé-Uribe (1997) model as well as in the Farmer—Guo (1994) and Benhabib and Farmer (1996)

models. They identify what they call a “stability puzzle.” For a general reduced—form system of

equations that includes all three of models as special cases, they can find parameter regions for

which the rational expectations equilibrium is both indeterminate and stable under adaptive learn-

ing. However, when they restrict attention to versions of the reduced form model consistent with

calibrations of the three structural models, they find that the sunspot equilibria are always unstable

under adaptive learning.

In this paper we offer a resolution to the stability puzzle identified by Evans and McGough

(2002). Specifically, we study a general, reduced-form system of equations that encompasses all of

the one—sector RBCmodels that have appeared in the literature. We provide conditions under which

the AR(1) REE solution to this system is 1) E—stable, 2) indeterminate, and 3) jointly E-stable and

indeterminate. We next show how three RBC models with nonconvexities, which have appeared in

the literature on sunspot-driven business cycles — models due to Farmer and Guo (1994), Schmitt-

Grohé and Uribe (1997) and Wen (1998) — have reduced forms that map into our general reduced

form system. Using the conditions we derived for indeterminate and E—stable REE in the general

system, we show analytically how the structural parameter restrictions imposed by these three

models prevent REE from being simultaneously indeterminate and stable under adaptive learning

behavior. In the appendix, we show how our analysis extends to several alternative AR(1) REE

solutions as well as to the class of “common factor” solutions studied by Evans and McGough (2002,

2003). Finally, we discuss the generality of our findings and offer a resolution to the puzzle identified

4Packalén (1999) does provide analytic results showing that RBC models with determinate REE are E—stable, but
he is unable to provide analytic results in the case of indeterminate REE of RBC models — the case we consider in
this paper.
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by Evans and McGough. Specifically, we show that it is possible to find parameterizations of the

general, reduced-form model that yield indeterminate and E-stable REE. However, as we explain,

such parameterizations should be inconsistent with structural model restrictions as confirmed by

our analytic findings for the three RBC models with nonconvexities. Thus it appears that there

really is no puzzle: the REE of one-sector, RBC models that are appropriately calibrated according

to structural model restrictions cannot be simultaneously indeterminate and E-stable.

The results reported in this paper comprise several important contributions to the literature.

First, as our literature review reveals, previous research on the stability under adaptive learning,

of sunspot equilibria in RBC models have relied on numerical analyses to establish findings. For

example, Evans and McGough (2002)’s findings are based on a numerical analysis of the equilibria

of all three models using the same calibrations adopted by the researchers who developed those

models. By contrast, in this paper we provide exact, analytic conditions under which the REE of a

general, reduced—form RBC model can be both indeterminate and E—stable. To our knowledge this

is the first paper to provide such conditions for this “irregular” class of RBC models.5 Second, using

these analytic conditions, we show how structural model restrictions rule out the possibility that the

REE of three, one—sector RBC models that have appeared in the literature, can be simultaneously

indeterminate and E—stable. Finally, and perhaps most importantly, our finding that the REE

of three sunspot-driven RBC models are unstable under adaptive learning dynamics represents a

critique of these models that is distinct from a more often heard critique of these models — that

indeterminacy of the REE requires empirically implausible calibrations. Our, “instability—under

adaptive—learning” critique should cast further doubt on the plausibility of this class of RBC models

as descriptors of business cycle phenomena.

2 General conditions for E-stability and Indeterminacy

We begin by presenting a general reduced form system of equations that characterizes equilibria in

a variety of different one-sector RBC models. We derive our main findings using this general re-

duced form. In particular, we provide conditions under which the rational expectations equilibrium

is 1) “learnable” or expectationally stable (E—stable) under adaptive learning behavior and 2) in-

determinate, thereby allowing non—fundamental sunspot variable realizations, or “sunspot shocks”

5Indeed, Evans and Honkapohja (2001, p. 386) suggested that the absence of analytic results for this class of
models was an open area of research.
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to drive the business cycle, either in concert with or without fundamental technology shocks.6 We

then combine the two sets of conditions to yield necessary conditions for both E—stability and

indeterminacy of equilibrium.

2.1 Reduced form model

The general reduced form of a sunspot-driven RBC model can be characterized by the following

system of 2 equations:

kt+1 = dkkt + dcct, (1)

ct = bkEtkt+1 + bcEtct+1, (2)

where, for simplicity, we assume there are no fundamental shocks. Here, kt denotes the capital

stock at time t, ct denotes consumption at time t, and dk, dc, bk and bc are coefficients. The

REE is found by assuming that agents use equations (1—2) to form expectations for future values

of capital and consumption. Since we are interested in the stability of this REE under adaptive

learning, we instead assume that while agents know the functional form of these equations, they

are initially uninformed as to the correct, REE coefficient values for these equations. Specifically,

let y0t = (kt, ct), be the vector of endogenous variables and imagine that agents have a perceived

law of motion (PLM) of the AR(1) form:

yt = a0 + ayyt−1 + asst + �t

where st represents a vector of non-fundamental expectation errors or sunspot variables and �t is a

vector of random variables with 0 mean. We focus on these “general form” AR(1) representations

as they are the ones that have been used in the RBC literature. In the appendix we show that our

findings in this section also extend to “common-factor” AR(1) representations, studied by Evans

and McGough (2002, 2003).

As equation (1) is already consistent with the AR(1) representation —it does not involve expec-

tations of future endogenous variables, so there can be no expectation errors or sunspot shocks — we

can assume that agents know the coefficients of equation (1), dk, dc.
7 Alternatively, the coefficients

6If the REE of the class of RBC models we examine is determinate or locally unique, then expectational errors
must be a unique function of fundamental technology shocks alone; non—fundamental sunspot shocks cannot matter.

7Packalén (1999) and Evans and McGough (2002) make the same simplifying assumption.
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of this equation could be learned as well, though this will not change any of our results. Hence the

relevant perceived law of motion consists of the single equation for ct which we write as

ct = a1 + akkt−1 + acct−1 + afft + εt, (3)

where ft is the sunspot variable, and ε is a noise variable with 0 mean. This perceived law of

motion corresponds to a particular, general form AR(1) solution class where it is assumed that

agents cannot observe current consumption and capital, even though capital is predetermined, and

so is known at time t. It is possible to relax this timing assumption for capital, as we show in the

appendix, without changing any of our results. We also show in the appendix that we can dispense

with the constant term, a1, without changing our results.

