
ORGANIZATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES 52, 39-63 (1992) 

Group Decision Making over Multidimensional Objects 
of Choice 

BERNARDGROFMAN 

University of California, Irvine 

AND 

SCOTT L. FELD 

Louisiana State University 

Recent work in social choice theory has suggested very pessimistic results 
about the way in which majority rule voting procedures (a) reflect (or fail to 
reflect) the will of the majority and (b) are subject to manipulation. We briefly 
review this work but focus on more recent results that make use of the concept 
of the “yolk” (McKelvey, 1986, American Journal of Political Science, 30(2), 
283-315). This recent literature (e.g., Feld, Grofman, & Miller, 1989, Muthe- 
matical and Computer Modeling 12(4/5), 405-416) shows that, when groups 
are voting over a set of objects that can be characterized as points in a multi- 
dimensional space under a simple sequential procedure of single elimination, 
alternatives that are centrally located within the pareto set are almost certain 
to be chosen. Moreover, the structure of majority rule in the spatial context 
imposes a natural “fuzzy ordering” on alternatives. We also look at how 
supramajoritarian decision rules can give rise to cores in spatial voting games. 
0 1992 Academic Press, Inc. 

Voting is a fundamental process for dispute resolution. There are nu- 
merous types of voting rules by which groups can choose one object from 
among some set of mutually exclusive alternatives (Black, 1958, Riker, 
1982). This set can be either finite or infinite. These alternatives can be 
individual “candidates,” possible party “platforms,” or possible legisla- 
tive bills. Under some voting procedures, all alternatives are rank ordered 
by the voters; in others, there is a sequence of balloting that at each step 
reduces the set of still viable alternatives. In most voting procedures in 
common use each voter has an equal weight in determining the outcome, 
but, for some types of rules, the class of weighted voting rules, different 
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voter’s votes may be weighted unequally (e.g., according to shares of 
preferred stock owned). Most voting outcomes are determined by either 
plurality or majority, but in some cases supermajorities (e.g., two-thirds 
or three-fourths) are required before a previously chosen alternative can 
be replaced. In this paper we initially deal with the most common case, 
unweighted voting under majority rule, and then extend our results to 
allow for differential weighting and for supramajoritarian decision rules, 
respectively. 

We focus on one important type of sequential procedure, pairwise vot- 
ing. This sequential process is analogous to the children’s game, “King of 
the Hill.” One alternative is initially designated as “King of the Hill.” A 
second alternative is proposed to challenge it. The group then chooses 
between the two alternatives. The winner of the pairwise balloting is the 
new King of the Hill. On the next round of balloting a new alternative is 
proposed to replace the reigning King. Again a pairwise vote takes place 
and again either the old King of the Hill remains in place or a successor 
is chosen. Once an alternative has been defeated it is no longer eligible to 
enter subsequent rounds. The process continues until a final winner is 
chosen on the “last” round. 

In the simplest variant, the process proceeds for a fixed number of 
rounds, with challengers entering the balloting in a predetermined order. 
If there is some individual who controls this ballot sequence, that person 
is referred to as an agenda-setter. Alternatively there may be a “partly 
random” process of selection of new alternatives, e.g., based on random 
recognition of proposals from the floor, with some rule that permits the 
group to close-off voting. In one important common variant, there is a 
predesignated alternative (the “status quo” or “no bill”) that is always 
the challenger on the last vote. 

One useful way of thinking about voter choice is as a choice among 
objects that can be characterized as vectors of salient attributes. If these 
attributes can be thought of as points on a continuum (especially if they 
can be thought of as proposed positions on a policy dimension), then we 
can regard voters as choosing among alternatives that are represented as 
points in a multidimensional space. 

We now turn to a review of some of the recent literature on majoritarian 
voting processes, after which we provide an intuitive geometric approach 
to understanding group decision making where alternatives are embedded 
in a multidimensional space. 

LITERATURE REVIEW 

Consider a set of objects (alternatives) that can be located as points in 
a multidimensional (Euclidean) space. Now consider a group of voters 
(for simplicity, N, odd) trying to reach agreement on which one of these 
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FIG. 1. Paradox of cyclical majorities. 

objects will be chosen by the group. Assume that each voter has an “ideal 
point” in the space that is that voter’s most preferred location, and that 
each voter prefers points closer to that point to points further away.’ If 
there are three or more voters and three or more alternatives, then, if 
there are two or more dimensions on which the objects of choice are being 
located, almost never will there be a single alternative that is majority 
preferred to each and every other feasible alternative in the space. Such 
an alternative, if it exists, is known as a majority winner (a.k.a. Condorcet 
winner). We show in Fig. 1, for three voters and three alternatives, an 
example of the so-called “paradox of cyclical majorities” (Black, 1958), 
i.e., a situation where majority rule is intransitive. In this situation there 
is no majority winner. 

It has been known for some time that there will be a majority winner if 
all voter ideal points are located in a single dimension, that is, on a 
straight line. In one dimension, the majority winner is the median alter- 
native on the line, i.e., the alternative closest to the ideal point of the 
median voter (Black, 1958). That result can be generalized. In two dimen- 
sions, define a median line as one on which half or more of the voter ideal 
points lie above or on, and half or more of the voter ideal points lie on or 
below the line.* Then 

THEOREM. (Davis, DeGroot, & Hinich, 1972; see also McKelvey & 
Wendell, 1976). There exists a majority winner if and only if there exists 

i These assumptions give us what are commonly called Euclidean preferences, with cir- 
cular indifference curves. While the results we state can be reformulated to hold for more 
general types of preferences, for ease of exposition we restrict ourselves to Euclidean 
preferences and consider only two-dimensional examples. 

