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a b s t r a c t

We investigate conditions under which self-organized criticality (SOC) arises in a version

of a dynamic entry game. In the simplest version of the game, there is a single

location—a pool—and one agent is exogenously dropped into the pool every period.

Payoffs to entrants are positive as long as the number of agents in the pool is below a

critical level. If an agent chooses to exit, he cannot re-enter, resulting in a future payoff

of zero. Agents in the pool decide simultaneously each period whether to stay in or not.

We characterize the symmetric mixed strategy equilibrium of the resulting dynamic

game. We then introduce local interactions between agents that occupy neighboring

pools and demonstrate that, under our payoff structure, local interaction effects are

necessary and sufficient for SOC and for an associated power law to emerge. Thus, we

provide an explicit game-theoretic model of the mechanism through which SOC can

arise in a social context with forward looking agents.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Are large (aggregate) shocks to an economic system necessary for a noticeable change in equilibrium outcomes? One
might suspect that this is the case since small independent shocks tend to cancel one another and, at least in large
economic systems, they wash out without any aggregate implications. Alternatively, it is plausible that several social
phenomena as diverse as the change in fashion and music trends, bank runs and other financial crises, investment in new
technologies, or even recessions occur when tension from small shocks, gradually built into the system without notable
aggregate implications, reaches a critical level. When such a critical state is reached, a small disturbance might have a
disproportionately large effect. This phenomenon has been studied in the natural sciences in connection to avalanches,
forest fires, earthquakes and even biological evolution and is referred to as self-organized criticality (SOC).

Models of SOC in the natural sciences involve the following distinct feature.1 States that are ‘‘critical’’ typically
constitute a small part of the state space. Nevertheless, the system ‘‘organizes itself’’ towards the situation in which a
critical state is eventually reached. A useful expository example is that of a sand pile. Consider dropping one grain of sand
at a time, say in a box. Most of the time such small temporary shocks will affect at most the neighboring area near where
the grain fell. However, inevitably, the system will lead itself to a state where the addition of one grain leads to an
avalanche. In fact, over a long time horizon, various statistics, including the distribution of sizes of avalanches, have been
shown in simple models of sand piles to obey power laws.
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Power laws are widely considered to be a signature of SOC and the search for SOC in various models typically turns into a
search for power laws.2 Such laws have important implications for the long run behavior of the system under study for at least
two reasons. First, the frequency of events decreases slower than exponentially in their respective sizes. In other words, not only
can local ‘‘perturbations’’ have large non-local effects, but these effects also appear with a relatively large frequency. Second,
power laws are considered to suggest that both large and small events are the result of the same underlying mechanism at work.

Power laws might be created through other mechanisms that often assume some degree of bounded rationality.3 This
raises an important question. Is bounded rationality necessary for power laws to emerge? A novelty of our approach is that
it offers an intuitive mechanism through which SOC and the associated power laws emerge in a purely game-theoretic
setup with fully rational agents. Thus, we demonstrate that SOC might arise naturally in game-theoretic models and that
this does not rely on restrictive assumptions on agents’ rationality.

Models of self-organized criticality have been studied in economics.4 However, as mentioned above, existing models
involve restrictive assumptions on the behavior/rationality of agents. In this paper we study two versions of the model. In
one version agents are myopic, while in the second version they are forward looking. We study the full rationality
benchmark not necessarily because we believe that it is the best descriptive assumption, but rather because it allows us to
explore an alternative economically meaningful mechanism as a potential source of SOC: the independent randomizations
by individual players in a mixed strategy equilibrium of a dynamic game.

Our basic setup is that of a dynamic entry game. One way of motivating this game is by imagining that a finite number of
firms decide whether to enter a market or not. If a single firm enters the market it enjoys monopoly profits. In general,
profits are monotonically decreasing in the number of firms competing. If the number of firms in the market is large
enough, a firm will be better off not entering, making an exogenous reservation profit instead. A second interpretation
relates to computer science. In an environment where the number of potential users of a processor increases over time,
each existing user might become worse off and ‘‘renege from the queue.’’ This is because as the number of users increases,
the work done for each individual user might decrease due to lower processing speeds.5

We assume a large number of identical agents, say around a swimming pool, and an infinite time horizon. In each
period, one agent is chosen and is dropped into the pool. Agents like to stay in the pool only if it is not ‘‘too crowded.’’ That
is, payoffs are decreasing in the number of participants, becoming negative if this exceeds a fixed finite upper bound. The
decision that each agent faces is whether to stay in the pool or to exit. If he exits, he earns a fixed utility, normalized to
zero, in each future period, with no possibility of re-entering.