2.2 Sunspot REE

Given the PLM (3), agents form expectations (in lieu of rational expectations) as follows:

Etct = ct = a1 + akkt−1 + acct−1 + afft (4)

Etkt = dkkt−1 + dcct−1 (5)

Etkt+1 = dkEtkt + dcEtct (6)

Etct+1 = a1 + akEtkt + acEtct (7)

Substituting (4)—(5) into (6) and (7) and collecting terms, we get

Etct+1 = a1(1 + ac) + ak(dk + ac)kt−1 + (a
2
c + akdc)ct−1 + acafft (8)

Etkt+1 = a1dc + (d
2
k + dcak)kt−1 + dc(dk + ac)ct−1 + dcafft (9)

Finally, substituting (8) and (9) into (2), we get a mapping, T , between the perceived law of motion

and the actual law of motion for ct:

ct = T (a1) + T (ak)kt−1 + T (ac)ct−1 + T (af )ft + εt, (10)

where

T (a1) = a1[dcbk + bc(1 + ac)] (11)

T (ak) = bk(d
2
k + dcak) + bc(akdk + acak) (12)

T (ac) = bkdc(dk + ac) + bc(a
2
c + akdc) (13)

T (af ) = af (bkdc + bcac) (14)
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The actual law of motion (10) together with equation (1) comprise the data generating process for

the economy under adaptive learning.

The rational expectations solution where agents condition on sunspots is just a fixed point of

this T-mapping under the restriction that af 6= 0; if af = 0, sunspots would not enter into agents’

expectations. RE solutions can be found by application of the method of undetermined coefficients,

i.e., by setting the coefficients in the perceived law of motion (3) equal to their corresponding T-

map coefficients in the actual law of motion, (10). Notice that the coefficient af appears only in

the map T (af ), so the restriction that af 6= 0 immediately implies that bkdc + bcac = 1. Using the

latter restriction, application of the method of undetermined coefficients yields the following set of

sunspot REE:

a1 = 0, ak = −
bkdk
bc

, ac =
1− bkdc

bc
, with af indeterminate. (15)

Notice that there is a continuum of such sunspot REE, indexed by different values for af .

2.3 Conditions for E-stability

We next examine the stability of these sunspot REE under adaptive learning, using the concept of

expectational (E)—stability. Specifically, let a be the vector of coefficients in the perceived law of

motion and T (a) be the vector of coefficients in the actual law of motion. A rational expectations

solution is said to be expectationally stable, or E-stable if it is locally asymptotically stable under

the equation

da

dτ
= T (a)− a.

That is, if this differential equation, evaluated at the REE values for a, is locally stable. The

time variable τ in this equation refers to notional time.8 Intuitively, we are checking whether the

adjustment of the PLM coefficients toward the ALM coefficients is leading agents toward the REE

and not away form it, within a small neighborhood of the REE. RE solutions are said to be E-stable

if all eigenvalues of d(T (a)−a)
da , when evaluated at the solution, have negative real parts.

Turning specifically to the set of sunspot REE, let a = (a1, ak, ac, af )
0 and

T (a) = (T (a1), T (ak), T (ac), T (af ))
0. The expression for d(T (a)−a)

da , evaluated at the REE values, is

8It turns out that there is a deep connection between the stability of the RE solution under this differential
equation, and the stability of the RE solution under a real-time adaptive learning algorithm such as recursive least
squares learning. See Evans and Honkapohja (2001) for details.
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given by: ⎡⎢⎢⎢⎣
bc 0 0 0
0 bcdk −bkdk 0
0 bcdc 1− bkdc 0
0 0 bcaf 0

⎤⎥⎥⎥⎦ , (16)

where af is a REE value for af . The eigenvalues of this matrix are determined by the equation

(bc − λ)(−λ)[λ2 + (bkdc − bcdk − 1)λ+ bcdk] = 0.

The first two eigenvalues are given by:

λ1 = bc, (17)

λ2 = 0. (18)

The other two eigenvalues are determined by the quadratic formula

1− bkdc + bcdk ±
p
(1− bkdc + bcdk)2 − 4bcdk
2

The necessary conditions for both of these roots to be negative are

λ3λ4 = bcdk > 0 (19)

λ3 + λ4 = 1− bkdc + bcdk < 0 (20)

The presence of a zero eigenvalue (18) can be problematic in assessing the stability of a system

under adaptive learning. The zero eigenvalue is clearly due to the presence of the sunspot variable

ft in the perceived law of motion. As it turns out, the differential equation for af is given by

daf
dτ

= af (bkdc + bcac − 1),

which is a separable equation that can be directly integrated as:

af (τ) = af (0) exp

½Z τ

0
(bkdc + bcac(u)− 1)du

¾
.

So long as ac → 1−bkdc
bc

exponentially as τ → +∞, af will also converge to a finite value, so the

zero eigenvalue will not hinder our analysis of the stability of the system under adaptive learning.

We therefore choose to ignore it and state the necessary conditions for E—stability as follows.

Proposition 1 The necessary conditions for the system (1) and (2) to be E-stable are (19), (20)

and

bc < 0. (21)

Condition (21) in particular will play a critical role in our subsequent analysis.
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2.4 Conditions for indeterminacy

Indeterminacy refers to local nonuniqueness of the solution paths leading to a RE solution. This

local nonuniqueness is what allows nonfundamental sunspot shocks to enter into expectations and

thus play a role in driving the business cycle; if the REE was instead determinate, expectations

would have to be a unique function of fundamental variables only, and sunspot shocks would play

no role. Hence, the importance of establishing conditions under which the REE is indeterminate.

Note that indeterminacy of the RE solution path is quite distinct from stability of the REE under

adaptive learning dynamics.

