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1. INTRODUCTION

Consider a group of N members. Let u,(£) be the Von Neumann»«Mofgen-
stern utility of the ith individual for alternative £ Define a group utility
function u(£) as a weighted additive function of the individual utilities:

w6 = T au®) ™)

The function specified in (1) can be regarded as a Bergson-Samuelson
social welfare function (SWF; Samuelson, 1977). A number of authors have
investigated the properties of such an additive SWF and shown it to have
various desirable attributes. (See discussion in Bodily, 1979, p. 1036; Har-
sanyi, 1955; Stone, 1961; Keeney and Kirkwood, 1975; Keeney, 1976;
Morris, 1974, 1977; Lehrer and Wagner, 1981: but cf. Bordley, 1980a, b,
and essay in this volume.) '
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Various authors have proposed mechanisms for assigning the weights
in Eq. (1) (see, e.g., Theil, 1963, 1969, 1970; Roskamp and McMeekin,
19703, of which Harsanyi's (1955) weighted average proposal is the best
known.

In this paper we shall be interested in the question of how the a; values
in Eq. (1) ought to be assigned. If the members of the group are “experts”
whose advice is sought, then we have the problem of optimally pooling
expert judgments. We shall review three different but related approaches;
that of Kreweras-DeGroot-Bodily, that of Mirkin, and that of Shapley-
Grofman-Nitzan-Paroush.’ '

2. BODILY ALGORITHM

Bodily (1979) offers a delegation process in which each committee member
i assigns voting weights wy, 0= w;; = 1, to-each of his fellow committee
members j, such that ¥; wy; = 1 for all i. This gives rise to a delegation matrix
W which can be regarded as a Markov chain. For W ergodic, it is well
known that there exists an eigenvector a such that aW = a (see, ¢.g., Feller,
1957). Bodily (1979) proposes that the a; values in this eigenvector be used
as the weights in Eq. (1). The weight w;; reflects i’s judgment of how large
a role j's utility function should play in the group decision making. The ith
entry a; of the unit eigenvector a reflects a group “consensus” as to the
relative weights to be given each member’s preferences. As far as we are
aware, the first author to propose this method of assigning decision weights
was Kreweras (1965). De Groot (1974) also has independently proposed
this method. It appears to be well known in the Soviet Union (Mirkin, 1979;
also Cherous’ko, 1972; Bruk and Burkov, 1972; and other references cited
in Mirkin). The Kreweras-De Groot-Bodily algorithm has also been used
as a way of determining the relative skill levels of playerts in a round-robin
tournament (Berge, 1975; Mirkin, 1979, pp. 150~153).

3. MIRKIN ALGORITHM

One practical difficulty with the Kreweras-De Groot-Bodily method is that
it requires individuals to make assessments of the relative competence of
their fellows. Even if these assessmnents are taken via secret ballots,
individuals may have some reluctance to make such judgments. Mirkin
(1979) has proposed an ingenious way to bypass direct assessments. We
can motivate his model best in the context of a situation in which a group
of individuals is asked to assess the utility of alternatives with respect to
some vaguely stated but generally agreed upon standard such as the “public
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interest.” Assume, further, that individuals may differ in their “expertise”
with respect to assessing this criterion (see, ¢.g., Einhorn et al., 1977). Mirkin
{1979, p. 153) asserts that “‘one often thinks” that competence “should be
evaluated with respect to the level of consistency of... evaluations with
those of the majority.”” Mirkin {1979) does not give any theory to provide
support to his “one often thinks,” but he does present a simpile algorithm
to assign weights to individuals based on their concordance with the views
of their fellows. His algorithm is very similar in spirit to the Kreweras-De
Groot-Bodily approach. Let K be the number of alternatives to be evaluated.,
We define u as a K x N matrix with w(j) as its ijth entry.
Mirkin (1979, p. 155) proposes that we assign weights such that

QAUU' =q. 2)

- Note that UU" is always a square matrix. It need not however be a stochastic
matrix. The vector N is a normalizing factor: A = ¥;(UU");, which turns it
into a stochastic matrix. For the method to work we also require UU" to
be nondecomposable. This will be true if and only if U is nondecomposable
(Mirkin, 1979, p. 156).

For the example in Bodily (1979, p. 1039) we have the following;

project
1 2 3
1 }j6 3 1
U= individual {2 |3 6 1|; (3)
3 13 3 4
individual
1 2 3
1 [6 3 3
U'= project {2 |3 6 3|;: (4)
3 L1 1 4
individual
1 2 3
1 (.46 37 .31
UU' = individual <2 |37 .46 311 (5
3 131 31 .34
ot 40 32 .27
*Ym: 32 40 2714 {6)

3232 .36
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Solving matrix (6) for its asymptotic value we obtain
q = (.35, .35, .30).
Bodily (1979, p. 1039) posited a delegation matrix W:

0 4 6
W={1 0 0| (7)
5 5 0

Solving the asymptotic vector for that matrix we obtain a = (.44, 3.0, .26).
When two individuals “think alike” in the way that they evaluate aiterna-
tives, then they may also be more likely to give each other high evaluations—
in which case the Kreweras-De Groot-Bodily and the Mirkin procedures
will give very similar results.