What are the likely outcomes in this model? If a few agents are in the pool, the unique best response is to stay in.
However, the pool then gets increasingly ‘‘crowded’’ as one additional agent enters in each period. Eventually, a number of
players is reached after which, assuming that everyone else stays in, the best response of an individual player is to exit. From
that state on, the best action depends on what one believes the others will do. We restrict attention to strongly symmetric,
Markov equilibrium outcomes, in which each agent stays in the pool with probability one before the pool reaches the critical
size and with some probability less than one if the state, i.e., the number of people in the pool, is beyond the critical size. In
equilibrium, each agent stays in the pool with the same probability, which decreases as the state increases.6

From the point of view of dynamics, which is the focus of our analysis, equilibrium behavior implies some interesting
properties. First, as the state space is potentially infinite, there is a positive, if small, probability that the number of agents
in the pool becomes arbitrarily large. Second, consider the ongoing ‘‘perturbation’’ of having one additional agent
exogenously entering the pool in each period. At each state beyond the critical one, this leads to none, one, two, y, or all
agents leaving the pool with positive probability. Thus, a small shock might eventually lead to a large effect. One question
of interest is whether the empirical frequency of avalanches obeys a power law relationship. The answer, in the case of a
single pool, seems to be no. The reason is that large events, in which many agents leave the pool simultaneously, are the
results of many iid randomizations. Thus, even if the probability of exiting is high for each individual agent, the frequency
of events in which a large number of agents exits decreases exponentially.

Intuitively, a power law is more likely to emerge in a model that involves an additional ‘‘local interaction’’ structure that
is excluded in the one-pool example. To capture this effect, we study the model with n pools. All n pools are identical to the
one-pool model but with the difference that there is a one-way externality between them. In each period, pool 1 opens
first. After the exogenous inflow, agents in pool 1 decide whether to stay in the pool or exit. As before, exiting a pool
implies leaving the game with a permanent future payoff of zero. Pool 2 opens next. After the exogenous inflow of one
agent, agents in pool 2 decide whether to stay in their pool or exit.7 After that, pool 3 opens, and so on. What connects
two neighboring pools is that while the payoff to agents in pool 1 depends only on the number of agents staying in pool 1,
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2 See, for example, Bak (1996).
3 In a social science context, interactions among agents at the micro level can ‘‘build up’’ towards power laws at the aggregate level. See, for example,

LeBaron (2006) and Hommes (2006).
4 See, for example, Bak et al. (1993), Scheinkman and Woodford (1994), Arenas et al. (2000, 2001, 2002) and Andergassen et al. (2006). Although the

model we study here is very different, we will follow these papers in focusing on conditions under which the proposed model generates power laws.
5 See, for example, Altman and Shimkin (1998) and Hassin and Haviv (2002, pp. 109–122). We thank Flavio Toxvaerd for pointing out this literature

to us. Yet another interpretation relates to the ‘‘El Farol’’ dilemma, named after a popular bar in Santa Fe. See Arthur (1994) and Morgan et al. (1999). The

story there concerns the decision of whether to visit a bar when it is individually optimal to do so only if the bar is not overcrowded.
6 In what follows we shall ignore equilibria in which agents condition their exit decision on the number of periods they spend in the pool.
7 Our results do not depend on the assumption that there is an exogenous flow of exactly one agent in every pool.
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the payoff to agents in pool l, l=2,y,n, has two components. It depends negatively on both the number of agents leaving
pool l�1 and on the number of agents staying in pool l. We assume that the pools operate sequentially within each period
and that the number of agents leaving pool {1,2,y.,l�1} is known to agents in pool l before they make their choice about
whether to stay or exit. The externality across neighboring pools is a tractable way of modeling local interaction effects.
In the context of the processor use example, if a processor is overwhelmed by many users, resulting in lower speeds, some
users might choose to employ another processor down the line instead, and so on. Our externality assumption provides a
tractable way to model such local interaction effects across a sequence of ‘‘neighboring’’ processors. We numerically
investigate two versions of the model. In one we assume that agents are myopic, while in the other we assume that they
are forward looking. Our main finding is that local interaction effects lead to a power law relationship and that this does
not appear to depend on the assumption about the agents’ foresight.

The paper is organized as follows. Section 2 introduces the model with one pool, while Section 3 studies the model with
many pools. In Section 4 we present our numerical results. A brief conclusion follows.