To assess whether the REE is indeterminate, we begin by imposing the rational expectations

assumption that Etyt+1 = yt+1 and rewriting the general reduced form system (1-2) as:"
dk dc
0 1

# "
kt
ct

#
=

"
1 0
bk bc

#Ã"
kt+1
ct+1

#
+

"
0

εt+1

#!

where εt+1 = ct+1 − Etct+1, is the forecast error (or sunspot variable). This RE system can be

rewritten as: "
kt+1
ct+1

#
= J

"
kt
ct

#
+Rεt+1, (22)

where

J =

"
dk dc
− bkdk

bc
1−bkdc

bc

#
and R =

"
0
−1

#
The determinant and trace of the Jacobian, J can be obtained as

det(J) =
dk
bc
,

tr(J) =
1− bkdc + dkbc

bc
.

Indeterminacy of equilibrium in this model requires that both eigenvalues of J lie inside the

unit circle.9 Since the trace of the Jacobian measures the sum of the roots and the determinant

measures the product, the necessary conditions for indeterminacy are

−1 < det(J) < 1, (23)

−1− det(J) < tr(J) < 1 + det(J). (24)

9See, e.g. Farmer (1999) for the general conditions necessary for equilibrium to be indeterminate in systems such
as (1—2). For the class of one—sector RBC models examined here with one predetermined variable (capital) and one
non-predetermined variable (consumption), indeterminacy of REE obtains if the dynamical system (22) is a sink. By
contrast, determinacy of REE requires one eigenvalue to lie outside and one to lie inside the unit circle so that the
dynamical system is a saddle.
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Proposition 2 The necessary conditions for the system (1—2) to have stationary sunspot equilibria

are:

−1 < det(J) =
dk
bc

< 1, (25)

−1− det(J) < tr(J) =
1− bkdc + dkbc

bc
< 1 + det(J). (26)

2.5 Necessary conditions for both E-stability and indeterminacy

If the reduced form model has indeterminate equilibria that are also E-stable, conditions (19) -

(21), (25) and (26) must be satisfied simultaneously. Consider the condition (19). This condition

implies that det(J) = dk/bc > 0. Combining this condition with (25) we find that the determinant

of the Jacobian must satisfy

0 < det(J) =
dk
bc

< 1. (27)

Furthermore, (21) and (27) together imply that

dk < 0.

Similarly, the combination of (20), (21) and (26) requires that

0 < tr(J) =
1− bkdc + dkbc

bc
< 1 + det(J). (28)

Proposition 3 The E-stability requirement imposes further restrictions on the coefficients of the

sunspot model (RBC model with indeterminate equilibria). It requires that conditions (21), (27),

and (28) hold simultaneously. In particular, (21) states that

bc < 0.

Note that a positive determinant implies that both roots of J have the same sign, and a positive

trace implies that the sign of the roots is positive. Hence we have the following corollary.

Corollary 1 The necessary conditions for the stationary sunspot equilibria in (1—2) to be E-stable

are that both roots of the Jacobian matrix (22) have positive real parts and bc < 0.

Let us consider first, the requirement in Corollary 1 that both roots of the Jacobian matrix

(22) have positive real parts. This condition can be viewed as a restriction to systems that display

empirically plausible adjustment dynamics. Specifically, we will find it useful to work with the

following definition.
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Definition 1 The adjustment dynamics of the RE system (22) are empirically plausible if the

eigenvalues of the Jacobian matrix J are positive, or in the case of complex eigenvalues, if the real

part of the eigenvalues is positive.

By empirically plausible, we mean that there is no period-by-period oscillatory convergence to

the steady state as would occur if one or both of the two eigenvalues of J were negative. Instead,

the dynamics should involve monotonic or slow cyclic adjustment to the steady state as would

occur if both eigenvalues were positive or if the real part of a complex pair of eigenvalues were

positive. The former adjustment dynamics are typical in standard RBC models (with determinate

REE) while the latter appear in RBC models with indeterminate REE and are in line with observed

impulse responses in aggregate data for output, investment and consumption, (see, e.g., Farmer

1999, section 7.6.2). Hence, we label such systems as having “empirically plausible adjustment

dynamics.” If both eigenvalues are positive or have positive real parts when they are complex,

their sum, the tr(J), must be positive, and they must have the same sign so that their product,

det(J), is positive. Interestingly, these two conditions are already contained in (27) and (28). As

we show in the appendix, a class of “common factor” REE solutions to the RBC model, examined

by Evans and McGough (2002), does not satisfy Definition 1.

Consider next the requirement in Corollary 1 that bc < 0. This restriction is consistent with

condition (27), i.e. det(J) > 0, so long as dk < 0, and satisfaction of condition (28), i.e. tr(J) > 0,

further requires that 1−bkdc+dkbc < 0. Therefore, it is possible for REE to be both indeterminate

and E—stable (satisfying the necessary conditions in Corollary 1) and having adjustment dynamics

that satisfy Definition 1. Thus, Evans and McGough (2002) are correct in their claim, based on

a numerical analysis, that there exist parameterizations of the general, reduced form model (1—2)

that give rise to E-stable, indeterminate, “general—form” REE.

On the other hand, Corollary 1 rules out another parameterization of the reduced form system

that would satisfy Definition 1, specifically, bc > 0 and dk > 0, along with the further (positive trace)

restriction that 1− bkdc+dkbc > 0. As we shall see, it is the latter parameterization of the reduced

form system that emerges from structural model restrictions imposed by researchers working with

sunspot-driven RBC models. Hence, the parameterizations of the reduced-form system that Evans

and McGough study numerically are not ones that are consistent with structural model restrictions,

and therein lies our resolution to their instability puzzle.
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Indeed, in the next three sections, we show, analytically, that in the three leading sunspot—

driven RBC models, model restrictions always imply that bc > 0. Specifically, we first show how

linearized versions of these models map into the reduced form system (1-2) that we examined in

this section. We then demonstrate analytically that under the parameter restrictions placed on

the structural models, the REE cannot be simultaneously indeterminate and stable under adaptive

learning. We then discuss our resolution of the puzzle identified by Evans and McGough more

generally in section 6.