’ In more than two dimensions, we replace median lines with median hyperplanes. 
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a voter’s ideal point, M, such that every line passing through it is a 
median. Zf so, the alternative most preferred by the voter whose ideal 
point falls at M will be a majority winner. 

A simple proof of this result is given in Feld and Grofman (1987). The 
result is an extremely restrictive one. It shows that only when voter ideal 
points are located with a kind of bilateral symmetry can we expect that 
there will be a majority winner. Not only will there in general be no 
majority winner in what is called a “spatial voting game,” but, in such 
situations, almost anything can happen. In particular, if we let P denote 
the majority preference relation, then 

THEOREM. (McKelvey 1976, 1979). In spatial voting games, if there is 
no majority winner, then there exists a path between any two points r and 
s such that r and s are a part of a cycle; that is, there exists x, y, etc., such 
TX, x-, * . . , P, and similarly Spy, ,P-, . . . ,-P,. In other words, if 
there is no majority winner then every point can be made part of the top 
cycle. 

A simple proof of this result is in Feld and Grofman (1987). The theo- 
rem above has the disturbing implication that, in the spatial context, if 
there is no alternative that is majority preferred to every other alternative, 
then there is always some chain of alternatives that can move the group 
by a path of majority preference from any alternative, however popular, 
to any other alternative, however disliked. This shows the extraordinary 
potential instability of majority vote procedures and the seemingly tre- 
mendous opportunities for agenda manipulation. By voting on a finite set 
of alternatives in a specified order under a sequential elimination rule, it 
would seem that any alternative can be made the group choice, much like 
a magician “forcing” a card on a naive subject (see Riker, 1980, 1982; cf. 
Schofield, 1978; Bell, 1978; Cohen & Matthews, 1980). 

There have been several lines of research responding to the fundamen- 
tally pessimistic results about majority rule given above. The dominant 
line of research has been one that looks for structure-induced equilibria. 
Such equilibria occur because of imposed limitations on the set of alter- 
natives that can be considered, e.g., a germaneness restriction that effec- 
tively limits alternatives to a single dimension, a mandatory final vote 
against the status quo, a budget constraint, a closed rule that requires a 
yes-no vote on a single alternative proposed by an agenda setter (Mc- 
Cubbins & Schwartz, 1985; Riker, 1980; Romer & Rosenthal, 1978; Shep- 
sle, 1979; Shepsle & Weingast, 1981, 1984; Feld & Grofman, 1989). Our 
focus in this survey, however, will be elsewhere. 

In this review we focus on two other recent lines of research: those 
based on a geometric concept called the yolk (McKelvey, 1986) and those 
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based on replacing simple majority rule with some supramajoritarian 
(greater than simple majority) requirement (Greenberg, 1979; McKelvey 
& Schofield, 1986, 1987; Schofeld, 1983, 1984a, 1984c, 1986b; Strnad, 
1985; Schofield, Grofman, & Feld, 1988). 

The core of a voting game is the set of undominated outcomes; i.e., 
those which are in place cannot be overturned. If games have a core, we 
expect that outcomes will be in the core and thus predictable. For a 
simple majority rule voting game with no ties, the core, if one exists, is 
simply the majority winner. But although in general there will be no 
majority rule winner for supramajoritarian rules there will usually be a 
core in a spatial voting game. Below we review results that show how 
much greater than simple majority is required in order to obtain a core. 

The yolk is the minimum sphere that intersects all median lines,3 a 
concept invented by Richard McKelvey (1986). The yolk can be thought 
of as a weakening of the core. It is of radius zero when there is a core. We 
present results below that show that agendas that move toward the center 
of the yolk are much easier to construct than agendas away from the 
center, and that any alternative must be majority preferred to any alter- 
native that is 2 yolk radii further away from the center of the yolk than it 
is. Thus, the smaller the yolk, the greater the predictability of outcomes 
and the harder it is to manipulate outcomes. 

Another line of recent research on choice over multidimensional issues, 
which, because of space restrictions, we will mention only briefly, is work 
on the uncovered set and various subsets thereof such as the Banks set 
and the Schattschneider set-sets whose location in spatial voting games 
can be related to the location of the yolk (Banks, 1985; Bordes, 1986; 
Feld, Grofman, Hartley, Kilgour, & Miller, 1987; Feld 8z Grofman, 1988; 
McKelvey, 1986; Miller, 1977,1980,1983; Miller, Grofman, & Feld, 1989; 
Moulin, 1984; Shepsle & Weingast, 1984). The uncovered set is the set of 
points that are majority preferred to all other alternatives either directly 
or at one remove; i.e., if x is uncovered, then for all y either Xpy or there 
exists z such that J’, and J,,. The uncovered set can thus be thought of 
as another kind of weakening of the concept of the core, The Banks set is 
the set of maximal acyclic trajectories. It can be shown that the only 
possible outcomes of voting under standard (single deletion) amendment 
procedure when voting is sophisticated in the sense of Farquarson (1969) 
are those located in the Banks set. The Schattschneider set is the set of 
possible generalized medians given all possible rotations of the defining 
axes of the space. These sets specify the domain of feasible agenda ma- 
nipulation. It can be shown that the uncovered set must be within a sphere 

’ See footnote 2. 
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FIG. 2. The petals of the win set and half-win set around o, the Center of the Yolk. 

centered around the yolk with radius 4 times that of the yolk.4 Similarly, 
yolk-related bounds can be found for the location of the Schattschneider 
set and the Banks set.5 

Now we turn to a presentation of the basic results, along with simplified 
theorem proofs. 

