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We investigate the geometry underlying Finagle’s Law, which states, “‘No matter what hap-
pens, you can come out ahead if you just know how to finagle,” and we introduce a new solution
concept for two-candidate sequential spatial voting games, the “finagle point.” The finagle ra-
dius is the radius of a circle such that if a candidate locates at its center, some alternative in
the circle can beat any alternative in the space. The finagle point is the point with minimum
finagle radius—from it a candidate can, with only minuscule changes in his initial policy loca-
tion, find a response to any challenger that will defeat that challenger. For each possible can-
didate location, we provide a geometric construction which gives an outer bound for its ““finagle
radius,” a measure of the attractiveness of that location to a finagling politician. For three-voter
games without a core, we provide an analytic solution for the point with minimal finagle radius
that guarantees that the maximum finagle needed to defeat an opponent will, in general, be
quite small relative to the Pareto set. We also show how the construction used to generate the
finagle point in the three-voter case can be extended to the n-voter case. The basic idea un-
derlying the finagle point is that it is unnecessary (and indeed usually impossible) to find a po-
sition that will defeat all challengers, but it is possible to find a position that is virtually invul-
nerable to challenge, since any position that beats it can be countered by shifting to a position
very close to the original location that will defeat the challenger. Moreover, even if not at the
point with minimal finagle radius, in searching for positions to respond optimally to the location
of the other candidate, a candidate will in general not find it necessary to move far from an
initial point located near the finagle point, since points located near the finagle point will also
have a small finagle radius.
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1. Introduction

In the world of social choice theory, deep pessimism has prevailed about
the feasibility of stable majority decision processes; impossibility results and
disequilibrium results abound (see, e.g., the review in Riker, 1982). None-
theless, in the real world, Timothy Aloysius Finagle (to name but one prime
example) has been elected time and time again, and the policies he has ad-
vocated throughout his electoral career have varied relatively little from
election to election. Why the divorce between social choice theory and em-
pirical reality? Why so much stability? (Tullock, 1981). A variety of answers
have been given to this question (see review in Grofman and Uhlaner,
1985), including certain possibility results for probabilistic voting (Coughlin,
1984); emphasis on the importance of candidate uncertainty about voter
preferences (Glazer, Grofman, and Owen, 1985); a focus on properties of
the minmax set (Kramer, 1977); present constraints on a candidate’s loca-
tion caused by past publicly held positions (Samuelson, 1984); quasi-
ideological constraints on the issue framing of alternatives (Niemi, 1983);
and, of course, the ability of incumbents to send out free mail and speed So-
cial Security checks (Mayhew, 1977; Fiorina, 1977).

We propose a different answer, to wit: Incumbents take advantage of
Finagle’s Law.

FiNaGLE’s Law: No matter what happens, you can always come out
ahead if you just know how to finagle.

In other words, incumbent politicians are good finaglers. There is, of course,
a process of natural selection: individuals who are not good finaglers are un-
likely to remain politicians, much less remain incumbents.

What does it mean for a politician to be a good finagler? We shall pro-
vide an answer only for the important case of two-candidate sequential com-
petition in an n-dimensional majority rule spatial voting game without a
core. Other extensions will, no doubt, be obvious. In a nutshell, avoiding
undue mathematical formalism, the answer is: To be a good finagler, you
must find a point with a small finagle radius and locate yourself there.

Absent extremely restrictive symmetry conditions, it is well known
(McKelvey, 1976, 1979; Schofield, 1978) that in majority rule voting games
any point in the space can be made a potential outcome by appropriate
choice of an agenda. Such voting games customarily lack a Condorcet win-
ner, that is, a point that is majority preferred to each and every other point
in the space. Nonetheless, we claim that we can find a point, which we shall
call the finagle point, which has the property that every point in the space
is defeated by some point very near the finagle point, and no point with a
smaller finagle radius can be found. Suppose a candidate such as Finagle lo-
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cates at such a finagle point. While there are, of course, points that a chal-
lenger could pick that would beat the point Finagle has chosen, for every
response by a challenger that beats the finagle point, Finagle can find a
nearby point that will return him to victory.!

Of course, to a counter by Finagle to the challenger, the challenger may
in turn, have a counterresponse, but the process must end somewhere, and
since Finagle never needs to go very far from his initial starting point, he
can maintain credibility with the voters while still being assured of always
having a winning riposte to any position the challenger might adopt.

Before we can specify how to find the point that will minimize the max-
imum finagle needed for victory, a number of definitions are useful.

DEerINITION 1: A set of points is a Von Neumann-Morgenstern externally
stable solution set (V-Mess) for a majority voting game if, for any point
outside the set, there exists at least one point in the set that is majority
preferred to the point outside the set (see, e.g., Owen, 1983).2

We shall be interested in V-Messes that are circles,? since the radius of
such a circle tells us the length of the maximum possible move required from
a starting point at the center of the V-Mess to find a point that can defeat
any given point in the space.

