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Abstract-A theorem due to McKelvey implies that, if a single agent controls the agenda of a spatial 
voting game, he can almost always design an agenda that yields whatever voting outcome he wishes. Here 
we make use of a geometrical construct called the “yolk” to demonstrate the existence of significant limits 
on such agenda control. We show that the feasibility of agenda control is inversely related to the size of 
the yolk. In general, there are strong centripetal forces in spatial voting games, which make it much easier 
to move voting processes in a centrist direction than in non-centrist one. Thus, outcomes of plausible 
agenda processes will probably be found in the central area of the space. 

1. INTRODUCTION 

The “chaos theorems” of Plott (1967), McKelvey (1976, 1979), Schofield (1978, 1986), and others 
have produced considerable pessimism about the possibility of meaningful social choice based on 
majority rule. More specifically, actual social choices appear to be highly agenda-dependent and 
subject, under appropriate institutional arrangements, to almost unlimited agenda control. In 
particular, McKelvey demonstrated that, in an issue space of two or more dimensions, it is almost 
always possible to create a majority rule cycle including any two points. Thus, it is almost always 
possible to design an agenda of sequential pairwise majority votes that, with sincere voting, 
generates a voting trajectory-i.e. a sequence of proposals each of which is chosen in preference 
to the preceding proposal-leading from any arbitrary point in the space to any other. This in turn 
implies that a single agent, if he controls the agenda, can almost always design an agenda that yields 
whatever voting outcome he wishes. 

In this paper, we demonstrate the existence of significant limitations on such agenda control. 
In doing this, we apply a number of theorems--many, but not all, of which have been previously 
established-concerning properties of majority rule in spatial voting games. In particular, we focus 
on a geometrical construct introduced by Ferejohn, McKelvey and Packel (1984) and dubbed the 
yolk by McKelvey (1986). The yolk is the ball of minimum radius that intersects all median 
hyperplanes. The location of the yolk indicates the generalized center of the voter distribution, and 
the size to the yolk indicates how much the voter distribution deviates from one that would generate 
a majority rule equilibrium or core outcome. 

McKelvey (1986) showed that the maximum size of the “uncovered set” is a function of the size 
of the yolk. He thereby showed that the size of the yolk sets limits on agenda control, given voting 
processes that produce outcomes in the uncovered set. Here we make the more general argument 
that agenda control is essentially alwu~s constrained by the size of the yolk, regardless of the nature 
of the voting process-the smaller the yolk, the greater the constraint. In particular, while it may 
in principle be possible, in the absence of a majority rule equilibrium, to design an agenda that 
generates a voting trajectory leading from any point to any other, we show that the feasibility of 
designing an agenda that generates a trajectory leading in a noncentrist direction is in practice (with 
an agenda of reasonable size and form) a function of the size of the yolk. If the yolk is large, the 
agenda setter indeed has considerable freedom of maneuver; but if the yolk is small, he operates 
under significant constraints. More specifically, the smaller the yolk, the longer and more elaborate 
a trajectory must be if it is to lead from one point to another point more distant from the yolk. 
In addition, if the agenda setter must follow a rule of “incrementalism”, in that a voting trajectory 

tThis research was completed while S. L. Feld was a visiting professor at Dartmouth College and B. Grofman was a fellow 
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can move only a limited distance at each step, outward movement is especially severely constrained 
as the size of the yolk decreases; moreover, the further away from the yolk a voting trajectory has 
already moved, the harder it is for the agenda setter to extend it still further outward. In general, 
there are strong centripetal forces in spatial voting games, and the strength of these forces is 
inversely related to the size of the yolk. 

For purposes of this discussion, we make several simplifying assumptions. 
First, for analytical convenience, we deal only with the case in which the number of voters n 

is odd, as special complexities in defining median lines and related constructions-indeed in 
defining majority rule itself-arise in the even number case. 

Second, for purposes of exposition, our discussion focuses on the case of a two-dimensional 
space. (Thus, for example, we refer to median lines, rather than median hyperplanes.) However, 
the discussion extends straightforwardly to the multidimensional case, with some special provisos 
as noted in footnotes. 

Third, we assume that all voters have “Euclidean” (or Type 1) preferences; this means that 
individual preference is based on simple Euclidean distance, i.e. each voter has an ideal point (point 
of highest preference) in the space and, in comparing any two points in the space, prefers the point 
closer to his ideal to the point more distant from his ideal, and is indifferent between points 
equidistant from his ideal. Thus, each voter’s indifference curves are concentric circles centered on 
his ideal point. While this assumption is restrictive, we have the strong intuition that the general 
thrust of the results presented here extends to spatial voting games with more general preferences. 