THE YOLK AND LIMITS TO AGENDA MANIPULATION 

Figure 2 shows the yolk for three-voter ideal points. It should be clear 
that any line passing through one ideal point and intersecting the triangle 

4 Relatedly, Packel(1981) and Ferejohn, McKelvey, and Packel(l984) have shown that, 
in spatial voting games, there may be probabilistic convergence of outcomes to a small and 
well-defined area of the space centered around the yolk (see also Ferejohn, Fiorina, & 
Packel, 1980). 

5 Three other lines of research, each of which can be thought of as providing an alternative 
weakening of the concept of the core distant from the center of the yolk, take us beyond the 
scope of this review: (1) Von-Neumann Morgenstern externally stable solution set of min- 
imal area (Wuffle, Feld, Owen, & Grofman, 1989) (A V-M externally stable solution set has 
the property that, for any alternative outside the set, there exists an alternative in the set 
which beats it.); (2) the Copeland winner, the alternative which is defeated by the fewest 
other alternatives (Copeland, 1951; Glazer, Grofman, & Owen, 1985; Grofman, 1972; Grof- 
man, Owen, Noviello, & Glazer, 1987; Henriet, 1984; Owen & Shapley, 1985; St&tin, 
1980); and (3) the Borda winner (Black, 1958; Feld & Grofman, 1988). 

Tight bounds on the location of the V-M externally stable solution set of minimal area can 
be stated relative to the center of the yolk. Similarly, the Copeland winner must lie within 
the uncovered set, but will not in general coincide with the center of the yolk. The Borda 
winner, however, can be very far from the center of the yolk. 
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is a median line, and the circle inscribed in the triangle is the smallest 
circle intersecting all median lines. 

Consider the point o at the center of the yolk in Figure 2. The set of 
alternatives that are majority preferred to the center of the yolk is indi- 
cated in Fig. 2 by a “flower” pattern. It is clear that while there are 
alternatives that are majority preferred to O, they are relatively close to O. 
As we will show in the next section, the center of the yolk is the point 
such that the circle which encloses the win set of o (the set of points that 
beat it, shown in Fig. 2 as the petals around O) is of minimal area. We 
should also note that points in the yolk also have win sets whose circum- 
scribing circles are relatively small; i.e., those points are beaten only by 
points relatively close to themselves. 

Now consider a situation with nine voters who differ in their ideal 
points in a space (perhaps left-right for economic liberalism and conser- 
vatism, and down-up representing social liberalism and conservatism). 
Figure 3 illustrates the situation that occurs with the votes evenly spaced 
around a circle. 

As is usual in multidimensional situations, there is no alternative in the 
situation shown in Fig. 3 that is majority preferred to all others. However, 
the yolk (the inner circle shown in Fig. 3) is a very small circle relative to 
the area bounded by the voter ideal points. 

In Fig. 3, we show an agenda from o to b, a set of majority moves that 
will go from o (at the center) to b further out. As can be seen, the agenda 
includes three intermediating alternatives. Each pairwise choice moves 
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FIG. 3. Yolk for a symmetric nonagon. 
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the outcome slightly further out from the center (not always in the same 
direction). If b were still further away from o an agenda needed to make 
it the winning outcome would have to contain a large chain of interme- 
diating alternatives. 

DEFINITION 1. The half-win set of an alternative x is the set of alter- 
natives that are halfway (in spatial terms) between x and the boundary of 
the win set of x along a ray from x. 

THEOREM 1. (An equivalent definition of the yolk). The yolk is the 
smallest circle surrounding a half-win set of a point. 

Before proving this theorem we will prove a lemma that provides fur- 
ther understanding of the geometry of the situation. 

LEMMA 1. An alternative, a, is preferred to an alternative b ifand only 
if the median line perpendicular to the ab line is closer to a than it is 
to b. 

Proof. Every voter votes for the alternative that is closer to his/her 
ideal point. The division of votes is determined by the perpendicular 
bisector of the line ab; i.e., all voters on the a side are closer to a and 
choose a, and all voters on the b side are closer to b and choose b. If the 
median line is on the a side, then at least half the voters are on the median 
line or closer to a (by the definition of a median line), and a majority of 
voters choose a. Q.E.D. 

Lemma 1 is all that is required to prove the contention in Theorem 1 
that the yolk can be equivalently defined as the smallest circle surround- 
ing a half-win set. 

The half-win set of a point is illustrated in Fig. 2. 

Proof of Theorem 1. From Lemma 1, an alternative in a particular 
direction from o that is closer to the median line perpendicular to that 
direction than is o is majority preferred to o. In other words, all alterna- 
tives between o and the median line and all alternatives up to and equi- 
distant on the other side of the median line are majority preferred to o. 
This, the furthest member of the win set of o in a particular direction is 
twice the distance to the median line. Half the distance to the extreme of 
the win set is the median line. Thus, the half-win set extends to the 
median lines in every direction. The smallest circle touching all median 
lines, i.e., the yolk, is also the circle surrounding the half-win set of the 
circle’s center. Q.E.D. 