3 The Wen (1998) model

The economy in Wen’s (1998) model consists of a large number of identical consumer-producer

households who solve:

max
{ct,nt,kt,ut}

E0

∞X
t=0

βt
Ã
log ct −

n1+γt

1 + γ

!
(29)

subject to:

ct + xt = et (utk
α
t )n

1−α
t (30)

kt+1 = xt + (1− δt)kt (31)

et = (utkt)
αηn

(1−α)η
t (32)

δt =
1

θ
uθt (33)

for a given initial stock of capital, k0 > 0. We adopt Wen’s (1998) notation. The choice variables

are consumption, ct, the number of hours worked, nt, the capital stock, kt, and the rate of capacity

utilization, ut ∈ (0, 1). The restrictions on the parameters of the structural model are: 0 < α < 1,

0 < β < 1, γ ≥ 0, η > 0, and θ > 1. The production externality, et, is a function of the mean

productive capacity, utkt, and mean labor hours, nt. The rate of depreciation of the capital stock,

δt ∈ (0, 1), is an increasing function of the capacity utilization rate, ut. The restriction that θ > 1

ensures that the optimal capacity utilization rate, ut, lies in the interval (0, 1). The restriction that

η > 1 ensures increasing returns to scale in production which in important both for generating

indeterminacy and for allowing capacity utilization to affect the extent of aggregate returns to

scale. Indeed, Wen (1998) showed that the addition of variable capital utilization could significantly

reduce the degree of increasing returns to scale needed to deliver indeterminate equilibria (e.g. by

comparison with Farmer and Guo (1994)), from empirically implausible to empirically plausible
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levels. This feature of the Wen model has made it an attractive choice for other researchers

interested in empirical applications of sunspot-driven RBC models e.g. Harrison and Weder (2002)

use the Wen model with sunspot shocks to explain a number of features of the data found over

the Great Depression era. Benhabib and Wen (2004) use the Wen model to show how shocks to

aggregate demand can explain a number of business cycle anomalies that have eluded standard

RBC models (without indeterminate equilibria).

Following Wen (1998), we can first solve for the optimal capacity utilization rate, ut, and using

this expression, derive a reduced—form aggregate production function of the form:

yt = ka
∗

t nb
∗
t ,

where a∗ = α(1 + η)τk, b
∗ = (1− α)(1 + η)τn, and τk =

θ−1
θ−α(1+η) , τn =

θ
θ−α(1+η) .

3.1 The reduced form

The Wen (1998) model can be linearized and written as a reduced form system of 2 equations:"
kt+1
nt+1

#
= J

"
kt
nt

#
+Rεt, (34)

where

J =

"
1 (1 + γ)c/k

(1−β)(1−a∗)
1+γ−βb∗

1+γ−b∗+[1+β(a∗−1)](1+γ)c/k
1+γ−βb∗

#
.

3.2 Requirements for indeterminacy

For this model to have multiple stationary sunspot equilibria, the conditions (23) and (24) must

be satisfied. After lengthy algebra, one can show that

det(J) =
1 + γ − b∗ + a∗(1 + γ)c/k

1 + γ − βb∗
(35)

=
1

β

∙
1 +

η(1 + γ)(1− β)τn
1 + γ − βb∗

¸
, (36)

tr(J) = 1 + det(J) +
(1 + γ)(1− β)(1− a∗)c/k

1 + γ − βb∗
. (37)

The crucial insight of (36) is that when there is no externality (η = 0), det(J) = 1/β > 1, which

violates the condition (23). For there to be indeterminacy, therefore, the second term of (36) must

become negative as the externality becomes positive. Since η(1 + γ)(1 − β)τn > 0, this requires

that the denominator be negative:

1 + γ − βb∗ < 0. (38)
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Proposition 4 A necessary condition for indeterminacy of REE in the Wen (1998) model is (38).

3.3 E-instability

To check the conditions for E-stability, we need to convert the system (34) into the form of (1—2).

After this is done, the mapping from the parameters of the model to those of (1—2) is given by:

bc =
βb∗ − (1 + γ)

b∗ − (1 + γ)
, (39)

bk =
(β − 1)[b∗ − (1 + γ)(1− a∗)]

b∗ − (1 + γ)
, (40)

dk = 1− a∗(1 + γ)c/k

b∗ − (1 + γ)
, (41)

dc =
(1 + γ)c/k

b∗ − (1 + γ)
. (42)

We can now use the conditions derived in the previous section to examine if the REE of this model

is E-stable. Consider first equation (39). In Proposition 4 we have shown that βb∗ − (1 + γ) > 0.

Since 0 < β < 1, this implies that b∗ − (1 + γ) > 0. It is immediately evident that

bc =
βb∗ − (1 + γ)

b∗ − (1 + γ)
> 0,

which exactly violates the required condition for E-stability (21).

Proposition 5 The REE of the Wen (1998) model cannot be both indeterminate and E-stable

since condition (21) is always violated when the REE is indeterminate.

4 The Farmer and Guo (1994) model

In Farmer and Guo’s (1994) model a large number of identical consumer-producer households solve:

max
Ct,Lt

E0

∞X
t=0

ρt
Ã
logCt −A

L1−γt

1− γ

!

subject to:

Kt+1 ≤ Yt + (1− δ)Kt − Ct

Yt = ZtK
α
t L

β
t

Zt = Zθ
t−1ηt
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Here we are using the same notation as in Farmer and Guo (1994): Ct denotes consumption,

Lt denotes labor supply, Kt is the capital stock, Yt is output, Zt is a productivity shock and ηt

is an i.i.d. random variable with unit mean. The structural model parameter restrictions are:

γ < 0, 0 < ρ < 1, 0 < δ < 1, 0 < θ < 1 and, most importantly, α + β > 1, so that the

technology exhibits increasing returns.10 However, from the perspective of individual producers,

the production technology is Cobb-Douglas with constant returns, where a and b represent capital

and labor’s shares of output, respectively, and a+ b = 1. Farmer and Guo assume that

α = a/λ, β = b/λ (43)

with 0 < λ < 1 to insure increasing returns to scale.