DerINITION 2: In the spatial context the point in any V-Mess that min-
imizes the distance to the maximally distant point in the V-Mess we shall
refer to as the center of the V-Mess.

DerinITION 3: In the spatial context the distance between the center of
a V-Mess and the point in the V-Mess from which it is maximally distant
we shall refer to as the radius of the V-Mess.

'FINaGLE’S COROLLARY: Victory is always within a finagler’s reach, if his reach is long
enough and he knows which way to stretch. Cf. Ronald Reagan’s celebrated ability to sidestep
ever so slightly from his most extreme statements in such a way as to leave himself invulnerable
to challenge on that issue.

2A V-Mess is said to be minimal if it contains no proper subset which is also a V-Mess.
A V-Mess that has the property that no point inside the set is majority preferred to any other
point in the set is said to be a Von Neumann-Morgenstern internally stable solution set. Such
aset is what most of us think of simply as a V-M solution. We shall, however, not limit ourselves
to V-Messes that are internally stable.

In graph theory a V-M internally stable set is the analogue to a one-basis, while a V-M
externally stable set is the analogue to a one-cover. V-M solutions are always minimal V-
Messes.

3For simplicity our illustrations will be in two dimensions. In higher dimensions we would
look at V-Messes that are spheres.
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DEFINITION 4: The finagle radius of a point is the radius of the minimal
circular V-Mess centered around it.

DEFINITION 5: The point with minimal finagle radius is the finagle point.

Clearly, the candidates would like to find points in the space whose fi-
nagle radius is small, since this will permit them to respond successfully to
any challenge with at most a small finagle. Clearly, too, there are costs to
a candidate in attempting to shift his or her location in the policy space. The
greater the shift the less likely it will be credible. The greater the shift the
more effort it may take for candidates to sell it to the voters as reflecting
a genuine change. Moreover, too great a shift may lead to accusations that
a candidate lacks principles or is incompetent or wishy-washy.

2. Some Specific Finagle Games

We believe that there are many different types of situations in which
candidates would find it useful to be located at the point that is defensible
with the least movement, the finagle point. The previous section has at-
tempted to create some intuition for the attractiveness of the finagle point.
In this section we show that one might also wish to understand the finagle
point (and its surrounding area) as the solution to particular election games.
We provide three examples of situations that would lead to the finagle point
(or its vicinity); these are intended as illustrations of the importance of the
finagle point for a wide variety of situations.

ExaMpLE 1: Incumbents in election systems have different advantages
and constraints from challengers. In particular, incumbents have known
spatial locations at the onset of a political campaign, while relatively un-
known challengers often have the freedom to locate anywhere in the space
that they find strategically advantageous. While a campaign may involve
successive readjustments of positions of each of the candidates in response
to the other, incumbents often have the compensating advantage of being
able to “interpret” (i.e., actually modify) their positions last. Thus, each
round of the election game consists of the following: the incumbent’s orig-
inal position, followed by the challenger’s chosen location, followed by suc-
cessive readjustments of the candidates, concluded by the incumbent’s last
move, followed by the election. If the incumbent wins, he maintains his in-
cumbent position to confront the next challenger; if the challenger wins, his
position becomes his incumbent position from which to confront the next
challenger.

If the incumbent had total freedom to readjust (“interpret’) his posi-
tion, his ability to go last before the election would always permit him to
find some position that would be majority preferred to a particular position
taken by a challenger. However, if his credibility with the voters does not
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allow spatial relocations beyond some small adjustment, then he may not
be able to find any position within those constraints that beat the challenger.
The logic of the finagle point allows us to analyze this game and its “‘so-
lution,” if any.

Suppose that the electorate has a finagle tolerance (the maximum dis-
tance that an incumbent can credibly move). If the finagle tolerance is less
than the finagle radius of the finagle point, then there will be no equilibrium;
that is, there is no point that an incumbent can occupy that will always be
defensible within the constraints of credibility. However, if the electorate’s
finagle tolerance is greater than the finagle radius of the finagle point, then
the finagle point is a position that is always defensible; consequently, when-
ever a candidate arrives at the finagle point, he or she will remain there and
win all subsequent elections (unless the voters’ preferences change and there
is a new finagle point). It should be noted that if the electorate’s finagle tol-
erance is greater than the minimum necessary for stability, then there may
be several points whose finagle radii are less than the voters’ finagle toler-
ance and so are defensible, composing a defensible zone. In the case of three
voters, we are able to show that the defensible zone for this game is always
a convex region immediately surrounding the finagle point; we suspect that
this may also be true in more complex situations.