2. The model with one pool

Time is discrete and infinite. Our model involves an extensive form-game of complete information.8 The set of agents is
countably infinite. One possible interpretation of the model involves agents around one location, say, a pool. Initially, the
pool is empty. One agent is randomly chosen and dropped into the pool in each period. Agents that are in the pool choose
whether to stay (1) or exit (0). Once an agent exits, there is no possibility of re-entry. Formally, at each period of time, the
set of agents is partitioned into three subsets: (i) agents that have never entered the pool; (ii) agents that are currently in
the pool; and (iii) agents that have exited the pool in the past. We next describe the agents’ action sets. Agents in subsets (i)
and (iii) have a trivial (singleton) action set: A={0}, that always results in a utility of 0. In each period, agents in subset (ii)
have a binary action set {0,1}. Here, 1 stands for ‘‘stay in the pool,’’ while 0 stands for ‘‘exit.’’ We allow agents to mix, with
pi 2 Dðf0,1gÞ denoting the probability with which agent i decides to stay in the pool in a given period. Agents’ policies
comprise infinite sequences of feasible actions. The state; i.e., the number of agents in the pool at the beginning of any
given period prior to the exogenous entry is indicated by x 2 f0,1, . . .g. The period utility, as a function of x, is given by u(x),
where u : Zþ-R. In other words, u gives the payoff enjoyed in the current period by an agent that stays in the pool as a
function of the number of other agents currently in the pool, x. We assume that u is strictly decreasing in x, that uð1Þ40,
and that there exists x 2 Zþ such that uðxÞ40, for all xox, uðxÞZ0, and uðxÞo0, for all x4x. We follow standard practice
in game theory and assume that players discount future utility using the period discount factor d 2 ½0,1Þ.9 Assuming that
do1 ensures that agents’ payoffs remain bounded in what follows.

Hence, pi(x) denotes the probability that agent i decides to stay in the pool given that the state (the number of people in
the pool) is x. Let U(x,p) denote the value function for an agent. This function is formally defined below and it gives the
expected current and future utility from staying in the pool when the current state is x and all other agents stay in the pool
with probability p. The timing is as follows:

xt- period utility -newcomer enters -decisions -xtþ1: ð1Þ

In what follows, we will concentrate on strongly symmetric Markov equilibria; i.e., in equilibrium outcomes in which
agents in any given period choose the same strategy in all histories and in which agents condition their strategies only on
the current state, x. Clearly, for all states x such that xox each agent will choose to stay, i.e., pi(x)=1, for all xox, for all i.
Notice that the expected utility to an agent depends on his beliefs about whether other agents will stay in the pool or not.
These beliefs become relevant once x4x. Each player’s decision problem is characterized by a Dynamic Programming
(Bellman) equation. The solution of this equation (the value function) is given by the expression below. The value function
gives the equilibrium expected utility of staying in the pool as a function of the number of agents in the pool. In state x, this
is given by10

Uðx,pÞ ¼
Xx�x�1

t ¼ 0

dtuðxþtþ1Þ

" #
þdx�x0, if xox,

and

Uðx,pÞ ¼
Xx�x

t ¼ 0

x

t

� �
px�tð1�pÞtuðx�tþ1Þ

� �
þ

Xx

t ¼ x�xþ1

x

t

� �
px�tð1�pÞt

Xt�xþx�1

y ¼ 0

dt�xþ x�1�yuðx�yÞ

( )
, if xZx: ð2Þ
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8 For a formal study of such games see Fudenberg and Tirole (1991).
9 For papers that use alternatives to discounting in environments similar to ours see, e.g., Sennott (1994), Federgruen (1978), Altman (1996) and

Altman et al. (1997).
10 As is standard in a game theory context, the value to an agent, U, depends on the strategies of the other agents as summarized by p. This is because

these mixing probabilities determine the (current and future) number of agents in the pool, hence, the agent’s current and future utilities, u. Since we only

study symmetric equilibria, we will drop the index i in what follows. In addition, to economize in notation, we suppress the dependence of p on x.
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The above expression is central in our paper and it is worth describing it in some detail here. The first line in (2)
captures the fact that there is no exit before the state x is reached. In that case, all agents choose p(x)=1 and the size of the
pool increases by the introduction of one newcomer per period. The second term in (2) captures the fact that, once x is
eventually reached, agents will mix, staying in the pool with equal probability pðxÞo1. As is standard, for a mixed strategy
equilibrium we need that the agents mix with a probability that makes them indifferent between staying and leaving the
pool. Thus, since exiting implies a continuation payoff of 0, staying in the pool must give the same expected value. In other
words, we have that U(x,p)=0, if xZx.

