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We provide a proof for a result due to Grofman, Owen and Feld (1982). a distribution-free 

generalization of the Condorcet Jury Theorem (1785). In proving this result we show exactly what 

distribution of individual competence maximizes/minimizes the judgmental accuracy of group 

majority decision processes. 
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1. Introduction 

While Condorcet is best known to present-day economists for his identification 

of the paradox of cyclical majorities’ and his work on the logic of majority 

preference (in particular for being the first to propose the criterion for majority 

choice which now bears his name).2 Condorcet’s philosophical stance was that col- 

lective decision making was not a matter of preference aggregation but rather ‘was 

a matter of the articulation of public reason’ (Baker, 1967, p. 142). The principal 

*This research was supported by NSF Grant No. SES 80-07915 and 85-05636. We would like to 

acknowledge the assistance of the Word Processing Center of the School of Social Sciences, UCI, for 

typing numerous versions of this manuscript. Please address all correspondence to the second author. 

1 To translate into contemporary terminology, Condorcet was the first person to realize that the core 

of a majority voting game may be empty. (See Plott, 1976.) 

* The Condorcet criterion: choose that alternative (if any) which receives a majority of votes against 

each and every other alternative in a paired comparison. (See Black, 1958, for historical details.) 
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aim of his magnum opus, Essai sur I’application de I’analyse 6 la probabilite’ des 

dkisions rendues ci la pluralite’ des voix (1783, was to answer the question ‘Under 

what conditions will there be a degree of probability that the majority decision of 

an assembly or tribunal is true . ..?’ (Baker, 1967, p. 139), where ‘true’ had for Con- 

dorcet a special meaning. Condorcet posited some ideal standard (e.g., a social 

ordering) along which alternatives could be ordered from best to worst. The task 

for collective decision making as he saw it was to make the ‘best’ (i.e., ‘truest’) 

choice from among the available alternatives. (See Grofman, Owen and Feld, 1982; 

Nitzan and Paroush, 1985; Grofman and Owen, 1986a, 1986b; Shapley and Grof- 

man, 1984; Young, 1986.) 

In seeking to answer the question of how reliable were group judgments, Con- 

dorcet proved an important result which has come to be known as the ‘Condorcet 

Jury Theorem’ (Black, 1958; Grofman, 1975). To state that theorem and our own 

further new results, some notation will be useful: 

Let us consider a group of size n confronting a dichotomous choice situation. Let: 

p, = judgment competence of the ith voter (0 <pi < 1) in a dichoto- 

mous choice situation, i.e., the probability that the voter will 

make the correct (better) choice of the two available to him 

n = number of voters in the group (for simplicity, n will generally be 

taken to be odd) 

m = a majority = (n + 1)/2 for n odd 

p = average judgmental competence of voters in the group 

p = judgmental competence of a voter in a homogeneous group 

P, = probability that at least a majority of voters will make the correct 

choice in a dichotomous choice situation, where n is the number 

of voters in the group 

To obtain his basic result. Condorcet assumed: 

(1) Voters’ choices are independent of one another. 

(2) Voters are homogeneous, i.e., p, =p= p for all i. 

(3) The group decision rule is simple majority. 

(4) There are exactly two alternatives, only one of which is correct. 

(5) The prior odds as to which of the two alternatives is the correct one are even. 

Theorem 1. (Condorcet Jury Theorem, Condorcet, 1985): If 1 >p> t then P,, is 

monotonically increasing in n and lim,,,P,-+ 1; if 0 < p < t then P, is 

monotonically decreasing in n and lim n + m P, + 0; while if p = t then P, = t for all 

n. 

Also 

ph(1 - p)“-h (1) 
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The implication of this result is, for p>+, that ‘VOX populi, VOX dei’. Indeed, 

the accuracy of a group majority judgment goes up rather rapidly with n. (See Grof- 

man, 1975, 1978; Table 1). 