4.1 The reduced form

Omitting fundamental shocks, Zt, the model can be reduced to:

Yt = Kα
t L

β
t , (44)

ACt/L
γ
t = bYt/Lt, (45)

Kt+1 = Yt + (1− δ)Kt − Ct, (46)

1

Ct
= ρEt[

1

Ct+1
(a

Yt+1
Kt+1

+ 1− δ)], (47)

where equations (45) and (47) are the first order conditions from the representative agent’s problem.

The two dynamic equations can be linearized as

ct = Etct+1 + ρ
y

k
(Etkt+1 −Etyt+1), (48)

kt+1 =
y

k
yt + (1− δ)kt −

c

k
ct. (49)

Combining the linearized versions of (44) and (45),

yt = αkt + βlt,

ct + (1− γ)lt = yt,

we obtain:

yt =
β

β − 1 + γ
ct −

α(1− γ)

β − 1 + γ
kt.

10An alternative interpretation of the latter restriction involving monopolistically competitive firms is also possible
— see Farmer and Guo (1994) for the details.
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Substituting this equation into the two dynamic equations (48-49), we get

ct = (1 + ρa
y

k

β

1− β − γ
)Etct+1 + ρa

y

k
[1− α(1− γ)

1− β − γ
]Etkt+1,

kt+1 = [
y

k

α(1− γ)

1− γ − β
+ 1− δ]kt − (

c

k
+

y

k

β

1− γ − β
)ct.

Mapping this system into our general reduced form representation, (1—2), the first critical coefficient

is

bc = 1 + ρa
y

k

β

1− β − γ
,

=
1− γ − βρ(1− δ)

1− β − γ
,

where the second equality comes from the steady state version of (47): ρayk = 1 − ρ(1 − δ). The

second critical coefficient is

dk =
y

k

α(1− γ)

1− γ − β
+ 1− δ,

=

1−ρ(1−δ)
ρa α(1− γ) + (1− δ)(1− γ − β)

1− γ − β
,

where the second equality again comes from using (47).

4.2 Requirements for indeterminacy

We only need a subset of the necessary conditions for indeterminacy to make our point. As we

proved in section 2.4, one necessary condition for indeterminacy is that

−1 < dk
bc

< 1.

In the Farmer—Guo model we have

dk
bc
=

1−ρ(1−δ)
ρa α(1− γ) + (1− δ)(1− γ − β)

1− γ − βρ(1− δ)
.

Substituting equation (43) into (4.2) and simplifying terms, we get

dk
bc

=

1
ρ{

1
λ(1− γ)[1− ρ(1− δ)] + ρ(1− δ)(1− γ − b

λ)}
1− γ − b

λ(1− δ)ρ
,

=
1

ρ

(
1 +

(1− 1
λ)(1− γ)[ρ(1− δ)− 1]
1− γ − b

λ(1− δ)ρ

)
. (50)
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Suppose the economy has constant returns to scale (λ = 1). In that case equation (50) indicates

that dk
bc
= 1/ρ > 1, since the discount factor ρ must be less than 1. Of course in the case of constant

returns, the condition for indeterminacy is violated. For the equilibrium to be indeterminate, we

need increasing returns (λ < 1), and we further require that the second term in the bracket of

expression (50) must be negative. Setting λ < 1, it is easy to verify that the numerator of this

second term is positive, given that 1− 1/λ < 0, γ < 0, and ρ(1− δ)− 1 = −ρay/k < 0. Therefore,

for indeterminacy to obtain, the denominator of this second term must be negative, that is, we

must have that

βρ(1− δ) > 1− γ, (51)

where we have made use of the definition of β given in (scale). Since 0 < ρ < 0 and 0 < 1− δ < 1,

it further follows that:

β > 1− γ. (52)

Proposition 6 A necessary condition for indeterminacy of REE in the Farmer and Guo (1994)

model is (52).

4.3 E-instability

We can now show that if the Farmer and Guo (1994) model satisfies the above necessary condition

for indeterminacy, then the REE of that model must be E-unstable under adaptive learning. We

only have to check the necessary condition

bc < 0.

In this model,

bc =
βρ(1− δ)− (1− γ)

β − (1− γ)
.

If condition (52) holds, the numerator must be positive. Combining condition (51), we have

bc =
βρ(1− δ)− (1− γ)

β − (1− γ)

>
1− γ − (1− γ)

β − (1− γ)
= 0

It follows that the equilibrium of this model is E-unstable under adaptive learning.

Proposition 7 The REE of the Farmer—Guo (1994) model cannot be both indeterminate and E-

stable since condition (21) is always violated when the REE is indeterminate.
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5 The Schmitt-Grohé and Uribe (1997) model

We focus on the simpler version of Schmitt-Grohé and Uribe’s (1997) model where there is no capital

income tax. We consider a discrete-time version of the model with labor income taxes only and

adopt Schmitt-Grohé and Uribe’s (1997) notation. A large number of identical consumer-producer

households solve:

max
Ct,Ht

E0

∞X
t=0

βt (logCt −AHt)

subject to:

Kt+1 ≤ Yt + (1− δ)Kt − Ct −G

Yt = Ka
t L

b
t

G = τtbYt

Here, Ct denotes consumption, Ht is hours worked, Kt is the capital stock, and Yt is output

produced according to a Cobb-Douglas technology with constant returns, a+ b = 1. Government

revenue, G, is obtained through taxes on labor income at rate τt ∈ (0, 1). The discount factor

satisfies 0 < β < 1, as does the rate of depreciation of the capital stock, 0 < δ < 1, and we assume

A > 0.

5.1 The reduced form

This model can be reduced to

Yt = Ka
t H

b
t (53)

ACt = b(1− τt)Yt/Ht (54)

Kt+1 = Yt + (1− δ)Kt − Ct −G (55)

1

Ct
= βEt[

1

Ct+1
(a

Yt+1
Kt+1

+ 1− δ)] (56)

G = τtbYt, (57)

Equations (54) and (56) are the first order conditions from the representative agent’s problem. Let

lower case letters denote deviations from steady state values. We can eliminate yt and τt by using

the linearized version of (53), (54) and (57):

yt = akt + bht
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ct = yt − ht −
τ

1− τ
τt

0 = τt + yt,

Combining these equations we obtain

yt =
(1− τ)b

b− 1 + τ
ct −

(1− τ)a

b− 1 + τ
kt.