To summarize, agents stay in the pool with probability 1 for any xox, while they randomize choosing the
mixed strategy p(x) consistent with equilibrium for any xZx. As an example, consider the case where x ¼ 3 and x=1.
Then, the above expression gives Uðx,pÞ ¼ uð2Þþduð3Þþd20. In other words, the agent already in the pool stays in and,
joined by a newcomer, enjoys an immediate utility of u(2). The two of them also stay and, joined by a newcomer,
they each subsequently enjoy a discounted utility of duð3Þ. Since the payoff of having four agents in the pool (three plus
a newcomer) is assumed to be negative, agents are going to randomize when xZ3. As is standard, the conditions
for a mixed strategy equilibrium require that p(4) is chosen so that the value function satisfies U(4,p)=0. Of course,
as a result of the actual randomizations, it may happen that zero, one, two, three, or all four agents leave the pool.
If, say, the realizations are such that everyone stays, in the next period agents will choose p(5) so that U(5,p)=0,
and so on.

Thus, solving for the equilibrium involves solving this system of equations for the unknown probabilities, p.11 Having
evaluated these probabilities, one can find the associated invariant distribution over pool sizes. In our simulations we
adopt a fixed point approach. We jointly determine the mixing probabilities and the distribution of agents across states so
that the mixing probabilities constitute best responses given the distribution and, at the same time, the best responses
result in the anticipated distribution.

Our first goal is to establish the existence and uniqueness of a strongly symmetric Markov equilibrium. We have the
following.12

Proposition 1. There exists a unique strongly symmetric Markov equilibrium in which p(x)=1, for xox and pðxÞ 2 ð0,1Þ, for

xZx.

Proof. Clearly, p(x)=1, for xox. We need to demonstrate that for all xZx, there exists a p(x) such that U(x,p)=0.
The payoff function is a polynomial of degree x and, therefore, continuous in p. Fix any xZx and assume that all agents
but one leave the pool with probability 1. In that case, the value of the agent that stays in the pool is positive, i.e.,
Uðx,0Þ40, 8xZx. Similarly, for any xZx, if all agents stay, the value of staying in the pool is negative, i.e., Uðx,1Þo0, 8xZx.
Existence then follows from the Intermediate Value Theorem. Uniqueness follows by the strict monotonicity of the
polynomial. &

Let K be the state of states, x, in which each agent’s best response is to stay in the pool with probability 1 and let PiK
(n)

denote the n-step transition probability from state i to a state belonging to set K.

Lemma 1. There exists a P 40 for which, for all n and i, there exists a j 2 K such that PðnÞij ZP .

Proof. Recall that in the symmetric equilibrium U(x,p)=0, 8x 2 Kc. Therefore, since uðxÞo0, for all x 2 Kc , for the
indifference condition to hold we need that, for all i 2 Kc , there exists a j 2 K such that Pij40. Define P� ¼mini2Kc ,j2KfPijg.
Since u(x) is decreasing in x, we have that P� is well defined and strictly positive. Further, we have that

PðnÞiK ¼ P½xmþn 2 Kjxm ¼ i� ¼
X
j2K

PðnÞij ¼
X
j2K

X
k1 ...kn�1

½Pik1
Pk1k2

. . . Pkn�1 j� ¼
X

k1 ...kn�1

½Pik1
Pk1k2

. . .Pkn�2kn�1
�
X
j2K

Pkn�1j

8<
:

9=
;ZP�: ð3Þ

The last inequality in the above expression follows since, for all k,
P

j2K PkjZP� and, in addition,P
k1 ...kn�1

½Pik1
Pk1k2

. . . Pkn�2kn�1
� ¼ 1. Hence, for all n and i 2 Kc , there exists a j 2 K such that PðnÞij Zð1=#ðKÞÞP�. To complete

the proof, let P ¼ ð1=#ðKÞÞP�. &

Proposition 2. There exists a unique, stationary measure of the size of the pool.

Proof. Let xi stand for the state where there are i agents in the pool at the beginning of the period. Clearly, the range of {xi}
is contained in Z+. It is straightforward to verify that the countable state Markov chain associated with the process is
irreducible and aperiodic. Let K be the set of states associated with a positive payoff (that is, K ¼ fx : xrxg) and let Kc be the
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11 In principle, this involves an infinite number of equations/unknowns since the state space is not finite. However, as the number of agents increases,

the number of agents that exits the pool as a result of the randomizations in the mixed strategy equilibrium exceeds 1, the exogenous pool entry. This

feature comes very handy in our simulations since it effectively allows us to deal with a bounded state space.
12 Analogs of the Propositions in the remainder of this Section can be derived for any finite number of pools. While the intuition of the many-pool

case is the same, the notation is heavily involved. Hence, we decided to include the details of the n=1 case in the text. The proofs for n41 are available

from the authors.
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complement of K. Finally, let Pij
(n) give the probability of a transition from state i to state j after n steps. Theorem 8.7 in

Billingsley (1979) can be used to establish that if a stationary distribution does not exist in our setup, then limn-1PðnÞij ¼ 0,
for all i and j. Lemma 1, however, implies that limn-1PðnÞij 40, for at least some i and j. We conclude that a stationary
distribution must exist. &

3. A numerical example

Here we consider simulations of the one-pool model based on a particular form for the utility function

uðxÞ ¼
a

ð1þexpðaðx�xÞÞÞ
�b, ð4Þ

where a=10 and b=5, and x ¼ 5. This ‘‘inverse sigmoidal’’ function, illustrated in Fig. 1, was chosen over a step function, for
the continuity it provides.