With three voters, as in Fig. 2, the win set of a point is the set of points 
that two of the three voters prefer to this point; each voter prefers alter- 
natives within his/her circle through the point. Thus, the intersection of 
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two circles (a petal) is the part of the win set that a particular pair of voters 
prefers. For this example there are three pairs of voters to be considered; 
thus there are three petals to the win set. For any point other than the 
center of the yolk, at least one of the petals is larger, and therefore the 
circle surrounding the half-win set is larger. 

An important but simple corollary to Theorem 1 allows us to use knowl- 
edge of the size of the yolk to determine some limits on the possibilities 
of agendas that can be used to move the majority choice from the center 
of the yolk. 

COROLLARY 1 TO THEOREM 1. Given a yolk ofradius r with cenfer at o, 
then o is majority preferred to any point that is at least 2r from it. 

Proof. Since the yolk surrounds the half-win set of o, then a circle of 
radius 2r surrounds and contains the entire win set. Therefore, by the 
definition of the win set, there are no points outside of 2r from o that are 
majority preferred to o. Q.E.D. 

This corollary indicates that an agenda manipulator cannot in one vote 
shift the status quo from the center of the yolk more than a distance that 
is specified by twice the radius of the yolk. 

Theorem 1 shows limitations on the agenda manipulations that are pos- 
sible if one begins the trajectory at the center of the yolk. Theorem 2 
extends those results to the case of any initial starting point. 

Theorem 2 specifies minimum and maximum limits on win sets of any 
given point with the location of the point defined in terms of its angle and 
its distance from the center of the yolk. The various corollaries of The- 
orem 2 allow us to further specify constraints on agenda manipulations. 
Theorem 2 can be derived from a result in McKelvey (1986). 

THEOREM 2. Maximum and minimum bounds on the size and direction 
of the win set of any point can be given in terms of the yolk as follows: 

I. Maximum bounds. Let the point x be a distance d from the center of 
the yolk, o. Let 0 be the angle between the line ox and some given vector 
specified direction, as shown in Fig. 4. Let r, as previously, be the radius 
of the yolk. 

(a) If cos 8 s rid, then x may not be beaten by any points in the Q 
direction. (Note that if0 > (n/2), then cos 0 < 0.) 

(b) If cos 0 > - rid, then x may be beaten by all points within 2d cos 8 
+ 2r along the h direction from x. 

The maximum bounds take the form of a “cardioid” (heart shape) 
around o with the indent of the heart at x. See Fig. 5. 

II. Minimum bounds. 
(a) Zf cos 8 s rd, then x may be beaten by all points in the 8 direction. 
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FIG. 4. Construction used in proof of Theorem 2. 

(b) Zf cos 8 3 rld, then x must be beaten by all points within 2d cos 6 - 
2r in the 0 direction. 

The minimum bounds take the form of a ‘tfish” around o with the tail 
of the fish at x (Fig. 5). Figure 5 provides an illustration of both the 
maximum and the minimum win sets of a point, x. 

Proof of Part Z of Theorem 2 (maximum win set). Since the yolk inter- 
sects all median lines, the furthest median line from x in the 8 direction is 
the one tangent to the yolk on the far side from x. As can be seen in 
Fig. 6a, this median line would be d cos 8 + r from x. Under these 
conditions, x would lose to all points closer to the median line than it is, 
i.e., all points up to d cos 0 + r on the other side of the median line from 
x. That is, x would lose to all points a distance 2d cos 0 + 2r from x. When 
0 is such that cos 0 = r/d, then the furthest possible median line actu- 
ally goes through x itself, and x may beat all points in this direction. 
Figure 6b shows that if 8 is larger than r/d, then the furthest median line 
is closer in than x, so x beats all points further out in the direction of this 
line. Q.E.D. 

Proof of Part ZZ of Theorem 2 (minimum win set). Since the yolk inter- 
sects all median lines, the closest median line to x in the 8 direction is the 
one tangent to the yolk on the near side to x. As can be seen in Fig. 6a, 
this median line would be d cos 8 - 2r from x. When h is such that cos 
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FIG. 5. Cardioid bounds on the win set of x,d = 2.5r (figures only approximate). 

8 = r/d, then the closest possible median line actually goes through X, so 
x may beat all points further out in the direction of this line. Q.E.D. 

Theorem 2 gives us bounds for the win set of any point expressed in 
terms of r. The smaller r, the smaller will be those bounds. If we have a 
procedure which requires a final vote against the status quo (Shepsle, 
1979) then the only agenda outcomes possible lie in the win set of the 
status quo. The smaller I, the smaller in area will that win set be, and thus 
the smaller in area the set of feasible outcomes. 

While Theorem 2 provides specific outer bounds of the win set of a 
point, some of its implications become clearer by looking at the outer 
bounds of the win set of a point as expressed relative to the center of the 
yolk. The next result is really a corollary to Theorem 2 but we have listed 
it as a theorem because of its special importance in understanding the 
limits of agenda manipulation. 

THEOREM 3. Given a yolk of radius r with center at o, then a point in the 
space, x, is preferred to any point in the space, y, that is further than 2r 
from the center of the yolk than is x. 
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FIG. 6. (a) cos 0 < -r/d. (b) cos 0 > -r/d. 