We wish to show that, even in a game that allows the possibility that
the challenger may be able to move last, the finagle point can still remain
an attractive position at which to locate.

ExamPLE 2: Suppose that once the incumbent and challenger have
taken positions, then they alternate in readjusting their positions to counter
that of their opponent, each within the finagle tolerance of the voters. If each
always has an effective response to the other, then the one who gets to make
the last readjustment before the election necessarily wins. With a fixed in-
cumbent, a challenger can find many locations in the space that are com-
pletely defensible against the entire finagle tolerance of the incumbent, in-
cluding some that may require very little finagling at all to beat any point
around the incumbent. However, the counter-finagle point (the one with
least radius that beats all points in the incumbent’s finagle tolerance circle)
may not be defensible against new challengers in subsequent elections. Since
this challenger is concerned not only with winning this election but also in
having a chance to win subsequent elections, he is best off locating within
the defensible zone. In that way, if he goes last now, he wins and occupies
a defensible position for the next elections. If he chose another position, he
might have an equal chance of winning now, but he would necessarily lose
in the following election. Thus, the anticipation of the subsequent elections
leads each challenger to locate within the defensible zone rather than at the
counter-finagle point.
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It is interesting to consider that challengers who cannot or who will not
run again are not subject to this motivation. They may be more likely to take
account only of considerations in the present election contest; consequently,
they are more likely than future-career oriented candidates to locate outside
of the defensible zone, that is, farther from the finagle point.

ExampLE 3: It is possible that the voters will not have a specific finagle
tolerance, but candidates will somehow be penalized according to how much
they are shifting their positions. (E.g., former supporters of the candidate
might be alienated in future elections.) Thus, ceteris paribus, to the extent
that distance moved can be expected to be related to magnitude of shift in
support coalition, candidates who are choosing a position will choose one
that requires the shortest movements, the finagle point.

While this motivation encourages challengers to choose the counter-
finagle point (because it requires the least adjustment from it to find the
point that can beat those points that are around the finagle point), the an-
ticipation of subsequent elections, as discussed in scenario 2, makes it likely
that challengers will choose points that are closer in to the finagle point in
order to minimize the amount of shifting that will be necessary in subsequent
elections. The incumbent, who is fixed in position first, is always at a dis-
advantage with regard to the penalties for shifting because the challenger
can always find a point that requires less shifting to counter the shifts of the
incumbent. However, the incumbent may have many other advantages
(e.g., being able to move last) that may more than compensate. In any case
candidates will make the minimization of required shifts of positions an im-
portant consideration in choosing a location, and consequently, there will
be a tendency for all candidates to locate at or near the finagle point.

These examples are intended to be illustrative; they represent sequen-
tial voting games where the maximum distance that can be moved is strictly
constrained by the rules of the game, or where longer moves are merely
more costly. In either case these games focus upon limits on spatial distance
moved. To the extent that distance in an issue space is meaningful, we be-
lieve that voters will perceive and respond to the distance moved by can-
didates in the types of ways we have indicated.*

“Other costs and limits may be associated with changes in the coalitional structure, which
we would expect to be associated with but not perfectly correlated with spatial distance.

Our general view is that in a multimove or multielection process it is sensible for candidates
to concern themselves with how far they will have to move from their initial starting point in
order to counter challengers and also to concern themselves with the total distance to and fro
that they will have to move over a sequence of responses and counterresponses within or across
campaigns. One reason for this is loss of credibility (and votes) by moves that take one too
far (or too often) from where one started (since voters’ choices are in part determined not just
by ideological proximity but also by voter judgments about candidate competence and trust-
worthiness). A second reason is that candidates may suffer from antagonism from voters whom
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3. Finding the Finagle Point

While a great deal of work has been done in the game theory literature
on V-Messes and related ideas (e.g., the competitive solution, McKelvey,
Ordeshook, and Winer, 1978), little is known about the area of V-Messes
in the spatial context. Thus, we shall largely be exploring new ground (see,
however, Ferejohn, McKelvey, and Packel, 1984). Borrowing useful geo-
metric construction techniques from other recent papers on spatial modeling
(e.g., Ferejohn, McKelvey, and Packel, 1984; Feld, Grofman, and Miller,
1985) and adapting them to our own purposes, in the next section we present
a geometric construction that identifies the finagle point and allows us to
specify the length of the maximum finagle required to find a position that
will beat that of any challenger.

DEeFINITION 6: The yolk is the circle of minimum radius which intersects
all median lines’ (Ferejohn, McKelvey, and Packel, 1984).

For the special case of three voters, we provide an analytic solution for
the finagle point construction, which shows that the maximum finagle radius
is never greater than roughly one-third the radius of the yolk and is usually
smaller still. Because the yolk will in general be small relative to the Pareto
set, our results ensure us that a candidate can find a location from which the
maximum finagle required for victory against any possible challenger will be
quite small. Interestingly, this location need not coincide with the center of
the yolk.