Substituting the equation above into the two linearized dynamic equations, we get

ct = [1− βa
y

k

(1− τ)b

b− 1 + τ
]Etct+1 + aβ

y

k
[1 +

(1− τ)a

b− 1 + τ
]Etkt+1,

kt+1 = (
y

k

b(1− τ)

b− 1 + τ
− c

k
)ct + [

y

k

(1− τ)a

1− b− τ
+ 1− δ]kt.

Again, the two critical coefficients are:

bc = 1− βa
y

k

(1− τ)b

b− 1 + τ

=
b− 1 + τ − [1− β(1− δ)]b(1− τ)

b− 1 + τ
,

dk =
y

k

(1− τ)a

1− b− τ
+ 1− δ

=
[1/β − (1− δ)](1− τ) + (1− δ)(1− b− τ)

1− b− τ
,

where the second equality in these expressions follows from the steady state value of equation (57):

βa yk = 1− β(1− δ).

5.2 Requirements for indeterminacy

It is again sufficient for our purposes to check the indeterminacy condition:

−1 < dk
bc

< 1.

In this model we have:

dk
bc

=
1/β{[1− β(1− δ)](τ − 1) + β(1− δ)(τ + b− 1)}

b− 1 + τ − [1− β(1− δ)]b(1− τ)
,

=
1

β

½
1 +

−τb[1− β(1− δ)]

b− 1 + τ − [1− β(1− δ)]b(1− τ)

¾
. (58)

When there is no labor income tax (τ = 0), expression (58) is equal to 1/β > 1, and the equilibrium

is always determinate. To have indeterminacy, we require both that τ > 0, and that the second
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term in the bracketed part of expression (58) is negative. It is obvious that the numerator of this

second term is negative, so the denominator must be positive to have indeterminacy. That is we

must have that

b− 1 + τ > b(1− τ)[1− β(1− δ)]. (59)

Since the right-hand-side of (59) is positive, it further follows that we must have

b− 1 + τ > 0. (60)

Proposition 8 A necessary condition for indeterminacy of REE in the Schmitt-Grohé and Uribe

(1997) model is (60).

5.3 E-instability

Next we show that when indeterminacy holds, the condition for E-stability bc < 0 will be violated.

Combining the expression for bc with (59) and (60), we have

bc = 1− b(1− τ)[1− β(1− δ)]

b− 1 + τ

> 1− b− 1 + τ

b− 1 + τ
= 0.

This equilibrium of this model is therefore E-unstable under adaptive learning.

Proposition 9 The REE of the Schmitt-Grohé and Uribe (1997) model cannot be both indetermi-

nate and E-stable as condition (21) is always violated when the REE is indeterminate.

6 Discussion

While we have applied our conditions for indeterminacy and stability under learning to just three

RBC models, we believe that our instability conclusion is even more general. In all three RBC

models that we consider, the necessary condition for E-stability, bc < 0, is always violated. We

believe this is not a coincidence. All structural models that are calibrated to match empirical facts

should violate this condition. To see why, recall that bc < 0 together with the necessary condition

(27). implies that dk < 0.

However, in this case, two of the four coefficients in the general, reduced—form system (1)—(2),

which we reproduce below, are negative:

kt+1 = dkkt + dcct
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ct = bkEtkt+1 + bcEtct+1

A negative coefficient for dk yields the counterfactual implication that capital stocks are negatively

autocorrelated. Similarly, a negative coefficient for bc yields the counterfactual implication that the

representative household decreases current consumption whenever future consumption is expected

to rise. Such behavior is clearly inconsistent with the notion of consumption “smoothing” in dy-

namic economies. Neither type of behavior is likely to emerge from structural model restrictions,

indeed such restrictions should lead to the opposite case where bc > 0 and dk > 0. The latter para-

meterization would, in addition, yield adjustment dynamics (impulse responses) that are consistent

with our Definition 1. However, under this parameterization of the reduced form system, the REE

would always be E—unstable! Hence, in any appropriately calibrated sunspot-driven RBC model,

we expect that our findings will continue to apply, that is, the equilibrium of such models cannot

be jointly indeterminate and stable under adaptive learning.

7 Conclusions

In this paper we have examined the conditions for indeterminacy and stability under adaptive

learning for a general reduced form model that characterizes a number of linearized, one—sector

real business cycle models. We have provided simple, analytic conditions under which the equi-

librium of this system is both stable under adaptive learning behavior and indeterminate, so that

sunspot shocks can play a role in driving the business cycle. To our knowledge, such conditions

have not previously appeared in the literature. These conditions imply that, in principle, it is

possible for agents to learn the REE of sunspot-driven RBC models. However, we also find that for

three sunspot-driven RBC models that have appeared in the literature, structural model parame-

ter restrictions imply that the REE of these models cannot be simultaneously indeterminate and

E-stable under adaptive learning. This finding comprises a critique of these models that is distinct

from a more often-heard critique of these models — that the calibrations of the structural models

necessary to obtain indeterminate REE are empirically implausible. Our critique is instead that

agents would never learn to implement such REE.

Our analysis provides a resolution of the puzzle identified by Evans and McGough (2002). REE

of one-sector models with nonconvexities can be both indeterminate and E—stable, but only if the

laws of motion for consumption and the capital stock are parameterized in a way that is inconsistent
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with structural model restrictions, or leads to empirically implausible adjustment dynamics. In the

appendix, we show that a similar finding extends to a class of common-factor REE solutions studied

by Evans and McGough (2002). In this sense, our results are consistent with and reminiscent of

McCallum’s (2002) finding that linear models with unique minimal state variable RE solutions

(solutions that exclude extraneous state variables, e.g., sunspot variables) are always E—stable in

any “well—formulated” model; by well—formulated, McCallum means restrictions on the parameter

values of the system that avoid economically implausible dynamics.

