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Abstract. We provide a natural extension of the Borda count to the n-dimensional spatial context, 
an algorithm to find the spatial Borda winner based on the notion of an inverse Borda count, the 
result that the Borda winner and the Condorcet winner coincide in unidimensional space when all 
alternatives on a line are feasible, results that show that in multi-dimensional space the Borda win- 
ner and the Condorcet winner (except under very implausible circumstances) will be distinct, and 
some results on the manipulability of outcomes under the Borda rule as a function of the domain 
of alternatives over which the Borda count is to be defined. 

1. Introduction 

In a majority-rule, spatial-voting game without a core, we expect most or all 
alternatives to be in the top cycle set (Schofield, 1978; McKelvey, 1979). Thus, 
absent a Condorcet winner, there may be no clear majority choice. One option 
in such a situation is to pick the alternative with the highest Borda count. 
Although some writers suggest the decision rule of using the Borda count as 
a supplementary criterion for choosing among a finite set of alternatives when 
there is no Condorcet winner (see, e.g., Black, 1958), the implications of using 
this criterion in a spatial context remain unexplored. The very definition of the 
Borda count might seem problematic when there is an infinite number of alter- 
natives. This essay provides a natural extension of the Borda count to the spa- 
tial context, sufficient conditions for the Borda winner and the Condorcet 
winner to coincide in the unidimensional case, and some results on the manipu- 
lability of outcomes under the Borda rule as a function of the domain of alter- 
natives over which the Borda count is to be defined. We also explore the rela- 
tionship between the location of the Borda winner and an important central 
domain of the space, theyolk (McKelvey, 1986), the minimal sphere that inter- 
sects all median hyperplanes. 

* The listing of authors is alphabetical. We are indebted to the staff of the Word Processing 
Center, School of Social Sciences, UCI, for typing, to Cheryl Larsson for preparation of figures, 
to Dorothy Gormick for bibliographic assistance, and to three anonymous referees for helpful sug- 
gestions. This research was supported by NSF Grant SES #85-06376, Decision and Management 
Sciences Program, to the second-named author. 
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2. The Borda count in the spatial context 

The Borda count, named for Jean-Charles de Borda (1733-1799), who first 
proposed it (Borda, 1781), gives the total number of  votes that each alternative 
would get if placed in turn against each of  the other alternatives. That  alterna- 
tive with the highest Borda count is the Borda winner. There are two ways to 
calculate the Borda count in the finite alternative case. The standard method 

is for each voter to assign one point to that alternative for each alternative to 
which he prefers it and then to sum up (over the set of  all voters) to obtain the 

total point score that each alternative receives. In other words, each first-place 
preference is worth m - 1  points, a second-place preference is worth m - 2  

points, and so forth (and of  course, a last-place preference is worth zero 

points). Alternatively, for each alternative we can count up the number of  
voters who prefer it (in a series of  pairwise comparisons) to each of  the possible 
other alternatives, and sum over the set of  all alternatives to obtain the Borda 

counts for each alternative in turn. 
There is a third way to define the Borda count, however, which will prove 

especially useful for present purposes. 

Definition 1. The inverse Borda Count for a given alternative is the number of  

alternatives that beat that alternative in each voter 's preference ordering, 
summed over all voters. 

Clearly, the Borda winner is the alternative with the minimum inverse Borda 
count. 

There are two natural ways to extend the Borda count to the case in which 
the number of  alternatives to be compared against may be infinite. 

As we have just described, we can define the Borda count for a given alterna- 
tive as the number of  alternatives that that alternative beats in each voter's 
preference ordering then summed over all voters. If  the feasible set consists of  
the points in some space, we can simply take the area of  the set of  alternatives 

to which each voter prefers a given alternative as a measure of  the size of  the 
set of  alternatives to which that voter prefers it, and then sum the resultant 
areas over all voters. If  the space is unbounded, however, then this approach 
may not be well-defined. Instead, we can find the area of  the set of  alternatives 
that each voter prefers to a given alternative, and make use of  an inverse Borda 

count as follows. 

Definition 1 '. For alternatives that are points in some multi-dimensional 
space, the inverse Borda Count of  an alternative is the area of  the set of  alterna- 
tives that each voter prefers to it, summed over all voters. 
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Clearly, in the spatial context, as elsewhere, the Borda winner is the alterna- 

tive with minimum inverse Borda count. 