Finally, to avoid certain bothersome complexities, we assume that no two voters have identical 

ideal points. 
Point x beuts point y under majority rule iff more voters prefer x to y than prefer y to x; thus, 

given Euclidean preferences, x beats y iff, of all ideal points not equidistant from x and y, a majority 
are closer to x. (Point x ties y iff, of all ideal points not equidistant from x and y, exactly half are 
closer to x and half to y.) The set of points that beat x is called the win set of x and we label 

it W(x). 
A voting trajectory from x to y is a sequence of points beginning with x and ending with y such 

that each point in the sequence (except the first) beats the preceding point. 
Point x covers point y iff x beats y, x beats everything y beats, and x beats or ties everything 

y ties; this implies that W(x) is properly contained in W(y). The set of points not covered by point 
x is designated UC(x). The uncovered set is the set of points of which none is covered by any point. 

The remainder of this paper is divided into four sections. Section 2 reviews the literature on 
agenda control in spatial voting games as it has developed to date. Section 3 presents basic 
constructions and theorems pertaining to spatial voting games with Euclidean preferences. 
Section 4 presents a series of “Agenda Propositions” that derive from the theorems and that 
specify more precisely the possibilities of and limits on agenda control in spatial voting games. 
Section 5 summarizes our conclusions. 

2. AGENDA CONTROL 

As the term is used in this paper, agenda control refers to the influence a single agent may have 
over the outcome of a voting process if he unilaterally determines the voting agenda, viz. the 
alternatives to be voted on and the order in which they are to be voted on, subject to the proviso 
that there is some distinguished alternative +-say, the “status quo” or “doing nothing”-which 
is automatically on the agenda and must always enter the voting. It is natural, therefore, to say 
that we are dealing with the case of a monopoly agenda setter. However, the limits that constrain 
a monopoly agenda setter apply a fortiori to more decentralized agenda institutions. 

Thus, the monopoly agenda setter selects some finite number of points (always including 4) out 
of the alternative space, orders them (perhaps under some constraint concerning the place of $J 
in the ordering) and presents this agenda to the voters to vote on under some variant of amendment 
procedure-i.e. the first two alternatives on the agenda are paired for a simple majority vote; the 
loser is rejected and the winner survives to be paired with the third alternative; and so forth until 
but one alternative survives, which is the voting outcome. Thus, if there are m alternatives on the 
agenda, m - 1 votes are taken; we call this an (m - I)-step agenda. 
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In two well-known papers, McKelvey (1976, 1979) demonstrated, for Euclidean and much more 

general preferences, respectively, that-in the almost certain event that there is no point in the 
multidimensional space unbeaten by any other point-any two points in the space are linked in 
a majority rule cycle. That is, a “chaotic” global cycle almost always encompasses the entire space; 
cycling, if it exists at all, cannot be confined to a small region of the space. 

From this result, McKelvey (1976) drew some implications for agenda control that have to some 
extent bedeviled voting theorists (e.g. Riker 1982) ever since. McKelvey observed that, if the 
monopoly agenda setter knows the preferences of all voters and if voters always vote according 
to their known preferences (i.e. sincerely), the agenda setter would almost always (i.e. in the absence 
of an unbeaten point) have total control over the voting outcome. More specifically, the agenda 
setter could almost always design an agenda generating a voting trajectory leading from any status 
quo point 4 to uny other point 4 * in the space-even one outside the Pareto set or, more plausibly, 
his own ideal point-no matter how extreme that point might be relative to the overall distribution 
of ideal points. 

There are a number of significant limitations on this picture of an omnipotent and possibly 
demonic agenda setter, most of which McKelvey (1976, p. 481) himself recognized but did not 
explore. First, the canny agenda setter must know the preferences of all other voters in order to 
design the appropriate agenda. Second, all voters must be able and willing to distinguish between 
alternatives concerning which they are “almost indifferent”. Third, the agenda setter is free to use 

a forward mocing agenda (cf. Wilson 1986), under which an alternative is introduced and placed 
against the status quo for a vote; only then is a second alternative introduced and placed against 
the new status quo (i.e. the winner of the first vote) for a second vote; and so forth. Under this 
arrangement, voters have no real alternative but to vote sincerely. Alternatively, if the agenda setter 
must fix and announce the whole agenda before voting begins, it is assumed that all voting is 
nevertheless sincere, with no sophistication on the part of voters and no collusion among them. 
Fourth, if the agenda must be fixed before voting begins, there is no constraint on the agenda setter 
with respect to the order in which voting takes place; in particular, it is not required that the status 
quo alternative 4 enter the voting last. And fifth, there is no constraint on the agenda setter with 
respect to the number of alternatives he may place on the agenda or on how much they may differ 
from one another. 

We do not further explore the first two limitations here, since our purpose is to indicate how 

the properties of pure majority rule in spatial voting games affect agenda control. It is worth noting, 
however, that these two assumptions are most favorable to the power of the agenda setter, and 
that the subsequent propositions demonstrating limits on agenda control hold even if these 
assumptions are true. If, more realistically, (a) the agenda setter is incompletely informed about 
other voters’ preferences and/or (b) voters are unwilling to vote in favor of a new proposal they 
prefer only barely to the current status quo, limits on the power of the agenda setter would be 
significantly greater. 