The Condorcet Jury Theorem result, which was ‘lost’ for most of this century (see 

Black, 1958; Grofman, 1975 for details of its rediscovery) has, in the past two 

decades, been extended in a number of ways. In particular, Grofman (1978) 

generalized the Condorcet Jury Theorem by replacing Assumption 2 (voter homo- 

geneity) with the assumption that voter competence is normally distributed with a 

variance equal to the binomial variance.3 In this case we obtain expressions analo- 

gous to those in (1) with p replacing p. Grofman (1975) also proved some results 

about the relative accuracy (under a majority voting rule) of a large group of (homo- 

geneous) ‘blue-ribbon’ group. Other extensions and related results may be found in 

Poisson (1837), Steiner and Rajaratnam (1961), Margolis (1976), Gelfand and 

Solomon (1973, 1974, 1977), Klevorick and Rothschild (1978), Grofman (1979, 

1980) and Nitzan and Paroush (1980b, 1985). Feld (unpublished) has further 

generalized this result to apply to any distribution which is symmetric around its 

mean. 

It might appear that P, g + as p $$ t. Actually the situation is more complex, as 

some simple examples will demonstrate. When the distribution of voter competence 

is not symmetric, then we can obtain rather ‘perverse’ results, at least for small 

values of n, as demonstrated by these examples from Grofman, Owen and Feld 

(1982). 

For example, a group can have 13 < + and yet have P,, > k. Consider the follow- 

ing distributions of voter competence in 3 and 5 member groups. 

(a) (0.72, 0.72, 0); ~=0.48, yet P,=O.5184. (b) (0.8, 0.8, 0.8, 0, O);p=O.48, yet 

P,=O.512. (c) (0.8, 0.9, 0.7, 0, 0); p=O.48, yet P,=O.504. 

Similarly, a group can have “p > t and yet have P, < t. Consider (a) (1, 0.28, 

0.28); p=O.52, yet P,=O.4816. (b) (1, 1.0, 0.2, 0.2, 0.2); p=O.52, yet P,=O.488. 
Almost equally strange are the following examples: 

(a) (0.72, 0.72, O);P=O.48, yet P,=O.5184. (b) (0.8, 0.8, 0.8, 0, O);p=O.48, yet 

P,=O.512. (c) (0.8, 0.9, 0.7, 0, 0); ,t~=O.48, yet P,=O.504. 

+) p=O.5 but P,=O.4213. 

Nonetheless it is possible to prove a generalized form of the Condorcet Jury 

Theorem, a result first stated (but without proof) in Grofman, Owen and Feld 

(1982). 

Theorem II. (Distribution-Free Generalization of the Condorcet Jury Theorem): 
(1) If g>O.5 then lim,,,P,+l 

(2) Zf ~~0.5 then lim,,,,P,+O 

(3) If p=O.5 then 

3 Grofman (1978) also looked at the relationship between group size and the question of whether the 

group majority rule judgment is likely to be better than that of its most competent member. 
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P,<ep”2. 
n-m 

The 

Discussion 

Theorem II is important because in proving it (see Appendix) we find, for a fixed 

average competence, exactly what distribution of individual competence max- 

imizes/minimizes the judgmental accuracy of group majority decision processes.’ 

Theorem II also shows us that, for large n, except for the ‘knife-edge’ case p =t, 

if we know p (indeed if we merely know whether p is less than or greater than +, 

we would know virtually all we needed to estimate group competence. Of interest, 

too, for its counterintuitive force, is Part (3) of Theorem II, which gives the quite 

paradoxical result that groups which are on average ‘half-wits’ (a=+) can gener- 

ate a group judgmental competence anywhere from 0.39 to 0.61 - a result which 

does not ‘go away’ with increasing n. 