Proof. In Fig. 6a, it can be seen that oc has length 1 sin 8 and bc has 
length 2r + d cos 8. From the Pythagorean Theorem, it follows that 

ob2 = (d sin 0)2 + (2r + d cos 8)2 ; (1) 

i.e., 

ob2=4?+4rdcosO+d2. (2) 
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Equation (2) is maximized where cos 8 is maximal. This point occurs 
for 0 = 0 (at 8 = 0, cos 8 = l), here ob = 2r + d. Thus, the maximal 
distance that a point in the win set of x could be from the center of the yolk 
is 2r further from the center of the yolk than the point x, and this occurs 
directly on the opposite side of the yolk. 

The smaller the size of the yolk, the more severe the limitation on the 
possibilities of agenda manipulation. The most severe limitation occurs in 
a situation where there is a simple majority winner, i.e., an alternative 
that is majority preferred to all others. In such a case Theorem 1 makes 
it clear that the yolk is just the circle of radius zero surrounding the 
majority winner. It follows that when r = 0 there is a clearly defined 
majority preference ordering in the entire space. Thus, 

COROLLARY 1 TO THEOREM 3. Zfthere exists a majority winner, o, then 
alternative p is preferred to alternative t if and only if p is closer to o than 
is t; i.e., if there is a majority winner then every majority preference 
trajectory is acyclic. 

Proof. From Theorem 3, and the fact that the radius of the yolk is zero, 
it follows that any alternative is preferred to alternatives that are further 
away from the center of the yolk than it is. Hence proximity to the yolk 
defines an acyclic ordering with the center of the yolk as the majority 
winner. 

This important but neglected result was first proved by Davis, De- 
Groot, and Hinich (1972; Theorem 3, 148). Note that when r = 0, all win 
sets are circular when voters have circular indifference curves. Theorem 
3 allows us to specify the directionality of majority preference between 
any pair of alternatives. While it is generally possible for agenda manip- 
ulation to occur by tracing a path from one alternative to one other 
with multiple steps, a straightforward corollary of Theorem 3 provides a 
major constraint on the possibilities of manipulation via such multistep 
agendas. Q.E.D. 

COROLLARY 2 TO THEOREM 3. Let r be the radius of the yolk. Zf t is an 
alternative at a distance further from the center of the yolk than alterna- 
tive p, then no majority preference path between t and p can exist with 
fewer than hl2r elements in it. 

Proof. Immediately follows from Theorem 3. No alternative can be 
majority preferred to another that is more than 2r closer in to the center 
of the yolk than itself. If the agenda is set so that each new agenda item 
moves the maximum possible distance of 2r closer in to the yolk, then it 
takes h/2r number of steps to go from t to p. 

This corollary provides a general lower limit to the length of the agenda 
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needed to move between two alternatives. In specific situations, it will 
often be necessary to use even longer agendas to find a majority prefer- 
ence chain between two specified points, as we shall demonstrate later. 

Corollary 2 to Theorem 3 can be rephrased in terms of cycles, as indi- 
cated in Corollary 3 to Theorem 3. 

COROLLARY 3 TO THEOREM 3. If p and t are two alternatives that differ 
by h in their distance from the center of the yolk, then a cycle containing 
p and t must have at least (h/2r) + I elements. 

Proof. Immediately follows from the previous corollary. 

SPATIAL CONFIGURATIONS AND THE EXISTENCE OF A CORE 
FOR SUPRAMAJORITARIAN VOTING RULES 

For supramajoritarian decision rules, when the dimensional&y of the 
issue space is relatively small, recent work has shown that such fre- 
quently used rules as two-thirds and three-fourths may give rise to a set 
of undominated outcomes (i.e., outcomes known as a core, which once in 
place cannot be overturned) (Greenberg, 1979; Kramer, 1977; Stmad, 
1985). Other recent work on weighted voting games (and related inegali- 
tarian voting rules) in the spatial context has shown the sufficient condi- 
tions for there to be a core in terms of a mathematical construct called the 
Nakamura number (Greenberg, 1979; Nakamura, 1979; Schofield, 1984a, 
1986a, 1986b). Some recent work has also dealt with the structural sta- 
bility of the core. A core is said to be structurally stable if it remains in 
existence even if there are small perturbations in the location of voter 
ideal points (McKelvey & Schofield, 1986; Schofield, 1984b, 1986a). 

In this section we present a powerful theorem applicable to any 
“proper” spatial voting game specifying the general conditions under 
which that rule will produce a core for any particular configuration of 
voter ideal points. This result is a straightforward generalization of the 
well-known result on majority rule spatial voting games due to Davis et al. 
(1972). 

Before we restate the first result we will prove, some explicit terminol- 
ogy is required. 

DEFINITION 2. If q is the number of votes needed to replace the status 
quo with a new alternative, we shall refer to the decision rule as a q-rule. 

Let n be the number of voters. For n odd, if q = (n + 1)/2, we have 
simple majority rule. If q > (n + 1)/2, we have a supramajoritarian 
decision requirement. 

It is often convenient to express q-rules in terms of proportions. We 
shall let q* = q/n; i.e., q* is the size of the minimal winning coalition 
expressed as a proportion qln. 
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Now we provide an example of a supramajoritarian rule in which there 
is no core, which helps us to understand exactly what a core is in this 
context. 