We set d¼ 0:9 (‘‘forward looking’’) or d¼ 0 (‘‘myopic’’). For each case, we set p(x)=1 for xox but for all xZx, we
substitute the above expression for u(x) and solve for p(x) by setting U(x,p) equal to zero. Using the resulting values for p(x),
we conduct a simulation exercise in which one agent exogenously enters the pool each period and agents in the pool use
the calculated probabilities to determine whether to remain in the pool or not. The outflow from the pool (i.e., the number
of agents choosing to leave) in period t, if any, is our measure of the ‘‘avalanche’’ size for that period. The simulation is
conducted for 1 million periods. Fig. 2 illustrates the log frequency of avalanche sizes, logðf ðsÞÞ, (vertical scale) against the
log of their sizes, logðsÞ (horizontal scale) for both the myopic and rational cases.

We found that this picture is qualitatively consistent with a wide variety of specifications for u(x), e.g., decreasing linear
functions of x and of the discount factor, d. While a straight line in the log2log plot would indicate a power law, the above
relation suggests that the decay in avalanche frequencies is exponential in their size. In other words, the on-going shock of
adding one agent at a time is not able to produce large effects with a high frequency.

ARTICLE IN PRESS
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Fig. 2. Log of avalanche frequency, f(s), against log of avalanche size, s (number leaving pool). Dashed line is d¼ 0 (myopic) case, solid line is d¼ 0:9,

(forward-looking) case.
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To get further at this issue, suppose the long-run frequency of avalanche sizes s, in the one-pool model did obey a power
law of the form:

f ðsÞ ¼ asb,

over some range ð0,sÞ. Taking logarithms, we have

logðf ðsÞÞ ¼ logðaÞþblogðsÞ:

To assess whether this log–log relationship is linear, as would be the case if the frequency distribution obeyed a power law,
we can run an ordinary least squares (OLS) regression of logðf ðsÞÞ on a constant and logðsÞ. Specifically we form the
hypothesis:

H0: the frequency distribution of avalanche sizes obeys a power law.
H1: the frequency distribution of avalanche sizes does not obey a power law.

One approach would be to simply look at how close the OLS, R2 goodness-of-fit measure is equal to 1, indicating a perfect
linear relationship. But it is possible to go even further, as Gaudoin et al. (2003) show that the distribution of the R2 statistic
under H0 is independent of a and b. They provide a table of critical values, R2

y such that one may reject H0 at significance
level y if R2oR2

y . In testing H0 for the one pool case (and later for the multiple pool cases) we make use of this goodness-of-
fit test.

OLS regression results for the one-pool model are reported in Table 1. We see that for both the d¼ 0 and 0:9 cases, we
may reject (at the 5% level of significance) H0, that the relationship between f(s) and s obeys a power law. The explanation
for this finding is simple. Consistent with the mixed strategy equilibrium, a large number of agents exiting the pool is the
result of independent randomizations. Given the payoff structure we assume, this implies a very small probability that a
large number of agents will independently decide to exit. This is true in both the case where agents are forward looking
(d40) and where they are myopic (d¼ 0). Local interaction effects offer one way to overcome this effect. We introduce
such effects next in the context of a model with multiple pools.

4. The model with n pools

The main setup is the same as in the one-pool model but we now assume that there are n pools. All pools are identical to
the one-pool model but with the difference that there is a local one-way externality. In each period, pool 1 opens first. After
the exogenous inflow, agents in pool 1 decide whether to stay or exit. Pool 2 opens next and agents in pool 2 decide
whether to stay in their pool or exit. Exiting pool 2 also implies leaving the game with a permanent future payoff of zero.
After that pool 3 opens, and so on. As before, the payoff to agents outside the pool is normalized to be 0.