With respect to the third point, the most straightforward interpretation of McKelvey’s global 

cycling theorem assumes a forward moving agenda, so that the agenda setter can, by the global 
cycling theorem, design an agenda generating a trajectory from any initial status quo C#J to any other 
point 4* in the space. But if the setter is required to fix and announce the entire agenda before 
any voting takes place and if voters have adequate information concerning each other’s preferences 
(specifically, if they know which alternatives on the agenda beat which other alternatives), rational 
voters will vote in a sophisticated [i.e. game-theoretically optimal (cf. Farquharson 1969; McKelvey 
and Niemi 1978)] fashion, and [as anticipated by McKelvey and more directly hypothesized by 
Miller (1980)] the power of the monopoly agenda setter may be considerably tamed. More 
specifically, Shepsle and Weingast (1984) have shown that, given an agenda fixed in advance and 
given the sophisticated voting behavior such an agenda makes possible, it is impossible for the 
agenda setter to design an agenda yielding any outcome outside of UC(4), i.e. the set of points 
not covered by the status quo 4. 

With respect to the fourth point, McKelvey’s picture of agenda control assumes that, even if 
the agenda must be fixed before voting begins, 4 enters the voting initially, so that the voting 
trajectory starts at I$ and then proceeds to the setter’s desired outcome 4 *, following the cycle that 
McKelvey’s theorem assures us almost always links any two points. But Anglo-American 
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parliamentary procedure normally requires an agenda in which 4 enters the voting last. If this 
requirement is imposed, we may speak of a standard agenda. If the agenda setter is limited to such 
agendas, the strategic situation changes entirely. Restricted in this fashion, the setter cannot design 
an agenda giving any outcome outside of W(4), the win set of the status quo, since the final vote 
will in any case be between 4 and some other alternative, and-regardless of whether voting is 
otherwise sincere or sophisticated (sophisticated voters vote sincerely at the final vote)-4 will be 
the voting outcome unless that other alternative can beat 4. Thus, the agenda setter can do no 
better than merely pick his most preferred point out of W(4) and offer it to the voters on a 
take-it-or-leave-it (or, more precisely, take-it-or-take-b) basis as part of a two-alternative, one-step 
agenda. 

With respect to the fifth limitation, while McKelvey shows that any two points in the space are 
almost always linked by a cycle with a finite number of steps, his theorem gives no sense of how 
large that finite number of steps may actually be. One of the principal arguments below is that, 
even in the case most favorable to the agenda setter, viz. a forward moving agenda (with sincere 
voting), for the setter to manipulate the voting process so as to move from a more centrally located 
status quo 4 to a less centrally located outcome 4 * typically requires an impractically large agenda 
and/or an agenda that generates a trajectory that moves wildly back and forth across the space. 

We conclude this section by observing that there is a particular sense in which the efficacy of 
monopoly agenda control might be considered an either/or proposition. It is true that the agenda 
setter either can design an agenda that yields his ideal point as the outcome, or cannot. However, 
the efficacy of agenda control in this sense is, in large measure, a function of the location of the 
agenda setter’s ideal point, in relation to the center of the distribution. We are, in effect, factoring 
out this variable by focusing on the scope of possible outcomes that different agendas may yield, 
regardless of the agenda setter’s preferences. 

3. MAJORITY RULE IN SPATIAL VOTING GAMES 

Any line L through a two-dimensional alternative space partitions the ideal points into three sets: 
those that lie on one side of the line; those that lie on the other side of the line; and those that 
lie on the line. A median line M partitions that ideal points so that no more than half of them lie 
on either side of M. It follows immediately that, if-as we assume throughout-the number of ideal 
points n is odd, any median line must pass through at least one ideal point and that no two median 
lines can be parallel. 

Now let us take any two points x and y and erect the perpendicular bisector of the line connecting 
x and y. Point x is preferred by all voters whose ideal points lie on the x side of the bisector and 
point y is preferred by all voters whose ideal points lie on the y side. There must be some median 

line M (and, if n is odd, only one) perpendicular to the line through x and y; x beats y if M lies 
on the x side of the bisector, and y beats x if the reverse is true. Only if M is identical to the bisector 
may x and y tie. 

Thus, given an arbitrary point x and a line L through X, we can determine what segment of L 
intersects W(x) by determining where the median line M perpendicular of L intersects L. Point 
x is beaten by every point y on L between x and its rejection x* through M, i.e. the point x* on 
L on the opposite side of M from x and at the same distance from M as x is. This is true because 
M necessarily lies on the y side of the perpendicular bisector of the line connecting x and any such 
y. However, for any point z that lies on L beyond the reflection of x through M, or that lies on 
L on the side of x away from M, the reverse is true; thus, x is beaten only by points on L between 
x and its reflection through M (and possibly by the reflection itself).? 

This discussion makes it clear why an unbeaten point almost never exists in two or more 
dimensions-i.e. why W(x) is almost always nonempty for all points x. 

Theorem 1 (Plott 1967; Davis, DeGroot and Hinich 1972; Hoyer and Mayer 1974). 
A point c is unbeaten iff every median line passes through c. 

tit follows that W(x) is starlike about x, i.e. W(x) includes all points lying on any straight line between x and a point 
in W(X), and also polarized about x, i.e. if some points on a line through x on one side of x belong to W(X), no points 
on the line on the other side of x belong to x. 
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Proof. Essentially immediate from the preceding discussion, but see Plott (1967), Davis, DeGroot 
and Hinich (1972) and Hoyer and Mayer (1974). 