Consider the situation in Fig. 7, with all of the voters located at or 
outside the comers of a triangle. For a q* = ?4 rule, it should be evident 
that any point within the triangle can be beaten by moving toward one of 
the edges. Furthermore, any point that is “outside” any two of the edges, 
i.e., in one of the “outside comer” areas, is on the “inside” of the third 
edge. Therefore, every point is on the inside of one of the edges; that 
point can be beaten by any point closer to that inside edge. Thus, every 
point is beaten, and there is no core. 

Figure 8 shows some median lines for a symmetric seven-voter exam- 
ple. (The median lines depicted are those passing through two voter ideal 
points; each other median line passes through only one voter ideal point.) 

In every direction, there exists a median line. 
The idea of median lines for simple majority rule may be extended to 

q-rules, by introducing the idea of a “q-tube,” which may be thought of, 
in a rough sense, as a “thick” median line. 

DEFINITION 3. In two dimensions, there are supramajority q-tubes in 
each direction consisting of pairs of parallel lines such that, for each 
parallel line defining one of the edges of the tube, less than q of the points 
are “inside” that line (where “inside” means toward and past the other 
parallel line defining the tube), and less than II - q + 1 of the points are 
“outside” that line. 

We show in Fig. 9 an example of several q-tubes for a nine-voter situ- 
ation where q is 6. Each tube consists of a pair of parallel lines with six 
voter ideal points on or to one side of the line. 

FIG. 7. A situation where q* = % has no core. 
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E 
FIG. 8. Median lines in a seven-voter spatial game. 

For example, to find the location of a boundary line in a given direction 
we simply move a line oriented in that direction perpendicularly until it 
cuts off exactly six voter ideal points (i.e., there are less than six voter 
ideal points on one side of the line, and less than four on the other). 

FIG. 9. Example of q* = % “tubes.” 
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For any spatial voting game in which it is possible to specify the set of 
minimal winning coalitions, the generalization of a median line is an ex- 
tremal boundary tube. Before defining extremal boundary tubes, two 
definitions are necessary. 

DEFINITION 4. In two dimensions, a boundary line for a minimal win- 
ning coalition is a line such that one or more voters in the coalition have 
ideal points on the line, and all of the other voters in the coalition have 
their ideal points on the same side of the line. The “loss side” of a 
boundary line is the side of the line that contains no voter ideal points 
from the winning coalition. The “win side” (including the line itself) is the 
side of the line that contains the entire coalition. 

It should be apparent that every coalition has two boundary lines in 
every direction, one each on “opposite” sides of the coalition, forming 
boundary “tubes.” 

DEFINITION 5. Consider the set of all minimal coalitions corresponding 
to any given decision rule. The extremal boundary line in a direction is the 
boundary line in that direction that maximizes the number of voter ideal 
points on the “loss side” of the line. 

Figure 10 provides an example. Assume that there are five voters (A, B, 
C, D, E) with a decision rule requiring a winning coalition to contain D 
and any other two voters, i.e., ABD, ACD, ADE, BCD, BDE, or CDE. 
Consider the vertical direction (i.e., with horizontal boundary lines). 
Each minimal winning coalition is bounded by an upper and lower bound- 
ary line (e.g., BCD is bounded by line 1 through B and by line 3 through 

A 
0 

B line 1 t -------------*----------------------- loss side 

C line 2--an extremal boundary line t loss side 

D line 3--an extremal boundary line loss side 
I 

E line 4 
t 

______ + __________________-_____ ----- lossside 

FIG. 10. Extremal boundary lines for a rule requiring D and two other voters. 
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D; CDE is bounded by line 2 through C and line 4 through E). When all 
minimal winning coalitions are examined, it can be seen that line 2 bound- 
ing the CDE coalition is the extremal boundary line maximizing the loss 
side at the top, and that line 3 bounding the BCD (and also the ACD and 
ABD) coalition is the extremal boundary line maximizing the loss side at 
the bottom. 

As this example shows, there are two parallel extremal boundary lines 
at each angle in the plane (i.e., one maximizing the loss side on the top, 
and the other maximizing the loss side on the bottom). These two lines 
can be used to define an extremal boundary tube as follows. 

DEFINITION 6. An extremal boundary tube is the set of points in the 
intersection of the win sides of two parallel extremal boundary lines. (In 
the “proper” games that we are considering, extremal boundary tubes are 
never empty and always include the area between the two extremal 
boundary lines.) In Fig. 10, the extremal boundary tube for the vertical 
direction is the horizontal tube defined by the area between the extremal 
boundary lines 2 and 3. In like manner, we can specify extremal boundary 
lines and tubes in any direction. Note that the “inside” of an extremal 
boundary tube is the intersection of the “win” sides of the two extremal 
boundary lines. It should also be apparent that q-tubes are just a special 
case of extremal boundary tubes. 

Now we are in the position to provide a simple proof of our next 
theorem. 

THEOREM 4. (extension of theorem on majority rule in Davis et al., 
1972). There is a core ifand only ifthe intersection of all extremal bound- 
ary tubes is non-empty. If there is a core, it is that intersection. 

Proof. Any point on the loss side of an extremal boundary line is beaten 
by some other points, and so cannot be in a core. A point outside of any 
extremal boundary tube is on the loss side of some boundary line, and so 
is not in the core. 