What connects two neighboring pools is that we assume that the payoff to agents in pool l, l=2,y,n, depends negatively
on two things: the number of agents leaving pool l�1 and on the number of agents staying in pool l. The pools operate
sequentially within each period and the number of agents leaving pool {1,2,y.,l�1} is known to agents in pool l before
they make their choice about whether to stay or exit.13

Here we let xt
l be the number of agents in pool l, l 2 f1,2, . . . ,ng at the beginning of period t. Let zt

l�1 be the number of
agents leaving pool l�1 in period t. Thus, xl�1+1�zl�1 denotes the number of agents staying in pool l�1. As before, the
discount factor is d 2 ð0,1Þ. The period payoff functions are given by u1(x1) and ul(xl,zl�1), for all l=2,y,n. The first payoff
function, u1 : Zþ-R is assumed to be decreasing in x1. Like before, we assume that u1ð1Þ40 and that there exists x1

2 Zþ
such that u1ðx1Þ40, for all x1ox1, u1ðx1

ÞZ0, and u1ðx1Þo0, for all x14x1. The payoff functions for the other pools,
ul : Zþ � Zþ-R are assumed to be decreasing in both zl�1 and xl. We assume that, for all zl�1, ulð1,zl�1Þ40 and that there
exists xl

ðzl�1Þ 2 Zþ such that ulðxl,zl�1Þ40, if xloxl
ðzl�1Þ, ulðxl,zl�1ÞZ0, if xl ¼ xl

ðzl�1Þ, and ulðxl; zl�1Þo0, if xl4xl
ðzl�1Þ.

Finally, we assume that limxl-1ulðxl,zl�1Þ ¼�1, for all l=1,y,n.14
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Table 1

Results from an OLS regression, logðf ðsÞÞ ¼ logaþblogðsÞ, one pool case, d¼ 0 or 0.9.

1-pool d value ^logðaÞ (st. err.) b̂ (st. err.) No. obs. R2 R2
0.05

d¼ 0 6.47 �4.98 10 0.728 0.806

(0.80) (1.24)

d¼ 0:9 6.50 �5.05 10 0.725 0.806

(0.81) (1.13)

13 One way to think about the negative externality is as a reduced-form way of capturing a situation in which the outflow in pool l�1 contains

information about some change in fundamentals that, everything less being equal, makes staying in pool l less desirable.
14 We ensure that these assumptions hold throughout our simulations.
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Let p1(x1) be the probability that an agent decides to stay in pool 1 if the state is (xt
1,y,xt

l), and define
ðxl; zl�1Þ � ðx1,z1; x2,z2; . . . ,xl�1,zl�1; xlþ1Þ. Let pl(x

l;zl�1) be the probability that an agent decides to stay in pool l,
l=2,y,n, in state (xl;zl�1). We concentrate on symmetric equilibria in which each agent stays in pool l with equal
probability. Finally, let p={pl}l= 1,y,n. The expected payoff of staying in pool 1 as a function of the number of agents in that
pool, x1, is identical to the one pool case in the previous section.

Turning to pool l, l=2,y,n, let vl(xl;zl�1) denote the value function of an agent who decides to stay in pool l given that
the state is (xl;zl�1). This is given by

vlðxl; zl�1Þ ¼
Xxl

k ¼ 0

x

l

� �
kðplÞ

k
ð1�plÞ

xl�kulðzl�1,kþ1ÞþdEvl
ðx
0 l; z

0 l�1Þ

( )
: ð5Þ

The values of x
0l and z

0 l�1 in the expression for Evl(x
0l;z

0l�1) are given by one of the following expressions. If
xm�zmþ1oxm; m=1,y,l�1, then

ðx0l; z0l�1Þ ¼ ðx1�z1þ1,0; x2�z2þ1,0; . . . ,xl�1�zl�1þ1,0; kþ1Þ: ð6Þ

On the other hand, if xm�zmþ1Zxm, for some m, then ðx0l,z0l�1Þ is given by

Xxl

kl ¼ 0

xl

kl

 !
plðxl,zl�1Þ

kl

ð1�plðxl; zl�1ÞÞ
xl�kl

Xx1þ1

k1 ¼ 0

x1þ1

k1

 !
p1ðx1Þ

k1

ð1�p1ðx1ÞÞ
x1þ1�k1

Xx2þ1

k2 ¼ 0

. . .
Xxl�1þ1

kl�1 ¼ 0

Yl�1

j ¼ 2

xjþ1

kj

 !
pjð�Þ

kj

ð1�pjð�ÞÞ
xjþ1�kj

ðk1,x1þ1�k1; . . . ,kl�1,xl�1þ1�kl�1; klþ1Þ, ð7Þ

where pjð�Þ � pjðk1,x1þ1�k1, . . . ,kj�1,xj�1þ1�kj�1,xjÞ. The respective probabilities satisfy the following best response
conditions:

p1ðx
1Þ

¼ 1 if v1ðx1Þ40,

2 Df0,1g if v1ðx1Þ ¼ 0,

¼ 0 if v1ðx1Þo0,

8><
>: ð8Þ

and, for l=2,y,n,

plðx
l; zl�1Þ

¼ 1 if vlðxl; zl�1Þ40,

2 Df0,1g if vlðxl; zl�1Þ ¼ 0,

¼ 0 if vlðxl; zl�1Þo0:

8><
>: ð9Þ

By an analogous argument to that in the one-pool case we can demonstrate the following.