Given an unbeaten point c and an arbitrary point x, we can demarcate the win set W(x) by 
examining every line L through x and determining where the median line M perpendicular to L 
intersects L. Since every median line must pass through c, we can establish the following theorem: 

Theorem 2 (Davis, DeGroot and Hinich 1972). If there is an unbeaten point c, for 
any point x, point y beats x iffy is closer to c than x is. 

Proof. Follows directly from the preceding discussion, but see Davis, DeGroot and Hinich 
(1972). 

Thus, if there is an unbeaten point c, any win set W(x) is the set of points enclosed by the circle 
centered on c and passing through x. 

Suppose, however, that there is no unbeaten point, i.e. median lines do not all intersect at a 
common point c. Following Ferejohn, McKelvey and Packel (1984) and McKelvey (1986), we 
define the yolk as the circle of minimum radius that intersects every median line. The location of 
the yolk, given by its center c, indicates the generalized center (in the sense of the median) of the 
distribution of ideal points. The yolk can be a circle with zero radius, i.e. the single point c; this 
is the special case to which Theorems 1 and 2 pertain. In the general case, the size of the yolk, 
given by its radius r, measures the extent to which the configuration of ideal points departs from 
one that generates an unbeaten point. 

Lemma 1 In the absence of an unbeaten point, at least three median lines are tangent 

to the yo1k.t 

Proof. If this were not so, a smaller circle would touch all median lines. 

Theorem 3 If r > 0, for any point x there is some other point y that both beats x 
and is further from the center of the yolk than x is. 

Proof. From Lemma 1, it follows that there is always some median line M (in any event, one 
of the three tangent to the yolk) such that c and any arbitrary point x both lie on the same side 
of M. Consider the line L through x that is perpendicular to M; x is beaten by every point on L 

between x and its reflection x* through M. It may be checked that the reflection of x through M 
is further from c than x is. 

Thus, in the absence of an unbeaten point, W(x) at some places extends beyond the circle 
centered on c and passing through x (and, by a parallel argument, at other places falls short of 
that circle). 

Now consider any line L through x. We know that x is beaten by all points on L between x 
and its reflection through the median line M perpendicular to L. Of course, if the only information 
we have concerning the configuration of ideal points is that conveyed by yolk-i.e. by the 
parameters c and r-and if r # 0, we do not know exactly where the median line M perpendicular 
to L lies. But we do know that it lies between the two lines perpendicular to L and tangent to 
opposite sides of the yolk, for by definition every median line passes through the yolk. If both such 
tangent lines intersect L on the same side of x, the median line M perpendicular to L must lie on 
that side of x, so (regardless of the particular configuration of ideal points) x must be beaten by 
points on L on that side of x and cannot be beaten by any points on L on the other side of x. 

If the tangent lines intersect L on opposite sides of x (as must be the case if x is inside the yolk), 
we cannot say on which side of x the perpendicular median line M lies, but (unless it happens that 
M passes precisely through x, in which event no point on L beats x) x is beaten by points on L 
on one or other side (depending on the particular configuration of ideal points) of x, but not on 
both sides. 

Thus, given c and r, we can partition all lines L through x into two classes, according to whether 
the tangent lines intersect L on the same side of x or not. 

tThis is a strictly two-dimensional result. But in a similar manner, in three dimensions there are always four median planes 
tangent to the (spherical) yolk, and in w dimensions w + 1 median hyperplanes tangent to the yolk, from which parallel 
results follow. 
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In turn, we can partition all rays from x, i.e. half lines that lie on one or other side of x, into 
three classes: 

(1) 

(2) 

(3) 

dominating rays, which must intersect W(x) regardless of the particular 
configuration of ideal points, because they strictly intersect both tangent lines 
(i.e. each tangent line passes through a point on the ray other than x); 
dominated rays, which cannot intersect W(x) regardless of the particular 
configuration of ideal points, because they strictly intersect neither tangent line; 
contingent rays, which may or may not intersect W(x) depending on the 
particular configuration of ideal points, because they strictly intersect one or 
other tangent line but not both. 

We call a ray undominated if it is either dominating or contingent. We call two rays opposites 
if they lie on the same line pointing in opposite directions. Clearly, if a ray from x is dominated, 
its opposite is dominated, and vice versa; and if a ray is contingent, so is its opposite.l_ 

The next matter is to specify which rays are of which type. First, if point x is inside the yolk, 
no ray from x can strictly intersect both tangent lines, so all rays from x are contingent. Otherwise, 
if x lies at a distance d from c (where d > r), we may specify rays from x in terms of the angle 
0 (< 180”) between the ray in question and the ray from x through c. We can determine which 
rays are of which type by computing the critical angles 8* and 8 ** that separate dominating from 
contingent rays and contingent from dominated rays. These critical angles specify the rays 
perpendicular to each of the two tangent lines when one tangent line passes through x. It may be 
checked that cos 9* = r/d and cos 0** = -r/d. 