Our findings would appear to cast serious doubt on the research agenda that seeks to use

sunspot-driven RBC models to explain business cycle phenomena. However, we caution that our

findings are limited to RBC models. Other researchers have shown that sunspot REE may be E-

stable in monetary models with infinitely-lived agents (e.g., Evans et al. (2002)) or with overlapping

generations of finitely lived agents (Woodford (1990), Duffy (1994) and Evans and Honkapohja

(1994)). Further, our E-instability findings only apply to one-sector RBC models, and we have

precise analytical results for only three such models that have appeared in the literature. Recently,

researchers have shown that indeterminacy of equilibria is readily obtained in multi-sector RBC

models under empirically relevant calibrations. Hence, it may not be the case that our findings

extend to such sunspot-driven RBC models. We leave an analysis of the stability under learning of

indeterminate equilibria in these multi-sector models to future research.
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Appendix

In this appendix we consider the robustness of our findings in section 2 to two different assumptions

regarding the perceived law of motion (3) and to a “common factor” representation of the REE

solution.

Alternative timing assumption

As noted in section 2.1, the perceived law of motion (3) assumes that kt is not known at time t

when in fact it is predetermined by decisions made in period t− 1. Assume, therefore, that agents

use the alternative perceived law of motion,

ct = a1 + akkt + acct−1 + afft + εt, (61)

in place of (3). Following the same steps as outlined above, one can show that if agents use (61) as

their perceived law of motion, the actual law of motion will be given by:

ct = T (a1) + T (ak)kt + T (ac)ct−1 + T (af )ft + εt,

where

T (a1) = a1[dcbk + bc(1 + akdc + ac)],

T (ak) = bkdk + bkdcak + bcak(dk + akdc + ac),

T (ac) = bkdcac + bcac(ac + akdc),

T (af ) = af [bkdc + bc(akdc + ac)].

The matrix d(T (a)−a)
da , evaluated at this REE solution, can be written as:⎡⎢⎢⎢⎣

bc 0 0 0
0 bcdk − bkdc −bk 0
0 dc 1 0
0 −bcdcaf bcaf 0

⎤⎥⎥⎥⎦ , (62)

where af is again the REE value of af (c.f. (16)). While (62) differs from (16), the eigenvalues of

(62) are found by solving the characteristic equation

λ(bc − λ)[λ2 + (bkdc − bcdk − 1)λ+ bcdk] = 0,

which is the same characteristic equation obtained for matrix (16). It follows that Proposition 1

also holds in the case where agents use the alternative perceived law of motion (61) in place of (3).
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Eliminating the constant term

A closer look at the matrix (16) (or 62) reveals that the eigenvalue bc comes solely from the T-

mapping for the coefficient a1, the constant term in the agent’s perceived law of motion. Since

the variables in the reduced form model are all expressed as deviations from steady state values, it

is not necessary to incorporate a constant term in the PLM. Indeed, for this reason, the reduced

form equations of RBC models typically do not involve constant terms. However, if the variables

of the model were not expressed in terms of deviations from steady state values, learning agents

would need to include constant terms in their perceived laws of motion; the value of these intercept

terms would depend on the steady state values. Indeed, one could argue that learning agents might

not initially know steady state values of model variables, so it is more reasonable to assume that

they use perceived laws of motion with constant terms included. Alternatively, the presence of the

constant term could be regarded as a slight model misspecification; agents could, after all, learn

that the coefficient on this constant term is zero in the rational expectations equilibrium.

Nevertheless, suppose that we eliminate the constant term. Under our original timing assump-

tion for k, the PLM (3) now becomes

ct = akkt−1 + acct−1 + afft + εt.

With this modification, the necessary conditions for indeterminacy and E-stability will be reduced

to (27) and (28) only. In this case bc can be either positive or negative. If bc < 0, the necessary

conditions will be exactly the same as stated in Proposition 3. We therefore focus on the case where

bc > 0.

Suppose that bc > 0. It follows immediately, from the necessary condition (20) and the definition

of tr(J) that we must have

tr(J) =
1− bkdc + dkbc

bc
< 0. (63)

From the other necessary condition, (19) and the definition of det(J) we must also have

det(J) =
dk
bc

> 0. (64)

A negative trace and a positive determinant imply that both eigenvalues of J have negative real

parts. This would violate our Definition 1 of empirically plausible adjustment dynamics, and by

extension it would violate Corollary 1. Hence, it follows that if attention is restricted to REE with

23



empirically plausible adjustment dynamics, our conditions for REE to be both indeterminate and

E-stable are unchanged.

Proposition 10 When the PLM has no constant term, the necessary conditions for E-stability of

indeterminate REE with empirically plausible adjustment dynamics remains unchanged: (21), (27),

and (28).

Common-factor representation of the REE

Rational expectations equilibria may result from more than one representation, or linear recursion;

the limiting solution of a particular recursion yields the REE. In this paper we have considered

the standard, general-form AR(1) representation of the REE as reflected in the perceived law of

motion (3) as that is the one that has been used in the RBC literature. However, there are many

alternative representations that are possible. 11 Evans and McGough (2002, 2003) argue that the

stability of a REE under learning may well depend on the representation used. In particular, they

report that general form ARMA representations that include sunspot variables (such as the AR(1)

representation we consider) are unstable under learning. However, there are alternative, “common

factor” representations of these same REE sunspot solutions that are sometimes stable under

learning. We therefore reexamine our findings using an “common factor” AR(1) representation

in place of the general form AR(1) representation following Evans and McGough (2002).12

To obtain the “common factor” representation, we first diagonalize the Jacobian matrix J, in

(22) writing:

J = SΘS−1 (65)

where

Θ =

"
θ1 0
0 θ2

#
with θ1 and θ2 representing the two eigenvalues of J in (22) and S representing the 2× 2 matrix of

the associated eigenvectors, with

S−1 =

"
s11 s12

s21 s22

#
.

In what follows, we will use the normalization si1 = 1, i = 1, 2.