We believe that results dealing with the reliability of group decision making offer 

a useful complement to the more typical emphasis in the social choice literature on 

preference aggregation. However, even if one is uninterested in the question of 

judgmental competence, our results can be reinterpreted in the context of more 

general group choice processes, where pi, instead of representing a group mem- 

ber’s judgmental competence, is simply taken to be a given group member’s proba- 

bility of selecting a given alterative from a two-alternative set. Under this 

interpretation, the theorems in this paper simply deal with majority rule given 

stochastic preferences. In particular they tell us about the expected relationships be- 

tween a group’s majority choice and its members’ mean preferences when individual 

choice is probabilistic in nature. 

Appendix. Proofs of Lemmas required for Theorem II 

Let N={1,2,..., n} be a finite set of decision-makers. We assume these n group 

members are faced with a simple yes-or-no decision; player i is assumed to have 

probability pi of making a correct decision. If these probabilities are independent, 

then the probability that a majority (defined as m or more, where m is usually 

4 Parts (1) and (2) of the corollary may also, it has been suggested, be established from Chebyshev’s in- 

equality. If so, the proof is far from straightforward. In any case, part (3) of the corollary, which sets 

precise bounds on the limits at the knife-edge case, cannot be so derived. 

51t follows straightforwardly from Theorem II and its corollaries that a necessary condition for P, >p is 
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(n + 1)/2 for odd n, (n + 2)/2 for even n) will make a correct decision is 

F(P,, ~2, . . . . Pn) = sFN iFs Pi KI (l -Pi)? (Al) 
ie.7 

where the sum is taken over all sets SC N such that s (the number of members of 

S) is at least in. 

In the special case where all pi are equal, we will have 

F(P,P,...,P)= i 
0 

n pS(l -p)“ms, 
s=m s 

(Al) 

which is the usual cumulative binomial expression (for at least m successes in n trials 

of a simple experiment). 

We consider, now, the following problem: given that 

is fixed, how should the pi be chosen so as to maximize F? 

Apart from (A3), the pi are subject to the natural constraints 

“=~pi 
i= I 

osp,s 1 i=l n. , ..*, 

We therefore consider the Lagrangian 

WPl, P29 -..> P~,A)=F(PI,...>P~)-A i Pi 
r=l 

(A3) 

(A4) 

(A9 

with partial derivatives 

ac aF 
-=-- A i=l n 
api api 

> **., (‘46) 

and obtain the following: 

Principle. A necessary (but not sufficient condition for (pr, . .., p,*) to maximize F 

subject to the constraints (A3)-(A4) is the existence of a ,I such that 

(i) F;(p*) 1 A if p,F= 1, 

(ii) F;(p*) = A if O<p,*< 1, (A7) 

(iii) Fi(p*) I A if p,*= 0, 

(where F, = aF/ap,). 

To see what this means, we note first that the partial derivative Fi is given by 

Fi(P I,..., Pn) = g jIIsPj II (l_Pj) 
jcS 
jti 

648) 
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where the sum is taken over all S c N such that i $ S and s = rn - 1. 

Let X be the set of solutions to our problem, i.e. the set of all (p,, . . . , p,) which 

maximize F subject to (A3)-(A4). By continuity, X is non-empty and compact. 

For given p*=(pf, . . . . p,*) satisfying (A3)-(A4), define a partition of N by 

K,(P”) = {j / p,*= 11, 

K,(P*) = {j I O<Pj*< 11, (A9) 

K,(p*) = {j / pj*=w 

Let ki, kZ, k, be the cardinalities of K,, K,, K, respectively. Let 

q = a-k,, 

and note that, by (A3), 

(AlO) 

c p,*= 4. 
jcK: 

(Al 1) 

Define Y(p*) to be the set of all (pl, . . . , p,) satisfying 

Pj = 1 if j EKI(p*) 

pj = 0 if j eK3(p*) 

In other words, Y(p*) is obtained from p* by all possible redistributions among 

the members of K,(p*), leaving the competence of other members of N fixed at 0 

or 1 (as the case may be). 

We prove, next, that we need consider only points in which each pi has one of 

the three values, 0, 1, and one other p. 

Lemma 1. Let p* E X, and suppose there exist i, 1~ K,(p*) such that pT+pF Then 

Y(p*) cx. 