We can summarize this discussion in the following theorem: 

Theorem 4 For any point x at a distance d from the center of the yolk c, and for 
any ray from x specified by 0: 
(1) if 1 2 cos 0 > r/d, the ray is dominating; 
(2) if -r/d > cos 6’ 2 - 1, the ray is dominated; 
(3) if r/d > cos 8 > - r/d or if r/d 2 1, the ray is contingent. 

Note that the union of dominated rays forms what we may call the dominated cone, defined by 
a vertex at x, an axis along the line through c and x, and a generating angle of 180 - 8. 

It is important to bear in mind that, while x beats every point in the dominated cone, x certainly 
is not beaten by every point on a undominated ray but only by “nearby” points. The question 
naturally arises of how “nearby” these points must be. The answer follows directly from previous 
considerations. 

Consider any point x at distance d from the center of the yolk and any dominating ray from 
x specified by 8. By definition both tangent lines strictly intersect the ray. The median line 
perpendicular to the ray cannot be closer to x than the closer tangent line nor more distant from 
x than the further tangent line. Thus, x must be beaten by all points on the ray between x and 
its reflection through the closer tangent the closer tangent line and x must beat all points beyond 
its reflection through the further tangent line. 

Now consider any undominated ray from x. By definition, one tangent line strictly intersects the 
ray and the median line perpendicular to the ray cannot be further from x than this tangent line. 
Thus, x must beat all points on the ray beyond its reflection through this tangent line. 

Appropriate calculations leads to the following conclusion: 

Theorem 5 (Ferejohn, McKelvey and Packel 1984). For any point x at a distance d 
from the center of the yolk c, and for any ray from x specified by 8: 
(1) x is beaten by all points on a dominating ray up to a distance of 2d cos 0 - 2r 

from x; 
(2) x beats all points on an undominated ray beyond a distance of 2d cos 0 + 2r 

from x. 

tone “boundary condition” constitutes an exception to these statements: if the tangent line passes exactly through X, one 
ray from x is contingent and its opposite is dominated. 
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ProqjY Follows directly from preceding discussion, but see Ferejohn, McKelvey and Packel 
(1984). 

Ferejohn, McKelvey and Packel (1984; McKelvey 1986) state the theorem in the following 
manner. The locus of points at a distance of 2d cos 0 from x is simply the circle centered on c and 
passing through x. The inner and outer bounds on W(x) are given by the locus of points at 
distances of 2d cos tl - 2r and 2d cos 8 + 2r, respectively, from x. Each locus is a cardioid with 
center c, underlying radius d, and its cusp at x. The inner cardioid has a (negative) eccentricity of 
-2r, and the outer cardioid has a (positive) eccentricity of +2r. Note that the inner cardioid does 
not exist if d < r-i.e. if x is inside the yolk. Ferejohn, McKelvey and Packel state their theorem 
in this way: the region enclosed by the inner cardioid is contained in W(x) and W(x) is contained 
in the region enclosed by the outer cardioid. 

It 

Corollary 5.1. If point y is more than 2r further away from the center of the yolk 
than point x is, x beats y. 

may be noted that Corollary 5.1 subsumes Theorem 2, for the special case of r = 0. 

Corollary 5.2. If point y is more than 4r further away from the center of the yolk 
than point x is, x covers y. 

Theorem 6 If x covers y, x is closer to the center of the yolk than y is. 

Proqfi The theorem says that, if W(x) is properly contained in W(y), x is closer to the center 
of the yolk than y is. To demonstrate this, consider any two points x and y. Draw the two parallel 

lines, L, and L;, through y and x, respectively, that are perpendicular to the line through x and 
y. Wherever the boundaries of W(x) and W(y) intersect these lines, they do so in the same 
direction and at the same distance from x and y, respectively, since L, and L; are perpendicular 
to the same median line M,. Call the reflections through M, xi+ and y:, respectively. Thus, the 
points x, y, XT and yr define a rectangle. Let c * designate the center of the rectangle. Construct 
the perpendicular bisector B of the line connecting x and y; thus, M, and B intersect at c*. Now 
consider the line L, through y and XT. Note that L, passes through c *. Given the starlike character 
of win sets,? if W(x) is contained in W(y), the intersection of L, and the boundary of W(y) lies 
at or beyond x y, which implies that the median line MZ perpendicular to L, intersects L, at c* 
[if the boundaries of W(y) and W(x) coincide along L,] or beyond c* from y [if W(y) extends 
beyond W(x) along L,]. In any event, the intersection of M, and M, is not closer to y than to 
x. Now consider the line Li from x that is parallel to L,. It also is perpendicular to M, so we can 
fix the boundary of W(x) along this line, i.e. at the reflection XT through M,. Now consider the 
line L, through y and x:. Given the starlike character of win sets, if W(x) is contained in W(y), 
the intersection of L, and the boundary of W(y) lies at or beyond XT, which implies that the 
median line M, perpendicular to L, passes through c* or lies beyond c*, so that x and c* are on 
the same side of M,. In any event, the intersection of M, and M, is not closer to y than to x. We 
can construct a similar argument for any line L through y and parallel line L’ through x. Thus, 
we must conclude that, if W(x) is properly contained in W(y), no other median line intersects 
M, closer to y than x and at least one intersects M, closer to x than y. Thus, the center of the 
yolk must lie on the x side of the bisector B, i.e. closer to x than y. 