Proposition 3. A strongly symmetric Markov equilibrium exists in which (i) p1(x1)=1, for x1ox1, and p1ðx
1Þ 2 ð0,1Þ, for

x1
Zx1; (ii) for all l 2 f2, . . . ,ng, and for all ðxl; zl�1Þ, there exists ~xl such that pl(xl;zl�1)=1, for xlo ~xl, and plðx

l; zl�1Þ 2 ð0,1Þ,
for xl

Z ~xl.

One can also prove an analog of Proposition 2 for the many pool setup. In the next Section we explore other properties of
the model by performing numerical simulations. We are particularly interested in whether the multiple-pool version can
give rise to a power law, and in whether this depends on the value of the discount factor, d.

5. A numerical example with n pools

To illustrate the effect of introducing multiple pools and the resulting local interaction structure, we consider the same
parametric utility function (4) as before. For pool 1, the utility function is exactly the same as in the earlier example. For all
pools l41, the utility function ul(y) has the same functional form as (4) but for these pools we assume, y¼ xlþlzl�1. The
parameter l measures the relative strength of the local interaction effect. Both l and the number of pools, n, are varied in
the simulation exercise reported in this section. We found that our results for the n-pool case were largely insensitive to
other model parameters, e.g., the parameters (a, b) of the utility function (4) or the discount factor d; we therefore set the
utility function parameter values equal to those used in the simulation exercise for the one-pool case (a=10, b=5, x ¼ 5)
and we set d¼ 0 (myopic case only).

We repeat the exercise conducted earlier for the one-pool case, but with a total of one, two or three pools and in the
latter two cases, varying l from 0.0 to 1.5 in increments of 0.5. For each of these four cases, we ran a simulation of 1 million
periods, where in each period, one agent enters each pool, and the agents in each pool must decide whether to remain or
not using the appropriate probabilities for the state, beginning with the players in pool 1 and then moving sequentially to
the players in the other pools. In the case of multiple pools, we use the sum of the outflows from all l pools in period t as
our measure of the avalanche size in period t, i.e., st ¼

P
lz

l
t .
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Figs. 3 and 4 report results from the numerical experiments where we have set l¼ 1: Fig. 3 shows the frequency of
avalanche sizes for the one-, two-, and three-pool cases and Fig. 4 shows a log–log plot of these same data. For the one-pool
environment, we have seen before that there is no evidence for a power-law relationship between f(s) and s. However, as
the number of pools increases, Fig. 3 reveals that, a least over some range of s, there is an approximately linear relationship
between log (f(s)) and log (s), up to some cut-off, s, after which we observe exponential decay.15 Notice that this linearity in
the log–log relationship precisely corresponds to a flattening of the tail in the frequency of distribution of avalanche sizes.

The next several Figs. 5–8 show that such self-organized behavior requires not only that there be several pools, but also
that the interaction effect, as captured by the parameter l, be sufficiently large. As l is decreased from 1 to 0.5 and finally

ARTICLE IN PRESS
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Fig. 3. Frequency of avalanche sizes f(s), one-, two-, three-pool cases, 1 million simulations, l¼ 1.
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Fig. 4. Log(f(s)) against log(s), one-, two-, three-pool cases, 1 million simulations, l¼ 1.
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Fig. 5. Frequency of avalanche sizes f(s), one-, two-, three-pool cases, 1 million simulations, l¼ 0:5.

15 As Jensen (1998) notes, such crossover to exponential decay above a certain avalanche size is common in finite systems.
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to 0.0—so that interaction effects across pools are eventually eliminated—we see that the log–log plots for the multiple
pool cases increasingly resemble that for the one-pool case, i.e., the power law signature of self-organized criticality
gradually disappears.

Finally, we report results for the case where l¼ 1:5 in Figs. 9 and 10. Values for l in excess of 1 are not ruled out by our
model and simply indicate that the outflow from pool l�1 has a greater impact on the utility of pool l participants than
does the number of those remaining in pool l. The results for the l¼ 1:5 case are similar to those found for the l¼ 1 case;
as the number of pools increases, there is some range of s, for which there is an approximately linear relationship between
log (f(s)) and log (s).