In the spatial context, the inverse Borda count avoids the problems of  in- 
finite areas. If  voters have ideal points and convex indifference curves, then the 
only alternatives that a voter prefers to a particular alternative, x, are contained 
in the area enclosed by that voter 's  indifference curve through x. 

When there is a Condorcet winner, of course, the Borda winner and the Con- 

dorcet winner need not coincide. For  example, with five voters, if three voters 
have preferences xyz and two have preferences yzx, then x is the Condorcet 
winner but y is the Borda winner. If voters'  preferences are single-peaked, of  

course, then there is also a Condorcet winner: the alternative corresponding to 

the median voter is the ideal point. Single-peakedness is not sufficient to 
guarantee that the Borda winner and the Condorcet winner will coincide - as 
the preceding example in which preferences are single-peaked with respect to 

the ordering xyz demonstrates. When we move from the finite-alternative case 
to the spatial context, though, single-peakedness is sufficient to guarantee the 
coincidence of  the Borda winner and the Condorcet winner. The explanation 

for this coincidence, as we find later, sheds light on the way in which voters 
can manipulate the Borda winner by the addition or deletion of  alternatives. 

We shall henceforth make the common simplifying assumption that prefer- 

ences are Euclidean; that is, each voter ranks alternatives simply in terms of  

their distance from his or her ideal point. For simplicity, we also assume that 

the number of  voters is finite and odd and neglect the essentially technical 
potential complications that ties might cause. In two or more dimensions a 
Condorcet winner is unlikely. However 

Theorem 1. If we can array voters' ideal points along a line, and if all alterna- 

tives along the line are feasible, then the Borda winner and the Condorcet  win- 
ner coincide at the median voter 's ideal point. 

Proof. Let - ~ i  be the distance from x to V i.  Given an alternative, x, and a 

voter, Vi, with ideal point, vi, it is clear that V i prefers x to all alternatives fur- 
ther away from v i than is x; that is, if viY > vix , then V i prefers x to y. Since 
all alternatives along the line are feasible, then x loses only to a y for which viY 

< vix. The line segment that contains such a y is of  length 2-~-ix. The inverse 
m 

Borda count is the sum of  these lengths over all voters, ~ 2-~ix, where m is 
i = l  

the number of  voters. 

Clearly, if we move x closer to any voter, then the inverse Borda contribution 
of that voter declines; when x is at the voter 's most-preferred location, then the 
inverse Borda contribution of  that voter is zero. The sum of  the absolute dis- 
tances to all the voters' ideal points is minimized at the median voter 's  ideal 
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point; consequently, this point is the Borda winner. But the median voter's 
ideal point, of course, is also the Condorcet winner. Q.E.D. 

We can specify a general rule for finding the Borda winner: 

Theorem 2. In n dimensions, where all alternatives are feasible, the Borda 
N 

winner is the point x, that minimizes ~ ( - ~  n (1) 
i = l  

Proof. Each voter, V i, prefers all points around V i within a radius of vix to 
a particular point x; that is an area or volume described by a sphere of radius 
r with r = vix. The area/volume of such spheres is proportional to r raised to 
the nth power (for example, 7rr z for two dimensions). The area of these 
spheres determines the inverse Borda counts, and the point minimizing the sum 
of these areas is the Borda winner. Q.E.D. 

Corollary I to Theorem 2. In two dimensions the Borda winner is the center 
of gravity, the mean on each dimension. 

Proof. The mean is the point minimizing the squared deviations, so for n = 
2, the corollary follows directly from Theorem 2. 

Corollary 2 to Theorem 2. If voters' ideal points lie along a line, but alterna- 
tives are distributed evenly over an entire plane including the line, then the Bor- 
da winner is the alternative at the mean along the line. 

Proof. Follows directly from Corollary 1. 

In the spatial context, even if there is a Condorcet winner, the Borda winner 
and the Condorcet winner need not coincide, because the mean of the voters' 
ideal points and the median voter's ideal point need not be the same. Indeed 
the mean and the median can be very far apart. 

Corollary 3 to Theorem 2. The Borda winner is always within the convex hull 
of the voters' ideal points, that is, among the set of Pareto optimal points. 

Proof. A point minimizing a power function of distances must be inside the 
convex hull determined by those points. Q.E.D. 