4. AGENDA PROPOSITIONS 

Having reviewed the literature on agenda control in spatial voting games, and having 
summarized or proved some theorems pertaining to majority rule in spatial voting games, we can 
now present a series of “Agenda Propositions” deriving from these theorems that specify more 
precisely the possibilities of and limits on agenda control. 

tSee the footnote immediately preceding Theorem 1 (p. 408) 
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In all the Agenda Propositions, the size of the yolk, as given by its radius r, is the critical variable. 
Most of the propositions assert, in one way or other, that the agenda setter has more freedom of 
maneuver if the yolk is large than if the yolk is small. 

Most of the following propositions pertain to the ease or difficulty with which the agenda setter 
can design an agenda yielding an outcome 4* more extreme, i.e. further from the center of the 
yolk, than the status quo 4. It is worth stating explicitly at the outset that designing an agenda 
that yields an outcome less extreme, i.e. closer to the center of the yolk, than the status quo is not 
problematic and is hardly dependent on the size of the yolk. 

Agenda Proposition 1. Regardless of whether voting is sincere or sophisticated: 

(a) From any status quo C$ outside the yolk, the agenda setter can propose a one-step 
agenda that yields some point 4* inside the yolk as the voting outcome. 

(b) From any status quo 4 at a distance > 2r from the center of the yolk, the agenda 
setter can propose a one-step agenda that yields the center of the yolk c as the 
voting outcome. 

(c) From any status quo C#I at a distance > 3r from the center of the yolk, the agenda 
setter can propose a one-step agenda that yields any point 4* inside the yolk as 
the voting outcome. 

(d) In general, from any status quo at a distance > kr (k > 2) from the center of the 

yolk, the agenda can propose a one-step agenda that yields any point $J* at a 
distance d(k - 2)r from the center of the yolk as the voting outcome. 

Given a one-step agenda, sophisticated and sincere voting are equivalent. Thus, the question is 

simply whether W(d) includes the point @* in question. For part (a), consider the line L through 
4 and c. The median line perpendicular to L intersects the yolk and 4 is beaten by all points on 
L between 4 and its reflection through M and, thus, by points in the yolk. Parts (b)-(d) follow 
directly from Corollary 5.1. 

Agenda Proposition 2. Regardless of whether voting is sincere or sophisticated, from 
any status quo 4 the agenda setter can propose an agenda of no more than two steps 
that yields any point 4* closer to the center of the yolk than 4 is as the voting 
outcome. 

If 4 * belongs to W(4), a one-step agenda will do. But in any event, by Theorem 6, 4 * is not 

covered by 4, so there is some point z such that 4 * beats z and z beats 4. Thus, a forward moving 
agenda (which implies sincere voting) that pits z against 4 and then x against the winner of the 
first vote (i.e. Z) against $*, yields 4* as the outcome. If voting is sophisticated, an agenda that 

pits b* against $J and the winner against z yields 4 * as the outcome. 
Thus, regardless of the size of the yolk, the setter can readily design a simple agenda that yields 

a point more centrist than the status quo. But, as the subsequent propositions indicate, it is more 
difficult to design an agenda that yields a point more extreme than the status quo. Indeed, if the 

yolk is of minimum size. i.e. if r = 0, it is impossible to design such an agenda. 

Agenda Proposition 3. If the yolk has a zero radius, for any status quo 4, the agenda 
setter cannot propose an agenda that yields an outcome 4* more distant from the 
center of the yolk than 4 is. 

This proposition is an immediate consequence of Theorem 2. 
Of course, almost always the yolk has a positive radius. Agenda Proposition 4 deals with this 

complementary and far more likely case. 

Agenda Proposition 4. If the yolk has a positive radius, for any status quo 4 the 
agenda setter can always propose a forward moving agenda that yields any outcome 
4* in the alternative space as the outcome. 

This proposition follows directly from Theorem 3; it is, in effect, the Agenda Proposition that 
is associated with McKelvey’s (1976) name. However, this proposition, like the theorem on which 
it is based, distinguishes only between the case in which an unbeaten point exists and the case in 
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which no such point exists; it may suggest that, once the yolk has any positive radius at all, the 
setter has (subject to the provisos discussed in Section 2) effectively unlimited agenda control, and 
that any further increase in the size of the yolk has no further effect on agenda control. In contrast, 
a principal theme of this paper is that, in relevant respects, agenda control is a continuous function 
of the size of the yolk; in particular, if the radius of the yolk is small but not zero, agenda control 
is effectively very limited. Most of the remaining Agenda Propositions indicate different ways in 
which this is so. 

What Agenda Proposition 4 does not indicate is how many steps a forward moving agenda must 
include to yield an outcome a given distance further out from the center of the yolk than 4 is. 