Table 2 repeats the regression analysis we performed for the 1-pool case (cf. Table 1) using the data from our simulation
exercises as depicted in Figs. 3–10. For comparison with the 1-pool case we truncate our data sample to the first 10
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Fig. 6. Log(f(s)) against log(s), one-, two-, three-pool cases, 1 million simulations, l¼ 0:5.
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Fig. 7. Frequency of avalanche sizes f(s), one-, two-, three-pool cases, 1 million simulations, l¼ 0.
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Fig. 8. Log(f(s)) against log(s), one-, two-, three-pool cases, 1 million simulations, l¼ 0.
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observations (avalanche sizes, s). Table 2 confirms the impression given by Figs. 3–10 that, for the range of avalanche sizes
considered (s=1,2,y,10) the relationship between logf ðsÞ and logðsÞ becomes increasingly linear—as reflected in the higher
R2 statistic—as (1) the number of pools is increased and (2) the value of l is increased. Indeed, when lZ1 and there are 2
or 3 pools, we cannot reject the null hypothesis that the frequency distribution of avalanche sizes obeys a power law on the
basis of the R2 goodness-of-fit criterion.
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Fig. 9. Frequency of avalanche sizes f(s), one-, two-, three-pool cases, 1 million simulations, l¼ 1:5.
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Fig. 10. Log(f(s)) against log(s), one-, two-, three-pool cases, 1 million simulations, l¼ 1:5.

Table 2

Results from an OLS regression, logðf ðsÞÞ ¼ logaþblogðsÞ, two and three pool cases, l¼ 0, 0.5, 1.0 and 1.5.

l value No. of pools ^logðaÞ (st. err.) b̂ (st. err.) No. obs. R2 R2
0.05

0.0 2 6.30 �3.30 10 0.693 0.806

(0.56) (0.76)

0.0 3 5.80 �1.78 10 0.604 0.806

(0.37) (0.51)

0.5 2 5.80 �2.02 10 0.755 0.806

(0.29) (0.14)

0.5 3 5.50 �1.12 10 0.804 0.806

(0.14) (0.19)

1.0 2 5.57 �1.47 10 0.882 0.806

(0.14) (0.19)

1.0 3 5.45 �1.13 10 0.931 0.806

(0.07) (0.11)

1.5 2 5.51 �1.39 10 0.843 0.806

(0.15) (0.21)

1.5 3 5.42 �1.11 10 0.950 0.806

(0.06) (0.09)
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As a final exercise, we consider the case where the number of pools is an order of magnitude larger than we have
considered so far. Specifically, we consider the case where n=100 and where l¼ 1: Figs. 11 and 12 show the frequency of
avalanche sizes and the log–log plot from 1 million simulations of the n=100 l¼ 1 version of our model. We see in Fig. 11
that with 100 pools, the modal avalanche size shifts away from 1 (it is now 37), but the frequency distribution continues to
be thickly right-tailed. The corresponding log–log plot in Fig. 12 reveals once again that for some range of avalanche sizes s,
there is an approximately linear relationship between log (f(s)) and log (s).

Using the first 100 avalanche sizes as observations (10 times our earlier sample size for the n=1,2,3 cases) we again run
the regression of logðf ðsÞÞ on logðsÞ and obtain an R2 of 0.95. For a sample size of 100 observations, the critical value for
Gaudoin et al.’s (2003) goodness-of-fit test, R0.05

2 =0.93. Thus we cannot reject H0, that the relationship between f(s) and s

obeys a power law over the range studied in the 100-pool case.

6. Conclusion

We have demonstrated the existence and uniqueness of a strongly symmetric Markov equilibrium in a dynamic entry
game. This equilibrium has agents remaining in the game with probability 1 before the number of participants reaches a
certain threshold, and with some probability after the threshold is reached. We have explored the implications of this
environment for the possibility of self organized criticality. Given our specification for the payoff structure, we have found
evidence for power law regularities, indicative of SOC, only when the number of pools is sufficiently large and provided
that there is a sufficiently strong local interaction effect between pools. This finding does not appear to depend on whether
agents are myopic or forward looking. A main contribution of this paper is that we provide an explicit game-theoretic
model of the mechanism through which SOC might arise in a social context. We believe that this mechanism can be useful
in understanding related issues in dynamic setups that arise, for example, in oligopoly theory or in queueing systems.

SOC is hard to detect experimentally even in the controlled experiments of the natural sciences. An advantage of the
proposed setup is that it is simple enough that it can be implemented in an experimental environment. In future work, we
plan to study under what parameterizations human subjects will exhibit behavior consistent with SOC in such a controlled
environment.
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Fig. 11. Frequency of avalanche sizes f(s), 100 pools, l¼ 1, 1 million simulations.
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Fig. 12. Log(f(s)) against log(s), 100 pools, l¼ 1, 1 million simulations.
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