Proof. Let us consider the expression (A8) for F;. Letting I#i, we have 

F;= C n Pj n (l-p,)+ C II Pjjis(l-Pj), 
S jeS jeS S jcS 

IGS j#i 1C.S jti 

where the first sum is taken over all S with i $ S, I E S, s = m - 1, and the second over 

all S with i,I$S, s=m-1. We rewrite as 

F~=PI $ jJIsPj,~s(l-Pj)+(l-P/) I$ jFsPjjIJs (l_Pj) 

J#/ j#i j+i,l 

or, equivalently, 

F;=P~C np,II(l-Pj)+(l-Pl)C IIPj(l-Pj), 
S S 

(A13 
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where the first sum is taken over all S with i, I$ S, s = m - 2, and the second is taken 

over all S with i, I $ S, s = m - 1. In each case, the first product is over all j E S, the 

second product over all j EN- S - {i, I}. 

We have, then (using an analogous expression for F,) 

F;-F/=(P/-Pi) Y$ nPjII(l-Pj)-g nPjfl(l-Pj) 9 1 
where the two sums are as in (A9), or equivalently 

where 

Fi - F, = (PI - Pi)Hi/ > (A13) 

Hi/= ; II PjJFs (l-Pj)- C II Pj II (l-Pj)T (A14) 
jeS s jeS jeS 

s=m-2 j+i,l s=mpl j+i,/ 

where the sums in (A14) are over all subsets SC N- {i, I} with m - 2 and m - 1 

elements respectively. We note, inter alia, that Hi, depends on Pj, j # i, I, but does 

not depend on p, or pI. 

Suppose, now, there is some pair of indices, i, IE K2 such that pT# p;* 

By (A7-ii), we must have 

F;(P*) = F/(P*) 

or, by (AlO) 

F;-F, = (p,*-phi, = 0. 

However, p,?# p?, so H,,(p*) = 0. 

As was pointed out, however, H, is independent of pi and p,. Thus, for any t, 

the point p’(t), given by 

pi(t) = p,*+ t 

Pi(f) = Pl*- t 

P;(t) = P,* for j#i,I 

will also have Hi,(p’)=O. For all t satisfying 

max{-p~p;F_1}~t~min{pl*,1-p~, 

point p’ will satisfy the constraints (A3)-(A4). Moreover, the directional derivative 

of F, in the direction of increasing t, is F, - F,, and this will be 0 for all values of 

t. Thus, for all t, 

F(p’(t)) = F(P*). 

Since p* maximizes F, so does p’(t). Thus, X contains not just p*, but all points 

obtained from p* by leaving the sum pi+pI fixed, and all other pj fixed at p,*. 

Suppose some other index k E K2. For all except (at most) three values of t, we 
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find that pj+pi, with both pi and p; different from 0. Since p’ is also optimal, we 

can repeat the above argument, and find that the amount pi+p; can be redistrib- 

uted among i and k without losing optimality. Together with the compactness of set 

X, this means that p,*+p;Ct-pt can be redistributed among i, I, and k in any way 

(subject to constraints (A4)) without losing optimality. 

Continuing in this way, and by induction, we come to the conclusion that the sum 

c pf=q 
JEKZ 

can be redistributed among members of K, in any way, subject to (A4), without 

losing optimality, i.e., X contains the entire set Y(p*) as a subset. 

Lemma 2. Let 0 < a < m. Then the maximum of F can only be found at a point 

(PT, “. 9 p,*) of the form 

1 ifjEK, 
pT= p ifjeK, (A19 

0 if jEK3, 

where O<p< 1, and 

k,+k,+k, =n 

k,+kZp=cr. 

6416) 

W7) 

Proof. Suppose some p*, not of this form, maximizes F. Then by Lemma 1, all 

points of Y(p*) maximize F, which means F is constant throughout Y. We claim 

this is not possible. 