The procedure in Bq. {2) for obtaining a vector q of competence
coefficients is, as Mirkin (1979, p. 156) points out, theoretically well
grounded. The elements by of the matrix UU" are the dot pmducts of the
evaluation vectors of individuals i and j. These quantities “express the
. degree of closeness of gvaluations since two individuals that have high
evaluations of the same objects (hence also low evaluations of the same
objects) will have larger values of by” (Mirkin, 1979, p. 156, with some
change in wording). The iterative process does not affect the basic nature
of this relationship. Moreover, we can show that q has optimally captured
therelationships between the individual judgments in that q is proportional
to what is called in statistics the principal inner factor (Mirkin, 1979, p. 156).

Consider any symmetric matrix B whose coefficients characterize interre-
lationships between elements 1, 2,..., N:

Let component t; of vectort = (ty,..., t,) increase in value as it becomes more related
to the other clements of t. Then the quantity t; = tt; characterizes the degree of closeness
between i and j .. . The less that matrix T = t;; differs from B, the better vector t estimates
the relationships between the elements in B. The vector t for which the difference
between T and B attains its minimum over all tis . . . the principal inner vector. {Mirkin,
1979, pp. 156-157)

Because q is proportional to the principal inner factor, we know that the
competence coefficients are determined by the same factor that determines
the degree of similarity between experts.” Mirkin (1979, p. 155) points out
that, using his method, we can also directly solve for the utility values. First,
we find x such that

xyUU = x. (8)
Then we et

u(f) = Xg. (9)
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Here v is, as before, a normalizing factor, in this case given by ; = ¥; (U'U);;.
Using Eq. (9), we obtain x = (.38, .35, .26) for our earlier example. This
choice of the first alternative as the most favored one corresponds to that
obtained by the Kreweras-De Groot-Bodily method (see Bodily, 1979, p.
1040). It is also the choice that would arise from a weighted majority voting
rule applied to the matrix WU, where

30 44 28
WU = |60 .30 .10], (10)
45 45 .10 '

since the weighted utility sum is maximum in column 1.

4. SHAPLEY-GROFMAN-NITZAN-PAROUSH
DECISION RULE

The weights associated with the Bayesian optimal group decision rule, that
is, with log [pi/(1 — p;)], where p; is the judgmental competence of the ith
individual, seem to us to be the most satisfying answer to the question of
what weights should be used in constructing 3 SWF-at least in contexts
where there is general agreement as to the (perhaps fuzzy) criterion of
choice but differing individual assessments of the value of the alternatives
with respect to that criterion (see Shapiey and Grofman, 1984; Grofman
and Owen, this volume). A patural objection to use of Bayesian optimal
weights is that they are unknown—and we cannot use weights which we
have no way of measuring. To this difficulty we offer four possible solutions.
First, we can use the Kreweras-De Groot-Bodily-delegation process 1o
obtain a “group concensus” assessment of the p; values of each of the group
members and then insert those p; values in Eq (3) on page 95 to estimate
the Bayesxan optimal weights, rather than using the p; values themselves as
the weights.” Second, we can use the Mirkin (1979} procedure to generate
for each individual a concordance value with the group consensus rankings,
which we can then convert to a p; (and thence to a w; value), rather than
simply taking the q value itself to provide the optimum weightings as does
Mirkin (1979).

Third, in a fashion similar to that in the Mirkin (1979) procedure, we
can construct for each individual a concordance value with the group
majority choice on each pairwise comparison and use that aggregate
concordance figure as an estimate of p; to be substituted in Eq. (3) on page
95 to find the Bayesian optimal weights. In certain simple cases, this estimate
is not unreasonable (Grofman, Owen, and Feld, 1983; Feld and Grofman,
1984).
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Finally, if experts have established a “track record” of past performance,
we can assign p; values based on this track record and then use Eq. (3) on
page 95. When such over-time data is available, this is the method which
we recommend. It is both simple and sensible. Of course, we must be careful
that the new questions being raised are sufficiently similar to those previously
dealt with as to make that previous performance a useful predictor.
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NOTES

1. We shall not deal with interactive techniques for arriving at group judgment such as
Delphi 2nd Span (see Heimer, 1963; Dalkey and Helmer, 1963; Brown and Helmer, 1964,
MacKinnon, 1966z, b; Dalkey, 1969a, b, ¢, 1970; Gustafson et al., 1973; Del Beeq et al., 1975;
MacKinnon and Anderson, 1976; Sackman, 1974; cf. Einhorn, 1972, 1974; Morris, 1977,
McCarthy et al., 1986).

2. Mirkin {1979, p. 157) goes on to note that “Of course, Yy (by —~ t-ﬁ)z may be large, so
not that 21l relations are ‘linearly’ described by one factor.” When this ocours it would indicate
inconsistency in the evaluations of the experts. For this case of multiple dimensions of
evaluation, Mirkin (1979, pp. 157-163) discusses alternative techniques and shows how the
ideas discussed above can be related to factor analysis, and how UU® can be normalized so
as'to become a matrix of correlation coefficients. We shall not, however, pursue these notions
further in this paper. Rather, we shall deal with models where one underlying factor, that of
judgmental skill, is at the root of the similarities and differences in individual evaluations of
alternatives and in competence assessments [see also Bodily, 1979, p. 1040, Eq. {7]. We shall
also neglect complications caused by multifaceted problems where different experts may each
have anly a “piece” of the puzzle {see Lorge and Solomon, 1955).

3. If it is reasonable to suppose that individuals judge the competence of others by the
extent to which others are thought likely to agree with oneself, then the matrix of weights
generated by the Kreweras-De Groot-Bodily procedure is a variance-covariance matrix whose
eigenvector has ith entry equal to 2p; ~ 1 {Batchelder and Romney, this volume).