If a point is inside an extremal boundary tube, it is not on the loss side 
of any boundary line in that direction, and so is unbeaten in that direction. 
If a point is inside all extremal boundary tubes, then it is unbeaten in 
every direction and so is in the core. Q.E.D. 

The above generalization of the Davis et al. (1972) results to all proper 
simple spatial games is unique to the present authors, since it requires the 
definition of extremal boundary tubes as the natural generalization of 
median lines in the simple majority case; however, a similar result can be 
found in Slutsky (1979), expressed in terms of gradient vectors. The math- 
ematics underlying that proof is both more general and considerably more 
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complex than the simple proof given above for the case of Euclidean 
preferences. 

CONDITIONS FOR A CORE IN SUPRAMAJORITATIAN GAMES 

Schofield et al. (1988) provide a relatively nontechnical summary of the 
results of work on the stability properties of supramajoritarian rules and 
weighted voting rules. However, the proofs of the basic theorems have 
been presented only very technically in specialized mathematical eco- 
nomics journals. We provide simplified proofs for Euclidean preferences 
in two dimensions for two of the most important results to date on con- 
ditions for a core in supramajoritarian and weighted spatial voting games. 
Our proofs are based on the concept of extremal boundary lines: these 
proofs should provide an intuition for the meaning, applicability, and 
significance of the idea of boundary tubes. 

DEFINITION 7. (Nakamura, 1979). The Nakamura number, which we 
shall denote NN, is the smallest number of minimal winning coalitions 
whose intersection is empty. 

To find the Nakamura number we can simply count how many coali- 
tions there are in each set of coalitions whose intersection is empty. The 
smallest number of minimal winning coalitions that can have an empty 
intersection is NN. The Nakamura number plays an important role in 
understanding the behavior of weighted voting rule games (see below). 
Also, the Nakamura number of voting games determines the length of the 
shortest voting cycle permitted by the voting rule; e.g., if NN = 4 the 
shortest cycle permitted by the voting rules includes exactly four alter- 
natives. (Note that whether such a voting cycle is actually found depends 
upon the coincidence of preferences-the fact that a majority cycle of 
four alternatives is permitted by the rules does not necessarily mean that 
four alternatives can be found that will be supported by the succession of 
winning coalitions that would be required for the voting cycle.) 

A lemma is required for proving Theorem 5. 

LEMMA 1. The Nakamura number, NN, is the minimum number of 
minimum winning coalitions that need to be considered so that everybody 
loses at least once, i.e., such that every voter is excluded from at least 
one minimal winning coalition in the set. 

Proof. A set of minimal winning coalitions whose intersection is empty 
is also a set of minimal winning coalitions, the union of whose comple- 
ments is the entire electorate, and conversely. Q.E.D. 

THEOREM 5. (Schofield, 1984a; see also Nakamura, 1979). In W dimen- 
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dons, any game with Nakamura number greater than W + 1 must have 
a core. 

Proof of Theorem 5. We first prove the result for two dimensions, 
Assume that there is no core. There is a smallest circle such that it 
touches all extremal boundary tubes. If the smallest such circle were a 
point, then that point would be a core. Since the smallest such circle is 
nonempty, there must be three extremal boundary tubes that are tangent 
to the circle; otherwise the circle could be smaller (see Fig. 11). 

The three tangent boundary lines form a triangle. It can be seen that 
there can be no voter on the “win” side of all three boundary lines. 
Therefore, the intersection among the three minimal winning coalitions 
bounded by these boundary lines is empty. This says there are three 
minimal winning coalitions whose intersection is empty; so NN < 3. If no 
core implies NN < 3, then NN > 3 implies that there is a core. 

The proof for three dimensions is essentially the same, except that the 
smallest circle is a sphere, and the “triangle” becomes a pyramid. The 
result is proved by showing four minimal winning coalitions whose inter- 
section is empty. The proof can be extended in this fashion for other 
numbers of dimensions. Q.E.D. 

It is easily seen that an alternative statement of Theorem 5 is: “A game 
with Nakamura number, NN, must have a core in less than NN - 1 di- 
mensions.” Since the Nakamura number for simple majority rule is 3, 
majority rule is guaranteed to have a core in one dimension. 

The Nakamura number has been defined on the basis of the rules of the 
game, i.e., the coalitions that are winning, without taking account of the 
fact that only a subset of the winning coalitions may actually form in a 

FIG. 11. The smallest circle touching all extremal boundary tubes and the three extremal 
boundary tubes tangent to it. 
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particular (spatial) context, due to other constraints: some actors may 
have sufficient antipathy to never join together, others may always vote 
together, etc. In a spatial context, we suggest that the only minimal co- 
alitions that are feasible are those that are minimally connected, as de- 
fined below. 

DEFINITION 8. (Grofman, 1982). A connected coalition is a coalition 
that includes all voters contained within its convex hull. 

DEFINITION 9. A minimally connected winning coalition is a connected 
coalition that is winning, such that excluding any actor on its convex hull 
would make it nonwinning. 

Of course, any minimally connected winning coalition must include a 
minimal winning coalition. 

Now we can define a spatial Nakamura number in terms of the feasible 
coalitions in a spatial context, i.e., the connected coalitions for a partic- 
ular configuration of voters. 

DEFINITION 10. The spatial Nakamura number (SN) is the minimal 
number of minimally connected winning coalitions whose convex hull 
intersection is empty. 