Over the set Y, we note that all members of K, are always right, and all members 

of K, are always wrong. The group decision will therefore be correct if at least 
m-k, of the members of K, are correct. This has probability 

F(P)= C II PJ n (l_Pj). 

We note that, by (AlO), k, 5 a, so we must have k, <m, and so m-k, L 1. We 

now distinguish two cases. 

(a) k2 < m -k,. In this case, F(p) = 0 for all p E Y, but this is clearly not a max- 

imum so long as a > 0 (since pj = a/n for all j EN would give F > 0). 
(b) m-k, 5 k2. In this case, let TC K, be some set with m-k, elements. We 

have 

q=a-k,<m-k,. 

Define a by 
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I 
1 for jE K, 

0 for jEK3UK2-T 

pj = 
4 

m-k, 
for je T. 

Let a be any point, other than p, such that 

1 forjEK, 

0 forjEK3UK2-T, 

(There is some such a since 0 < ~j < 1 for all j E T.) 
It can be seen that 

whereas 

By the inequality connecting the geometric and arithmetic means, 

F(IS) <F(P) 

and so F is not constant throughout Y. The contradiction proves the Lemma. 

Lemma 3. If a 2 m, then F is maximized by setting k, 1 m. If a cm, then F is 
maximized by setting k, =O, i.e. K, =0. 

Proof. If (Y 2 m, it is easy to see that we get F= 1 by letting k, 2 m. This is clearly 

a maximum. 

Suppose, next, that (x < m, but K, ~0. Then k, 5 (x < m, so we must have k2 > 0 
(as otherwise F=O which is clearly not a maximum). 

Let i E K, , I E K, . Then pi = 1 and 0 < p, < 1, so assuming p is optimal, we must 

have (by 7)) 

Now, F/ is the probability that exactly m - 1 players other than j be correct. Thus 

Fi = P 
m-kg _p)kl+kz-m 

and 
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Thus, we have 

which reduces to 

k,p 
21 

m-k, 

or 

k,prm-k,. 

By (A17), however, this gives us m 5 a which is a contradiction. Thus, for (x < m, 

then at the maximum, K, =0 as claimed. 

By Lemma 2, then, we see that, in the ‘complicated’ case, a <m, we have 

K, = 0. Denote K, by K, K, by N-K, and so the optimum is obtained at a point 

of the form 

Pj = 4 ifjEK 

0 ifjEN-K, 

where K has k elements. It remains to determine the value of k. 

We have, indeed, for such p, 

(Al81 

(A19) 

and we are looking for that integer k, with m 5 k 5 n, which maximizes the ex- 

pression: 

F max = max H(k,m,a), 
msksn 

where 

H(k,m,a) = i 
$=m (1) (X?)“~‘. 

(A20) 

In general, this maximum can be obtained from tables of the (cumulative) binom- 

ial distribution. For large m, n, this can be approximated by the Poisson or the nor- 

mal distributions. 

In carrying out this maximization, we find that: 
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Lemma 4. 

(a) For small a (i.e. Q close to 0) H (and hence F) is maximized by setting k = n 
(as large as possible). There is an exception for the case m = 1. 

(b) For large (r (i.e. a close to m) His maximized by setting k=m (as small as 
possible). 

Proof 

(a) We note H(k,m,a) is a sum of binomial terms 

,(,,,,2j = (1:) (g(qy 

where m IS 5 k. If we increase k to k + 1, we have a corresponding term 

B 
( 

k+ l,s, &> = (“: 1) (&j‘(k;T; l>k=+‘. 

Consider now the ratio of these two terms: 

R(k,s,a) = 
B(k, s, cr/k) 

B(k+ l,s,a/k+ 1)’ 

Some algebra will simplify this to 

R(k,s,cr) = ;I;‘,; (y)k(kk;; Jk? 

Let (r, now, approach zero. In the limit, we will have 

or 

R+ -&> (l-k)-‘. 