First, we present a basic result about circular V-Messes.

LemMma 1: Any circle which intersects all median lines is a V-Mess.

ProoF: To see this, draw any circle that intersects all median lines. For
any point outside that circle we can drop a line through the center of the
circle. The portion of that line within the circle is, of course, a diameter of
the circle. The median line that is perpendicular to that diameter must pass
through or be tangent to the circle (since the circle intersects all median
lines). But then the intersection of the median line with the diameter to
which it is perpendicular must lie on or in the circle. But this intersection

they have “deserted,” and these voters may be less willing (or even unwilling in the future)
to vote for the candidate who has deserted, even if he shifts back to a position closer to their
own. Third, candidates may be unable to convince voters that a large shift in position has in
fact taken place. Thus, we expect candidates to be sensitive to the finagle radius of the point
at which they locate, even if they do not (or cannot, because of some ideological or past position
constraint) pick the point of minimal finagle radius.

SFor dimensions higher than two, the notion of median lines must be replaced with median
hyperplanes and circles replaced with spheres. A median hyperplane is a hyperplane such that
at least half of all voter ideal points lie on it or to either side of it.
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is majority preferred to the external point. Thus, we can always find some
point on or in the circle which will be majority preferred to any given ex-
ternal point. Q.E.D.

Thus, in particular, the yolk is a V-Mess. This fact was noted in Fere-
john, McKelvey, and Packel (1984).

DerINITION 7 (Shepsle and Weingast, 1984): The win set of a point is
the set of points which defeat that point.

DerintTION 8 (Feld, Grofman, and Miller, 1985): The half-win set of a
point is the set of points which are obtained by uniformly reducing each
ray in the win set of that point by a factor of 1/2.

It is easy to find an upper bound on the finagle radius of any point. Sim-
ply generate the win set of that point and then reduce that win set in half
by taking the midpoints of the rays from the point to the extreme points of
its win set:

Lemma 2: The circle centered at a point which includes the furthest point
on that point’s half-win set is a V-Mess.

ProoF: A point on the boundary of the half-win set is majority preferred
to all other points on its ray, since it is the median point (voter projection)
on that ray (see Figure 1). Thus, the set of all such points (the boundaries
of the half-win set) must constitute a V-Mess, since for any point in the space
we can find a point on the boundary of that half-win set that will defeat
it. Q.E.D.

In Figure 1 we show such a half-win set of a point and the circle around
it centered at the point.®

LemMa 3: The center of the yolk is the point such that the minimum cir-
cle enclosing its half-win set has minimum radius.

Proor: The midpoint of a ray from a point to an extreme point of its
win set is the point at which the ray intersects a median line, but that is simply
the boundary of the point’s half-win set. Since the yolk is the smallest circle
that intersects all median lines, it follows that the circle around the center
of the yolk’s half-win set is the minimal such circle. Q.E.D.

For large electorates, under a reasonably broad class of symmetry con-
ditions for the location of voter ideal points, the yolk will be very small rel-
ative to the Pareto set, that is, the space defined by the set of voter ideal
points (McKelvey, 1983; Feld, Grofman, and Miller, 1985). Even with only

SWe illustrate this and subsequent examples with circular indifference curves. The general
ideas can be extended to all quasi-concave utility functions, but the specific analytic results we
give below are based on circular indifference.
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FIGURE 1
The Win Set and Half-Win Set of a Point y

A

a few voters, the yolk may be small relative to the Pareto set. We show in
Figure 2 an example adapted from one in Ferejohn, McKelvey, and Packel
(1984).7

In this example the yolk, the minimum circle touching all median lines,
is small and centrally located within the Pareto set—a situation which we
believe to be the norm in spatial voting games. Thus, the center of the yolk

"We have shown all of the voter ideal points to be on the hull of a convex polygon, but
that is not necessary. In general, interior ideal points tend to shrink the size of the yolk.
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FIGURE 2
A Seven-Voter Example Where the Yolk Is Small Relative to the Pareto Set
(Shape of Yolk Only Approximate)

A B

can be expected to be a point with relatively small finagle radius and would
be attractive to candidates for that reason.?

8We know (McKelvey, 1983) that the uncovered set (Miller, 1980) is located with four radii
of the yolk. A point x is covered by a point y if yPx and yPz for all z: xPz, that is, one point
covers another if it beats the first and can beat every point that the first point can beat (Miller,
1977, 1980; without real loss of generality we give the definition for the case of tournaments,
where ties can be neglected). Points that are uncovered have a variety of desirable properties.
For example, the set of sophisticated outcomes of standard amendment procedure is restricted
to a subset of the uncovered set (Miller, 1980; Shepsle and Weingast, 1984; Banks, 1985).
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THEOREM 1: The radius of the yolk, r, is an upper bound for the minimal
finagle radius (i.e., the finagle radius of the finagle point).