Agenda Proposition 5. For any status quo C/I at a distance d from the center of the 
yolk, the agenda setter can design a one-step agenda that yields an outcome 4* at 
most d + 2r from the center of the yolk. 

This proposition follows directly from Corollary 5.1, Note that the proposition does not say that 
the agenda setter can design a one-step agenda that yields any point within d + 2r of the center 
of the yolk as the outcome but only that any such outcome must lie within this distance from c. 

From this it follows that, if the agenda setter is for any reason restricted to an agenda of 
some particular length, he is always limited in the outcomes he can bring about. Further, for any 
given agenda length, this limit is a function of the size of the yolk, as indicated by Agenda 
Proposition 6. 

Agenda Proposition 6. For any status quo 4 at a distance d from the center of the 
yolk, the agenda setter can design a k-step forward moving agenda that yields an 
outcome 4* that is at most d + 2kr from the center of the yolk. 

This proposition follows from a k-fold application of Agenda Proposition 5. 

Agenda Proposition 7. If the status quo is 4 at a distance d from the center of the 
yolk, if the agenda must be fixed in advance of voting and if voting is sophisticated, 
the agenda setter can design and agenda that yields an outcome 4* that is at most 

d + 4r from the center of the yolk. 

Recall that Shepsle and Weingast (1984) demonstrate that, under the specified conditions, the 
outcome +* must belong to UC(I$). The limit given by Agenda Proposition 7 [previously noted 
by McKelvey (1986, p. 302)] then follows by applying Corollary 5.2.t 

Agenda Proposition 5 has the following further implication if, as under normal parliamentary 
procedure, the status quo C#J must enter the voting last. 

Agenda Proposition 8. If the status quo is 4 at a distance d from the center of the 
yolk and if a standard agenda must be used, the agenda setter can design an agenda 
yielding an outcome 4 * at most d + 2r from the center of the yolk. 

Recall that, under the specified condition, 4* must belong to W(4). The proposition then 

follows directly from Agenda Proposition 5. 
The bounds established by Agenda Propositions 5-8 overstate the agenda setter’s freedom of 

maneuver in an important way, in that they derive from the corollaries to Theorem 5 and not from 
Theorems 4 and 5 themselves. Consider a status quo 4 at a distance d from the center of the yolk. 
The distance d + 2r from the center of the yolk has been taken to establish the agenda setter’s 
one-step freedom of maneuver in all directions from c. But, in fact, the constraints given by the 
outer cardioid are tighter, in particular in the direction of 4 itself, Indeed, Theorem 4 tells us that, 
for a point 4 lying outside of the yolk, W(d) within the vicinity of #J does not extend much outward 
from the yolk beyond 4, especially if the distance from the center of the yolk to 4 is large relative 
to the size of the yolk. 

tin particular, the setter must be able to find-as in the manner of sophisticated voting in Agenda Proposition Z-some 
point z that beats q5 and is beaten by 4 *. The thrust of Shepsle and Weingast’s (1984) substantive interpretation, based 
on particular examples, is that this is but a loose constraint and that the setter could typically get an outcome at or 
near his own ideal point. However, their examples involve just three voters. With more voters, the yolk would-as we 
note in the concluding section-typically be smaller relative to the distribution of ideal points, making the constraint 
implied by Agenda Proposition 7 relatively severe. 
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Table I 
d D (D ~ d)/2r 

2 4.000 1.000 
3 4.583 0.792 
5 6.083 0.542 
7 7.810 0.405 

IO 10.583 0.292 
I5 15.395 0.198 
30 30.199 0.100 

Agenda Proposition 9. From any point x outside the yolk, the agenda setter can 
extend a voting trajectory outward from the yolk only to points outside the 
dominated cone, i.e. to points on rays such that cos 8 > -r/d. 

Since the trajectory can be extended only to points in W(x), the proposition follows directly from 

Theorem 4. 
The dominated cone is thin when d is only slightly greater than r but it opens wider and wider 

as d increases relative to r. Thus, the agenda setter is more and more restricted as the trajectory 
moves outward. 

Clearly the greatest distance a voting trajectory can move from point x (at a distance d from 
the center of the yolk) outward in a single step is to (just short of) the reflection of x through the 
median line most distant from x. This median line will be on the far side of the yolk from x and 
the reflection will be close to maximum distance of d + 2r from c specified by Agenda Proposition 
5. Thus, the kind of k-step forward moving agenda that leads from a status quo 4 at a distance 
d from the center of the yolk to an outcome 4* at a distance approaching A + 2kr, i.e. the 
maximum specified by Agenda Proposition 6, from the center of the yolk requires a trajectory that 

bounces wildly, and with increasing amplitude, back and forth across the alternative space. 
One potential institutional constraint on the agenda setter, however, may preclude such an 

agenda. This is the imposition-by formal rules or informal norms-of what we may call an 
incrementalism constraint on a forward moving agenda, i.e. a rule that a new proposal cannot be 
“too far” from the current status quo. 