Now, for k> 0, and s? 2, we know that 

I-&<(l-&)S 

and so 

R(k,s,a)< 1 

for all k 2 s 2 2. Thus 

.(,,s,;) iB(k+l,s,&) 

and thus each of the summands increases with k. Since H is a sum of such terms 
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(and H(k + 1, m, a) has one more term than H(k, m, a)) we must have 

H(k,m,cc)<H(k+ l,m,a). 

Hence H, and so F, is maximized by choosing k as large as possible, i.e. k=n. 
(b) We note that, for (Y = m, 

H(m, m, m) = B(m, m, 1) = 1 

whereas, for k > m, 

H(k, m, m) c 1 

thus H(m,m,m)>H(k,m,m) for all k#m. Since only a finite number of k are 

possible, the continuity of these functions guarantees that, for cx close to m, 

H(m, m, a) > H(k, m, Q) 

for all k#m. 

:%Z 
.3‘353 
.3823 

.3772 

,523 

,513 

.% 
SCQ 

6.00 6.10 6.20 6.30 6.40 6.50 

Total Competence &ii) 

Fig. i. The Impact of concentrating competence on P,, for n= 13. 
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Observation. Lemma 4 tells us that, for m 2 2, there exists a number 6(m) < m such 

that, if 0 < CI < m-6(m) then it is optimal to choose k = n. For any m, there exists 

a number a(m) > 0 such that, if m-~(m) < cz 4 m, it is optimal to choose k= m. 
Clearly we must have 6(m) > E(m), but otherwise it is not clear what the values of 

E and 6 must be, nor what happens in the remaining interval, 

m-&m)<a<m-E(m). 

Experimental observation (by choosing a few values of m) seems to suggest that 

(a) e(m) is relatively small - asymptotically it seems to approach the number 

e-2=0.718... 

(b) 6(m) is only slightly larger than E(m), so that the interval [m -6(m), m -E(m)] 
seems to have length of the order of 0.1 

(c) Throughout this interval, the optimal k seems to decrease from n to m, taking 

on all possible values over very small sub-intervals. 

To see how this works, consider the case n= 13, m=7. Fig. 1 shows the results 

of our calculations: k= 13 is optimal for o < 6.16, while k= 7 is optimal for 

(Y > 6.30. In between, there seem to be five small subintervals in which k= 12, 11, 

10, 9, 8 are successively optimal. Again, consider the case n = 5, m = 3. It is easy to 

calculate that k = 5 is optimal for (r < 2.117, k= 4 is optimal for 2.117 < CI < 2.173, 

and k=3 is optimal for cz >2.173. 

For n=3, m=2, again, we note that k=3 is optimal for cy< 1.125, while k=2 
is optimal for (r > 1.125. 

In these cases, the pattern seems to be quite clear. We repeat, however, that this 

is only a conjecture - we have no proof for the general case of arbitrary m and n. 

However, the experimental results seem very suggestive. 

Lemma 5. If p = +, for k = m = (n + 1)/2 we find that 

which, for large m is approximately equal to e “’ = 0.6 1. If p = +, for k = m = 

(n + 1)/2 we find that 

Fmi”= l-(;)“‘= l-(I-&)“l, 

which for large m is approximately equal to 1 - em I” SO.39. 

We may use the above Lemma to prove a critical additional Lemma, which shows 

for a fixed total group competence (which we may arbitrarily denote pn), how to 

find the distribution which will maximize (minimize) P,,, the accuracy of the 

group’s majority rule decision process. 

Lemma 6. (Maximization/Minimization of Group Majority Rule Competence, Sub- 
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ject to a Fixed Average Competence Constraint): 
For fixed pn, P,, is maximized 

(a) if np 2 (n f 1)/2, by setting a majority of the pi’s to one. 
(b) if (n + 1)/2 2 np 5: (n/2) - 0.2, by setting pI = 0 for (n - 1)/2 members of the 

group and pJ =p(2n/(n + 1)) for the (n f 1)/2 remaining members of the group. 
(c) If np i (n/2) - 0.4, by setting pI =p for all i. 
Similarly, P, is minimized 
(a) if ~(1 -a) 2 (n + 1)/2, i.e., if 1 >p(2n/(n - l)), by setting a majority of the p’s 

to zero. 
(b) if (n + 1)/2 > n(1 -p) 2 n/2 - 0.2, by setting p, = 1 for (n - 1)/2 members of the 

group and 1 -pJ = (1 -p)(2n/n - 1)) for the remaining (n + 1)/2 members of the 
group. 