Proor: By Lemma 2 the finagle radius of the center of the yolk is at most
r. By Lemma 3 this is the minimum bound for the radius of the finagle point
that may be obtained by looking at half-win sets. Q.E.D.

Looking at Theorem 1 might lead one to suspect that it would be im-
possible to find points whose finagle radius was much smaller than that of
the yolk. This is, however, untrue. We might also expect that the point with
minimal finagle radius will be the center of the yolk. This, too, is untrue.

THEOREM 2: For three voters the inner circle in Figure 3 is a V-Mess.
This inner circle is tangent to each of the three larger circles. These
outer circles are each centered at a vertex and pass through the nearest
two tangency points of the yolk. Moreover, that inner circle is the small-
est circular V-Mess that can be constructed.

Proor: See Appendix.

There is another important implication of Theorem 2. Namely, the fi-
nagle radius of points will increase monotonically as we move along any ray
from the finagle point. The implication of this is that the finagle radius of
points is “‘well behaved” in the sense that its value increases continuously
as we move out along any ray from the point of minimal finagle radius. Given
a fixed finagle tolerance, the defensible zone is then a delimited area around
the finagle point. Also, at least for three voters, the family of iso-finagle-
radius lines will consist of portions of ellipses, and thus the defensible zone
will be bounded by portions of ellipses.®

°The finagle radius of a point is given by (see Figure A.2 in Appendix):
max {XA + XB — ¢, XA + XC - b, XB + XC — o}
2

We want to find the set of points that have the same finagle radius, say g. Let us take

XA +XB - ¢
to be the maximal element from among this triple for some set of alternatives. The set of points
with finagle radius g is the set of points whose maximal element in the above expression is of
value g. Now, we wish to find the locus of points such that

XA +XB - ¢

—
equals the constant g. This is the locus of points such that

XA +XB =29 +c
The locus of points the sum of whose distances from two points is a constant is, of course, an
ellipse.
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FIGURE 3.A
Equilateral Triangle

A

THEOREM 3: The radius of the inner circle shown in Figure 3 is given by
1
a+B+y+2\/af+ay+py

where p equals the semiperimeter of the triangle, i.e.,

AB+BC+AC
p=—72

and

B=,—Ac M




FIGURE 3.B
Acute Triangle
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Proor: The geometry in Figure 3 requires us to construct four circles
that are mutually tangent. A standard result in analytic geometry is that four
circles can be tangent only if their curvaturesa + B + vy + o satisfy

(@+B+y+372=2(2+p>+y*+8 ()

The curvatures are, of course, the reciprocals of the radii. This gives us a
quadratic equation in o, in which we want the larger of the two roots. Solv-
ing, we obtain

d=a+B+v+2VaB+By+ay 3)

Then, the radius of the desired circle is

773
where d is as given in equation (3). Q.E.D.

THEOREM 4: For a three-voter majority rule game, the ratio of the min-
imum finagle radius to the radius of the yolk is given by

VpapBy 4
(@+B+v+2VaB+By+ay) )

ProoF: In general, the equation for the inscribed circle in a triangle is
given by

.1 __Vip—4Bp-AClp-BC)
VpoBy p

Thus, by straightforward algebra, we obtain the desired result. Q.E.D.

THEOREM 5: The ratio of the radius of the inner circle to that of the yolk
is maximized for an equilateral triangle.

Proor: See Appendix.
For an equilateral triangle, with

AB=BC=AC=1,

some simple geometry establishes that the radius of the yolk (the inscribed
circle) is given by

? ~ 288

while

1
G=m = .08 (5)
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FIGURE3.C
Obtuse Triangle

Taking ratios and performing some simple algebra, we obtain
o] 1

7243

Thus, at most the finagle radius is not even one-third the radius of the
yolk. Moreover, for obtuse triangles we can make the ratio of the finagle
radius to the radius of the yolk as small as we like by making the angle more
and more obtuse (see Figures 3.C, 3.D, and 3.E).

Note that when the three-voter ideal points do not form an equilateral
triangle, the finagle point (the center of the inner circle) and the center of
the yolk will not coincide (see Figure 3).