Theorem 3. In two dimensions the inverse Borda count increases monotonical- 
ly with distance from the Borda winner. In particular, the inverse Borda count 
for any point at a distance e from the Borda winner is given by the Borda count 
of the Borda winner plus IIe 2. 
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Proof. In two dimensions the inverse Borda count for any point is given by 

N 
II(dip)2, (2) 

i=l 

where dip is the distance from p to the ith voter 's ideal point. (See Proof  to 
Theorem 2.) 

Note that 

d 2~p = x 2~p + y2p, (3) 

where Xip is the distance along the x axis from p to the ith voter 's ideal point, 
and Yip is the distance along the y axis from p to the ith voter's ideal point. 
Now, we may rewrite Eq. (2) as 

N N 
H [ E (Xip)2 + E (Yip)2]. (4) 

i=l i=l 

We know that 

N N 
E (Xip) 2 = E (Xip) 2 + N(Xpb )2 (5a) 

i=l i=l 

and 

N N 
E (Yip) 2 = E (Yip) 2 + N(Ypb)2, (5b) 

i=l i=l 

where b is the Borda winner. In two dimensions the Borda winner lies at the 
mean of each dimension, and thus Eq. (5) is a version of  a well-known identity 
involving the mean and variance of  a distribution. 

Substituting Eq. (5) in Eq. (4) we obtain 

N 
1I E [(Xib )2 + (Yib) 21 + N[(Xpb) 2 + (Ypb)2]. (6) 

i=1 

But this is just the inverse Borda count at the Borda winner, b, plus an expres- 
sion t h a t  increases monotonically with dpb, the distance from the Borda 
winner. That is, 

N 
I'[ ~ [(Xib) 2 + (Yib)2] 

i=1 
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Figure 1. A three-voter example in which the Borda winner is far from the center of the yolk; o 
is the center of the yolk; b is the Borda winner 

is merely the inverse Borda count for the Borda winner, b, and 

(Xpb)2 q- (Ypb)2 = e 2 = (dpb)2. Q.E.D. 

2.1 The Borda winner and the yolk 

The yolk is the minimal sphere that intersects all median hyperplanes. We can 
think of  the center of  the yolk as a natural 'center' of the space. Ferejohn, 
McKelvey, and Packel (1984) show that outcomes under most reasonable agen- 
da processes fall within four radii of the center of the yolk. (See also McKelvey, 
1986; Feld et al., 1987.) 

It would be nice if we could show that the Borda winner always lies near the 
center of the yolk. Grofman, Owen, Noviello, and Glazer (1987) argue that the 
Copeland winner, one natural generalization of  the Condorcet approach to 
games without a core, almost always will be close to the center of the yolk. Un- 
fortunately, the same is not true for the Borda winner. It may be very far from 
the center of  the space and from the Copeland winner. To see that this is so, 
we need merely consider how we could add voters such that the yolk remains 
essentially unchanged but the Borda winner can move to any point in the con- 
vex hull. To move the Borda winner in any particular direction while leaving 
the yolk essentially unchanged, merely add two voters, one on each side of the 
center of  the yolk along the specified direction. While the yolk may shrink, it 
must stay close to its original position. However, in two dimensions, Copeland 
values diminish with distance from the Copeland winner just as inverse Borda 
counts increase with distance from the Borda winner (Grofman et al., 1987). 

Figure 1 provides an example in which the Borda winner is arbitrarily far 
from the center of the yolk. The yolk is the inscribed circle, while the Borda 
point is the center of  gravity. 

2.2 The boundary o f  the space 

So far we explore situations in which all alternatives in some space are feasible. 
Now we show that we can find a subset of the space in which the Borda winner 
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Figure 2. A three-voter illustration of the boundary of alternatives in a two-dimensional space 

(and the Borda ranking of alternatives in the subset of alternatives) is the same 
as in the space as a whole. 

Definition 2. The boundary of alternatives in a space is the union of all spheres 
drawn around one voter's ideal point through another voter's ideal point (see 
Figure 2). 

Theorem 4. The Borda winner within the boundary of alternatives is the same 
as that within the entire space. 

Proof. The boundary of alternatives is the set of alternatives that some voter 
prefers to some other voter's ideal point. Thus, the boundary includes all alter- 
natives that any given voter prefers to any other voter's ideal point. Since each 
voter prefers every other voter ideal point (as well as his own) to anything out- 
side of the boundary, because of convexity, all voters prefer all points within 
the convex hull to all points outside the boundary; that is, the area outside of 
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the boundary is irrelevant in determining the inverse Borda count of any alter- 
native within the boundary. Q.E.D. 