(c) ifn(l-p)<(n/2)-0.4 bysettingp;=pfor alli. 

Proof. The first part of Lemma 6 is merely a restatement of Lemmas 2, 3 and 4 in 

a slightly different notation (recall that CY =pn). Equivalent minimization results can 

be obtained, by symmetry, by appropriate interchanging of l’s and O’s, and these 

give us the second part of Lemma 5. The parameters of 0.2 and 0.4 are only approx- 

imate (see discussion above). 

There is a small set of values of p not covered by Lemma 5. For those values, 

P, is maximized by dividing all competence equally among exactly k members of 

the group where k runs from (n + I)/2 to n as we approach the limiting bounds of 

the expressions in (b) and (c) above. We show how this works for the case N= 13 

in Fig. 1 in the text. Exactly analogous results obtain for the minimization case. Of 

course, as n increases, the bounds of the righthand inequalization in expression (b) 

and (c) converge toward p= f. For a given p value, in general, the closer a 

distribution is to the maximizing (minimizing) extreme case, the higher (lower) is the 

P, value it gives rise to. g 

We would expect that some of the perverse examples of a mismatch between p 

and P, given in the first section of the text are phenomena of small numbers. In- 

deed, p < + while P, > + (or p > t while P, < t) requires p closer and closer to t as 

n gets larger. To see this we shall first establish Lemma 7: 

Lemma 7(a): A necessary condition for P,,>f is that 

[ p(2L)](n+l)‘* > ;. 

Lemma 7(b): A sufficient condition for P,, > + is that 

[ (1 +-)($)](“+‘J’* <; 

6420) 

6421) 

Proof. Let us look at the conditions maximizing P,,. Eq. (A20) is merely a restate- 
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ment of the distribution requirements of Case (b) in Part I of Lemma 5. A similar 

look at the minimization conditions in Part II of Lemma 5 suffices to establish the 

sufficiency assertion in Eq. (Al@. 

Because (A2) and (A3) are monotonic in n, we may look at the lowest odd value 

of n greater than 1, n = 3, to establish that a necessary condition for P,, > + is that 

p > 2/v?= 0.471; while a sufficient condition for P, > & is that I-, > (63 - 2)/vq= 

0.529. In other words, as n increases, the conditions on p necessary and sufficient 

for both P, > + and P, < + will converge toward p = + (from above or below). This 

suggests that as n gets large, if JY > + (if p < + then P,, < -i); but it also suggests the 

paradoxical finding that p = t is compatible with both P, > + and P,, < +. 

Now we can complete our proof of Theorem II. 

Proof. Let us first demonstrate (1). We need only look at the worst cases (minimiz- 

ing distributions) from Lemma 5. The desired result is no problem for case (a). In 

case (b) of Part 2 of Lemma 5 we minimize by setting a bare minority of the group’s 

pi values to 1 and the remaining group members’ values to (1 -p) (2n/(n - 1)). But, 

then, the whole group will be correct whenever at least one of the (n + 1)/2 members 

of that group is correct. This occurs with probability 

1 - [ (1 -P~(~)](““)li, 

which is monotonically increasing in n. On the other hand in case (c) of Part 2 of 

Lemma 5, we minimize by setting pj=p for all i. But for this case we know from 

Theorem I that lim,,,P,,+l, sincep>%. 0 

The proof of Part (2) is essentially identical, only looking at the maximization 

cases of Theorem II rather than those involving minimization. 

Part (3) follows directly from Lemma 4. 0 
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