The construction technique given for the three-voter case specified in
Theorems 2, 3, and 4 shown in Figure 3 can be extended to the n-voter cases
shown in Figure 4. For the five-voter case, we can find a point whose finagle
radius is much smaller than the radius of the yolk (see Figure 4). Indeed,
for symmetric polygons, as n increases, the finagle radius gets smaller and
smaller relative to the yolk.!° For triangles and symmetric polygons, this
construction guarantees that the finagle point and its entire circle will be
within the yolk. We conjecture that the finagle point is always within the

=.267 (6)

10A similar construction can be done for asymmetric polygons and ones with interior voter
ideal points.
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FIGURE 3.D
Obtuse Triangle

FIGURE 3.E
Obtuse Triangle

yolk, but we have been unable to prove it. The best we have been able to
do so far is to prove that the finagle point is always within 2.5 radii of the
center of the yolk.

We believe that the finagle point, although uniquely motivated, can be
related to other solution concepts such as the nucleolus (Owen, 1982) and
the competitive solution (McKelvey, Ordeshook, and Winer, 1978). If we
look at the construction shown in Figure 4, we observe that the arcs that de-
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FIGURE 4.A
Finagle Point for an Equilateral Pentagon

B

fine the tangency points of the finagle circle are the same as those whose in-
tersections specify the points in the competitive solution (McKelvey, Orde-
shook, and Winer, 1978). This appears always to be true in the case of sym-
metric polygons whose voter ideal points are located on the convex hull. We
believe it may also be true in general, but proving this equivalence is not
straightforward. In any case the competitive solution and the finagle radius
have quite different analytic motivations: the one is a discrete collection of
points related to coalitional bargaining offers, while the other is a unique
point which is the center of a circle of minimal finagle radius and motivated
in terms of a two-party political contest.
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FIGURE 4.B
Finagle Circle for an Equilateral Nonagon

4. Discussion

We believe that too little attention has been paid to constraints on the
movement of candidates among positions in an issue space. In general, we
believe that there are multiple pressures on candidates to locate impositions
that they can defend against challengers with as little finagling (movement
from their initial position) as possible. We show that every point in the space
can be characterized by a ““finagle radius,” the maximum distance from that
point that a candidate at that position may be required to move in order to
beat a potential challenger. A major contribution of this paper is the iden-
tification of a new and potentially quite powerful solution concept, the fi-
nagle point, the point with minimum finagle radius. We have identified var-
jous two-candidate sequential election games in which strategically
motivated individuals will be led to locate at or near the finagle point.

In three-voter situations, we have shown that the finagle point is cen-
trally located and has a very small finagle radius; that is, a candidate located
at the finagle point can defeat any challenger with only slight shifts of his
or her position. In addition, we have provided a relatively general geometric
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construction to find the finagle point and its finagle radius.!! Also, we have
provided an analytic solution to find the finagle point and its finagle radius
in the case of three voters and to show that the finagle radius of points in-
creases as they are further away from the finagle point along any ray. For
this case we have shown that the finagle circle is contained within the yolk,
but that the finagle point will not in general coincide with the center of the
yolk.

Location at a point with a small finagle radius makes it possible for a
candidate to have an “easy-to-get-to” winning counter to any move of his
opponent (i.e., a counter that is only incrementally different from his initial
location in the space and is thus ‘““credible’ with the voters).12-13 Thus, if an
incumbent is able to locate at a point with a small finagle radius and makes
(what are, in the perception of the voters) the right moves thereafter; that
is, if he is a successful finagler, he is likely to retain office.# The positions
with the smallest finagle radius are in or near the yolk. Thus, the expected
outcomes of two-party electoral competition in a world where at least one
candidate locates at or near the finagle point will be confined to a small and

""Further investigation of the location of the finagle point in the asymmetric n-voter case
is, however, still needed.

12Since the platform of one’s challenger is in general not known with certainty in advance,
it is always desirable to be able to defeat any possible opponent, that is, to be the center of
a'V-Mess. Itis also reasonable to believe that, ceteris paribus, small radius V-Messes are better
than big ones. Thus, ceteris paribus, we might expect candidates to seek the smallest V-Mess
they can find, that is, that which minimizes the maximum finagle. The reason for that is quite
simple: there are likely to be costs to changing positions, and these costs are likely to rise the
further away from his or her starting point a candidate tries to move. Such costs can arise be-
cause candidates are punished by voters for being untrustworthy in too radically shifting pol-
icies for the sake of expediency, or simply because credibly conveying to voters a slight switch
in views is a lot easier than, say, convincing voters that yesterday’s free spender is today’s fiscal
conservative (look at the fate of Mondale). Page (1978) suggests that McGovern lost support
when his attempts to change positions as the campaign progressed (e.g., on his tax plan) cost
him his reputation of being a man of principle and branded him as indecisive.

130f course, to the extent that candidates (incumbents in particular) are constrained by
their previous positions, candidates may be unable to locate at the finagle point itself. Also,
if a V-Mess is small in radius, it may be difficult for any challenger to credibly stake out a claim
to a position in the same V-Mess in which another candidate has located (especially if the latter
is an incumbent). Indeed, the incumbent may, in effect, deny this option by creating a kind
of uncertainty around his own true position within which no one challenger can enter without
being accused of playing tweedledum-tweedledee politics in a way that will cost him or her
votes.