An incrementalism constraint restricts centrist movement only in the obvious fashion, 
i.e. regardless of distance from the center of the yolk, each inward step is limited simply by the 
magnitude of the constraint. 

Movement outward, however, is restricted dramatically, as the incrementalism constraint limits 
each step to nearby points, and, as distance from the yolk increases, an increasing proportion of 
these points fall within the dominated cone. The impact of the constraint on outward movement, 
moreover, increases essentially with the square of distance from the center of the yolk. The 
numerical example shown in Table 1, for the case in which r = 1 and the magnitude of the 
constraint is 6, is illustrative. For sample values of d (the distance from the center of the yolk to 
the current status quo x), the table shows the corresponding values of D, the maximum distance 
from the center of the yolk that the agenda setter can extend the trajectory outward in one step 
from x, given the incrementalism constraint.? The third column shows D - d increments in relation 
to the 2r maximum that the agenda setter could move the trajectory outward in the absence of 
any constraint. 

Thus, at d = 2 the constraint has no effect, but beyond that such a constraint reduces potential 
outward movement, the more so as d increases. At d = 10, potential outward movement has been 
reduced to less than a third of what it would be in the absence of a constraint, and at d = 30 it 
has been reduced to one-tenth.$ 

tD is the distance from c to the intersection of the circle about x defining the incrementalism constraint and the outer 
cardioid with cusp at x. 

$Results due to Schofield (1986) indicate that if voting trajectories are continuous-in effect, if an infinitely severe 
incrementalism constraint were imposed, there would be significant differences between the two-dimensional and 
higher-dimensional cases. In fact, it appears that even a finite incrementalism constraint will, in two but not higher 
dimensions, absolutely block further outward movement of a voting trajectory at some distance from the center of the 
yolk, but we have not tried to establish this point here. 
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5. CONCLUSIONS 

While the “chaos theorems” pertaining to majority rule in spatial voting games are important 

and technically elegant results, their practical significance for political choice processes can be 
overstated. On the one hand, McKelvey (1986) has shown that several choice processes driven by 
competition among agents lead to generally centrist outcomes-in particular, to outcomes in the 
uncovered set. Thus, the “chaos theorems” appear to have the greatest practical relevance for 
essentially noncompetitive choice processes, such as those controlled by a monopoly agenda setter. 
But we have shown that the fundamental structure of majority rule in spatial voting games (at least 
those with Euclidean preferences) creates significant centripetal forces that make it intrinsically 
much harder to design agendas that generate trajectories leading outward, as opposed to inward, 
and which, as a result, impose significant limits even on a monopoly agenda setter. These limits 
become especially significant in conjunction with what might appear to be merely technical 
procedural rules pertaining to voting, which the agenda setter may be obliged to follow. These 
include rules that limit the size of agendas, that require that the agenda be fixed and announced 
in advance of any voting (permitting sophisticated voting), that require that the status yuo be voted 
on last or that require that new proposals cannot differ too much from the status quo. 

The strength of these centripetal forces is inversely related to the size of the yolk-put otherwise, 
they are directly related to how close the distribution of voter ideal points comes to generating a 
majority rule equilibrium. It has been known for a long time that these centripetal forces are 
dominant in the unlikely event a majority rule equilibrium exists. But the “chaos theorems” may 
suggest that, if the distribution is perturbed even slightly so that the majority rule equilibrium is 
destroyed and a global cycle appears, these centripetal forces disappear entirely. In contrast, we 
show that the strength of these forces is a continuous function of how closely the voter distribution 
approaches one that would generate a majority rule equilibrium. If the yolk is very small, the 
centripetal forces are very strong. If the yolk is very large, majority rule is indeed rather chaotic. 

In concluding, two further observations are in order. First, it is worthwhile to point out explicitly 
that most theorems and propositions in this paper assume all that is known about the distribution 
of voter ideal points is what is given by the location and size of the yolk. As a necessary result, 
the indicated limits on agenda control are if anything understated, especially if the number of voters 
is small. Suppose, for example, that the status quo 4 is at the center of the yolk and the agenda 
setter wants to produce some outcome 4 * at a distance a bit under 4r from the center of the yolk. 
By Agenda Proposition 6, this will require a forward moving agenda of at least two steps. But if 
we examine an actual configuration of three voter ideal points at the vertices of an equilateral 
triangle, it turns out that at least three steps will be required. 

Our final observation is that the import of our Agenda Propositions obviously depends on 
whether the yolk is typically small or large relative to the distribution of ideal points. If the yolk 
is typically large-so that most ideal points lie within or near the yolk-majority rule would 
typically be quite chaotic and the limits on agenda control identified here would be very weak. 
However, we expect the yolk typically to be small relative to the distribution of voter ideal points. 
Certainly, the yolk is contained within the Pareto set; it can contain more than a very small 
proportion of the ideal points only if the remaining ideal points are very oddly distributed; and 
the yolk is unlikely to expand in size, and probably shrinks in size, as new ideal points are added 
to the distribution.? Thus, we believe that the limits identified here, stated relative to the size of 
the yolk, are typically quite severe, relative to the distribution of voter ideal points. 
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