Corollary to Theorem 4. When voters' ideal points are arrayed along a line, 
and all alternatives in the boundary of alternatives are feasible, the Borda win- 
ner and the Condorcet winner coincide at the median voter's ideal point. 

Proof. We combine the result of Theorem 1 with that of Theorem 3. Q.E.D. 

If we exclude from consideration alternatives within the boundary of alter- 
natives, the Borda winner moves away from the excluded region. Eliminating 
alternatives reduces the impact of voters who would have preferred those alter- 
natives to some others. Only voters near those alternatives prefer the excluded 
alternatives to others. In a single dimension, eliminating alternatives at one end 
moves the Borda point towards the preferences of those at the other end. Even 
confining ourselves to the convex hull can change the Borda winner. 

Consider that there are 4, 2, and 1 voters with ideal points at x, y, and z, 
respectively, at 0, 10, and 15 along a line. The Condorcet winner is x, at 0, as 
is the Borda winner for the entire dimension of alternatives. If we limit alterna- 
tives to the convex hull of the ideal points (0 through 15, which is smaller than 
the boundary of alternatives), however, then the Borda winner will be at 10. 
This is because more voters' preferences are excluded from the bounded set of 
alternatives [-15 through 30} at the low end (4) than at the high end (3), so 
the Borda count moves away from the low end. 

In general, if one wants to make it likely that alternative x will be Borda 
preferred to alternative y, one should introduce alternatives z, such that the 
margin of x over z is much greater than the margin of y over z. Notice that such 
alternatives may beat both x and y, lose to both x and y, or lose to x and beat 
y. What is important are the relative margins. 

Because of the Borda winner's sensitivity to the particular set of alternatives 
being considered and compared, the Borda count is very easy to manipulate by 
strategic addition or deletion of alternatives (see Fishburn, 1974). Indeed, we 
believe that it should be used only under conditions where the set of alternatives 
is unambiguously defined (cf. Fishburn, 1982). 

One of the commonly recognized advantages of the Borda count is that it 
provides a practical method for quickly choosing among a large set of alterna- 
tives. When the number of alternatives is too large, though, it is impractical 
to ask voters to rank-order all of them. But if, however, in a spatial context, 
voters' preferences among alternatives are a monotonic function of the dis- 
tance of alternatives from voters' ideal points, then we can find the Borda win- 
ner by asking voters to identify their ideal points in a multidimensional space 
and then use the algorithm of Theorem 2. Of course, in the spatial context, as 
in the finite case, voters may have incentives to vote strategically. 
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3. Discussion 

We show how the Borda winner always can be well-defined in the spatial con- 
text (using the ideas of the boundary of the space and of an inverse Borda win- 
ner). For a unidimensional space we provide conditions sufficient for the Bor- 
da winner and the Condorcet winner to coincide and show that they always will 
coincide if all alternatives are feasible (cf. Chamberlin and Cohen, 1978). For 
a multidimensional issue space, we show that even if there is a Condorcet win- 
ner (which, of course, is quite unlikely), the Borda winner and the Condorcet 
winner in general will be distinct (see Theorem 2). Also, the Borda winner and 
the center of the yolk need not be near one another. Finally, our results show 
how spatial manipulation of the Borda winner is possible. 

For finite alternatives, Fishburn (1974), Young (1974), and Richelson (1980) 
give axiomatic characterizations of the Borda count and of a more general class 
of rules, scoring functions, of which the Borda rule is a member. Farkas and 
Nitzan (1979) give an alternative axiomatization, based on the finding that the 
Borda winner is also the alternative with highest average plurality. We believe 
that one can modify each of these characterizations to apply to the spatial case. 

We can think of the Borda count as an 'equitable' outcome in choosing 
among finite alternatives (Black, 1958), because it maximizes 'average' plurali- 
ty. Now that we show how to conceptualize the Borda winner in the spatial con- 
text, one direction for future research would be to examine the extent to which 
outcomes move away from a Condorcet winner and toward the Borda winner 
in spatial settings where equity concerns are emphasized (cf. Eavey and Miller, 
1984; Eavey, 1987). 
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