14If the challenger also picks a point with a small finagle radius and thus also has credible
countermoves, the last player to “move” will win, or chance will determine the outcome be-
cause voters will be unable to make sufficiently fine-tuned discriminations between the two can-
didates’ positions, or the election will be determined by nonspatial factors (e.g., partisan bias
in ascribing to the candidate of the voter’s own party a position closer to the voter’s own position
than is in fact the case).
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rather precisely delimited domain of the Pareto set. Thus, having a good fi-
nagler around redounds to the public benefit because it makes politics more
stable. Note, too, that one clear implication of our results is that there is no
need for an incumbent to “jump around” the space in order to defeat any
challenger —as might have been suggested by a too careless reading of the
McKelvey (1976, 1979) results showing that the entire space can be in the
top cycle set.

We should also note an important alternative interpretation of our re-
sults. If candidate positions are largely fixed, then we can think of a point
with a small finagle radius as what political parties (rather than candidates)
ought to seek; that s, a party will wish to be able to field candidates from any-
where in some small finagle radius and thus assure itself of being able to find
a candidate able to defeat any given opponent if that opponent has a known
and fixed location. Such an interpretation suggests that parties that are not
located at a point with a small finagle radius cannot expect to compete ef-
fectively against a full range of ideological challenge (cf. Page, 1978). We
hope to explore these ideas in future research.

Manuscript submitted 19 July 1985
Final manuscript received 25 July 1988

APPENDIX
Proof of Theorems on the Finagle Point in the Three-Voter Case

In triangle ABC, let the sides have length a, b, ¢, respectively. See Figure A.1.

FIGURE A.1
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For an arbitrary point X, define
g1l X)=XA+XB-c
&(X)=XA+XC-b
g X)=XB+XC—-a

where XA is the Euclidean distance from X to A4, etc. As is well known, Euclidean distance
is a convex function; since the sum of two convex functions is convex, then for fixed A, B, and
C, the three functions g;(X) are convex. Moreover, h(X) = max{g,(X), g(X), g3(X)}, as the
maximum of convex functions, is also convex.

Let p be the semiperimeter

_a+b+c

then circles of radius p-a, p-b, p— centered at A, B, C, respectively, will all be mutually tan-
gent. A small circle, centered at S, will be tangent to all three of these circles. Its radius o can
be obtained from the formula

1 1 1 1\ (1 1 1 1
-+ +—+—] =2 —+ + +
o p-a p-b p-c o (p-af (p-bP (p-cf

where the larger of the two roots, 1/a, is to be taken.!
Now the distance between the centers of two tangent circles is the sum of their radii; hence,

SA=8+p—a

SB=3+p—b

SC=%+p—c
which gives us

SA+8B=28+2p—a—-b=23+c

'As a mnemonic, the reader may wish to memorize Soddy’s well-known poem, “The Kiss
Precise”:

Four circles to the kissing come;

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

(Frederick Soddy, “The Kiss Precise,” Nature [1936], p. 1021. Cf. Harold Scott Coxeter,
Introduction to Geometry [New York: Wiley, 1961].)
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FIGURE A.2

and similarly
SA+8C=25+b
SA+8C=25+a
and so
£1(8)=g2(S)=g3(S)=28
and
h(S)=28
We claim, now:
LemMA: S is the (unique) minimum of the function A.

PRrOOF: Since 4 is convex, it suffices to prove that S is a local minimum of 4.
Let iz be adirection (i.e., a vector of magnitude 1 and consider a “nearby point,” S’ = § + #ii
where ¢ is a small positive scalar (i.e., S’ is ¢ units from S in the direction ).
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FIGURE A.3

L 4 &

S N~

=

S units

Let a be the angle £ ASS’. Then
AS?=48*+355"?-2 cos aASxST’
or,since 8§’ = ¢,
AS'?=A3%-2t cos a AS+F
or
AZ' =\/AS?—2(AS cos a+F
so

d(AS’) —AS cos a+t

dr _\/ZSZ—ZtZ_S cos a+F

and, setting¢ = 0,

d(AS")

—gF = —cosa
In a similar way,

d(BS’)

—qr = cosB

d(CS')

—F = —cosy

where B and vy are the angles BSS' and CSS’, respectively. Then, at point S the directional de-
rivatives in the direction & are

981 _
35 = —C0s a—cos B
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FIGURE A 4

o C

a—g«3= —COS & —COS
ou o Y

g3 _
a5 = —cos B—cos vy

We claim at least one of these three is positive.