LEMMA 3. The spatial Nakamura number can be no less than the 
Nakamura number, i.e., SN > NN. 

Proof. If there are SN minimal connected winning coalitions whose 
convex hull intersection is empty, then they contain SN minimal coali- 
tions whose intersection is empty. Q.E.D. 

THEOREM 6. (Greenberg, 1979). In two dimensions, for q* greater than 
73, there must always be a core. 

Theorem 6 is actually a special case of Theorem 5. This can be seen by 
using the following Lemma. 

LEMMA 4. (Schofield 1984b; see also Nakamura, 1979). For q-rule 
games, the Nakamura number, NN, is the lowest integer bound of 
n/(n - q). 

Proof. If q of n votes are needed to win, each minimal winning coalition 
will exclude exactly n - q voters. Only when NN[nl(n - q)] > n will the 
set of excluded voters include the entire electorate, but this is equivalent 
algebraically to NN > nl(n - q). Q.E.D. 

Theorem 5 then follows as a corollary of Theorem 6 and Lemma 3. 
From Lemma 3, if q” > q/n > Y3 then NN > 3. From Theorem 6, there 
is always a core in two dimensions. The more general corollary for W 
dimensions can be stated as follows: 
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COROLLARY to THEOREM 6. For W dimensions there is a core for any 
q-rule with q > w/w + 1. 

The Nakamura number result of Theorem 5 also applies to weighted 
voting games (games that deviate from the one person-one vote principle) 
and compound games (games that involve decisions by two or more 
groups). 

DEFINITION Il. In a weighted voting rule game each player, i, has a 
weight pi, and there is a q-rule, such that a motion passes if and only if the 
weights of the players who support it is at least q. (This is equivalent to 
a q* rule with pi values normalized so that ~pi = 1.) 

Weighted voting games with sufficiently high supramajoritarian re- 
quirements inevitably have a core. A weighted voting game is analytically 
equivalent to an unweighted voting game with several voters occupying 
the same position., Therefore it follows from Theorem 4 that any 
weighted voting game with q* > % has a core in two dimensions. Games 
with q* > Y, that are equivalent to games with q* > % must also have a 
core. For example, consider a game with the following weights: (.2, .2, .2, 
.2, .05, .05, .05) and q* = .65. By inspection, this game can be seen to be 
equivalent to a game with the following weights: (.24, .24, .24, .24, .Ol, 
.Ol, .Ol, .Ol) and q* = .73. The latter game has q* > %, so it must have 
a core in two dimensions; so the former equivalent game must also have 
a core in two dimensions. We can also get this result by ascertaining the 
fact that the Nakamura number of this game is 4. 

DEFINITION 12. A game in which there are one or more voters who are 
members of all winning coalitions is said to be a veto game; players who 
are in all winning coalitions are said to be veto players. 

In a veto game the Nakamura number is infinite, because even the 
intersections of the largest sets of winning coalitions are non-empty (i.e., 
containing the veto player). It follows that every game with a veto player 
has a core (Nakamura, 1979; see also Schofield, 1984a). 

DISCUSSION 

The results given above, which focus on the importance of the size of 
the yolk as a constraint on agenda manipulation and predictability of 
outcomes in spatial voting games, lead to a very different picture of the 
possibility of democratic group decision making than that in other recent 
pessimistic treatments such as that of Riker (1982). We believe that the 
existence of a “fine-structure” to collective preference in the spatial con- 
text, when combined with other formal and informal aspects of the usual 
types of collective decision making in small groups (including a predilec- 
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tion for more than bare majority agreement), makes likely outcomes that 
are central with respect to the set of voter ideal points. 

For someone interested in organizational dynamics, especially in the 
processes of formal group decision making, the results given in this paper 
have a number of useful implications. 

First, the results stated above suggest that, at least for democratic 
decision-making bodies using a simple sequential voting process, the dis- 
tribution of voter preferences critically conditions the set of feasible out- 
comes. In particular, ceteris paribus, alternatives that are relatively close 
to the center of the yolk are more likely to be chosen by the group than 
alternatives that are far away. While there is a considerable body of 
important literature demonstrating how manipulation of the sequencing of 
alternatives can dramatically affect which outcome is chosen (see the 
excellent review in Riker, 1982), that literature hinges (a) upon voting 
rules that are more complex than the pairwise process used above and/or 
(b) upon relatively lengthy agenda sequences. 

Second, the results given above provide the intuitive underpinnings for 
an understanding of “agenda trajectories” and the nature of the majority 
preference relationship in the context of multidimensional alternatives. 
Once we locate the center of the yolk, we know roughly what alternatives 
can be expected to have reasonable probabilities of success simply by 
comparing each alternative’s relative proximity to the center of the yolk. 
The yolk is a critical concept in understanding the dynamics of majority 
rule, and extensions of that concept apply to supramajoritarian decision 
making as well. 

Third, the above results show how the number of issue dimensions 
affects the magnitude of the supramajority needed to guarantee that there 
will be a set of undefeatable alternatives. For a given number of dimen- 
sions, for large enough supramajorities there may be a substantial zone of 
the space which, once entered, cannot be left; i.e., no alternative in the 
zone is defeated by any alternative outside the zone by the requisite 
special majority. Thus, supramajoritarian decision making can be a pow- 
erful force in preserving the status quo. 
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