11See, e.g., Evans and Honkapohja (1986) for an extensive discussion of this issue.
12Evans and McGough (2002) consider an encompassing reduced-form system similar to our own (1-2), though

they allow a fundamental, autoregressive shock process as well. We will continue to ignore the fundamental shock as
it is unimportant to our results.
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We will focus on the case where the REE is indeterminate, i.e. where both roots θ1, θ2 lie inside

the unit circle, though common factor representations are possible for any system so long as all

the eigenvalues are real and have norm less than one. We note that, in practice, the eigenvalues of

indeterminate systems used in the sunspot-driven RBC literature are typically complex. So, strictly

speaking, it would seem that common-factor representations are not so relevant to understanding

the stability properties of the equilibria that have appeared in this literature.

Using the notation y0t = (kt, ct), and the transformation zt = S−1yt, the system (22) can be

rewritten as the uncoupled system:

zt = Θzt−1 + ηt

where ηt = S−1R�t, or equivalently, as"
1− θ1L 0
0 1− θ2L

#
zt = ηt

were L represents the lag operator. Next, premultiply both sides of the system above as follows:"
1 0
0 (1− θ2L)

−1

# "
1− θ1L 0
0 1− θ2L

#
zt =

"
1 0
0 (1− θ2L)

−1

#
ηt

The equation for the non-predetermined consumption process can be isolated as:

z2t = (1− θ2L)
−1η2t = ξt,

where the second equality corresponds to a definition of the variable ξt. Using the transformation,

z2t = s21ct + s22kt, and the normalization s21 = 1, we may write:

ct = −s22kt + ξt.

The law of motion for the capital stock, is unchanged by the transformation, since this equation

was uncoupled to begin; note also that η1t = 0. Using the law of motion for kt in the equation for

ct given above, we can write the “common factor” representation of the system as:

ct = −s22dcct−1 − s22dkkt−1 + ξt

kt = dcct−1 + dkkt−1

ξt = θ2ξt−1 + η2t

where the last equation follows from the definition of ξt given above and η2t = εt, the sunspot

variable.
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The perceived law of motion is now

ct = a1 + acct−1 + akkt−1 + afξt,

which is nearly identical to the PLM (3); the only difference is that ft is replaced by the autore-

gressive variable ξt. We can derive the expected values just as before, which are given by:

Etct = a1 + akkt−1 + acct−1 + afξt, (66)

Etkt = dkkt−1 + dcct−1, (67)

Etct+1 = a1(1 + ac) + ak(dk + ac)kt−1 + (a
2
c + akdc)ct−1 + (acaf + afθ2)ξt, (68)

Etkt+1 = a1dc + (d
2
k + dcak)kt−1 + dc(dk + ac)ct−1 + dcafξt. (69)

Using these expectations, it is easy to show that the T-maps T (a1), T (ak) and T (ac) will be the

same as in the general case, as given by equations (11—13). The only T-mapping that will differ is

the one for T (af ). In place of (14) we now have:

T (af ) = af [bkdc + bc(ac + θ2)] (70)

Because of this change, the RE solution — the fixed point of the T—mapping — will be different.

Specifically, if T (af ) is now given by (70), setting af = T (af ) now yields the set of sunspot REE:

ac =
1− bkdc

bc
− θ2, (71)

with af indeterminate,

where θ2 is an eigenvalue of the system. One possible solution is af = 0. However that solution

does not interest us as it implies that sunspots have no effect on the system.

Solutions for the other two coefficients are obtained as

a1 = 0 (72)

ak =
bkd

2
k

bc(θ2 − dk)
(73)

The key matrix d(T (a)−a)
da , evaluated at this new REE solution can be written as:⎡⎢⎢⎢⎣

bc(1− θ2) 0 0 0

0 bc(dk − θ2)
bkd

2
k

θ2−dk 0

0 bcdc 1− bkdc 0
0 0 bcaf 0

⎤⎥⎥⎥⎦ (74)
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(c.f. (74) with (16)). The eigenvalues of (74) are determined by the equation

[bc(1− θ2)− λ] (−λ)
(
λ2 − [bc(dk − θ2) + (1− bkdc)]λ+ bc(dk − θ2)(1− bkdc) +

bcdcbkd
2
k

dk − θ2

)
= 0.

The first two eigenvalues are

λ1 = bc(1− θ2), (75)

λ2 = 0. (76)

The remaining two eigenvalues are solutions to:

λ2 − [bc(dk − θ2) + (1− bkdc)]λ+ bc(dk − θ2)(1− bkdc) +
bcdcbkd

2
k

dk − θ2
= 0.

The full set of necessary conditions for E-stability are thus:

bc(1− θ2) < 0, (77)

bc(dk − θ2) + 1− bkdc > 0, (78)

bc(dk − θ2)(1− bkdc) +
bcdcbkd

2
k

dk − θ2
> 0. (79)

Recall that for the system (22), the trace of the Jacobian matrix J was given by:

tr(J) = θ1 + θ2 =
1− bkdc + dkbc

bc

Substituting out θ2 with this expression in (78), we can rewrite the necessary condition (78) as:

bcθ1 > 0. (80)

We now make use of Definition 1 concerning empirically plausible adjustment dynamics and

impose our indeterminacy conditions. Since common factor representations require the eigenvalues

to be real, we must have θ1, θ2 ∈ (0, 1). It follows immediately that (77) implies bc < 0 and (80)

implies bc > 0 - a contradiction. Therefore, if the system is E-stable under adaptive learning, it

cannot be both indeterminate and have empirically plausible adjustment dynamics.

Proposition 11 The common factor AR(1) REE solution to an RBC model with empirically plau-

sible adjustment dynamics cannot be both indeterminate and E—stable under adaptive learning.

There would not be any contradictions, however, if the eigenvalues of J were negative, though

such a case would violate our Definition 1 for empirically plausible adjustment dynamics. Thus we

have the following corollary:
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Corollary 2 If an RBC model has negative roots, then it is possible for its common factor represen-

tation to be both indeterminate and E-stable. However, such models would exhibit period-by-period

oscillatory adjustment dynamics that would not be empirically plausible.

Corollary (2) provides us with another reconciliation between our findings and those of Evans

and McGough (2002), who found parameter values for which the RE system was indeterminate and

a common factor representation of the REE was stable under learning. Our analysis suggests that

this can only occur if at least one eigenvalue of the RE system is negative, which would be ruled

out by any reasonably calibrated, empirically plausible model of adjustment dynamics.
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