To see this we first point out that at least one of the three angles a, B, y must be obtuse.
For if all were acute (or right) then the line € through S, orthogonal to &, would be a support
for ABC (i.e., all three of A, B, C would be on the same side of €). But this is not possible,
since S is in the interior of ABC.

At least one of a, B, v is obtuse. Without loss of generality, assume « is obtuse. Again,
we note that B and C cannot both be on the same side of line AS, since this would mean AS
was a support for ABC. Now, either & is parallel to AS or it lies to one side of AS. Without
loss of generality, once again, we can assume that # lies to the same side of AS as C (or else
parallelto AS). Inthiscase, wesee thata + B = 2w — LASB,ora + B > 7. Thusa, Bareproper
angles (not larger than 7 radians) whose sum is larger than . We have 8 > m — a, and so
cos B < cos (m—a)= —cos a,andtherefore — cos § —cos « > 0.Thus

a . ’
% > 0, i.e., g1(S') > gi(S)

for points S’ close to S in this direction. It follows that h(S’) = g(S') > 2a, and since i is an
arbitrary direction, we find that S is a strict local minimum of 4. By convexity, S is the unique
global minimum.

We can now prove the following:

THEOREM A.1: The Finagle radius of S is o; i.e., for any X and any € > 0, there is some
point T dominating X such that 3T = o + e.

Proor: Let X # S. We know A(X) > h(S) = 20. Thus, let us write A(X) = 20 + 3 where
5> 0.
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FIGURE A.5

N

T

Consider the differences XA — SA, XB — SB, XC — SC. There is no loss of generality in
assuming

XA-S4 < XB-SB < XC-3C 4)
Let g be the second of these:
q=XB-SB

If g > 0, then both B and C prefer S to X, so S dominates X. Suppose, then, ¢ = 0.

Weknow XA + XB = AB=c,andso2q = XA-SA+XB-5SB=c-SA-SB=
g18§)=—20, and so ¢ = —o.

Letnow0 < e < &.Let Tbe the point obtained by moving — g + € units from S toward
B.ThenST = —q + € < o + €. We claim T dominates X through {B, C}. Infact, TB = 3B +
q — € = XB — €, andso B prefers Tto X.

Now,

81l X)=XA+XB-c=XA-SA+XB-3B+20
2(X)=XA+XB-b=XA-SA+XC-3C+2c0
23(X)=XB+XC—-a=XB-SB+XC-3C+2c

By equation (4), g3(X) is the largest of these, and so g3(X) = h(X) = 20 + 5, and by
equation (5), XC—SC=8—¢q, or XC=SC+3—q.
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Now,TC < SC+ 3T =3C +€—q.Sincee < 8,wesee TC < XC,and Calsoprefers T'to
X. Hence, T dominates X and lies the desired o + € units from S.
We show, finally, that point S is best, in this sense.

THEOREM A.2: Let X be any point other than S. Then X has a finagle radius greater than
ag.

Proor: Since X # S, we must have h(X) > h(S) = 20. There is no loss of generality in as-
sumingh(X) = g1(X).

Thus, XA + XB—-c=h(X).

On segment AB, now choose Y so that

h(X)
YA=XA-—7

then
YB=AB-YA=c-YA
but

c=XA+XB-2X

To dominate Y, a point Z must be preferred (to Y) by at least one of voters A and B. Thus,
either ZB < YB or ZA < YA. In either case we must have XZ > h(X)/2, and so the finagle
radius of X is at least h(X)/2. Since h(X) > 2a, this is greater than o. Thus, S has the minimal
finagle radius.

Combining Theorems A.1 and A.2, we have Theorem 2 in the text.

ProoF oF THEOREM 5 IN THE TEXT: We wish to show the ratio o/r is maximized for an equi-
lateral triangle. For such, we have seen that it equals

S

To simplify the notation, we set
f=p—AB
g=p-AC
h=p—-BC

then
0=;‘,B=é,'y=;11—,andp=f+g+h
We have now
1111 T 1T T
&=f+§+h'+2\/f§+]ﬁ+§h'
which reduces to

1_ fh+fh+gh+2\/7+g+;i

o fgh fgh
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On the other hand, the radius of the inscribed circle is

_\igh
r_7+g+ﬁ

and so

Iy, fetfhteh
@ " \/fghlf+g+h)

For an equilateral triangle, f = g = h, and so
r

a 2+ '\/3
For other cases, we use the identity

(fg +fh+gh)* — 6fgh(f+ g+ h)=f>(g —h))* +&*(f— h)* + h*(f—g)?

The right side of this, being the sum of squares, is nonnegative. So, then, is the left side,
i.e., (fg + fh + ghP® = /3; thus r/ais always at least 2 + /3, and is minimized for equilateral
triangles. This means, of course, that a/r is maximized for such triangles.
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