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Abstract Questions involving (re)aggregating parts into velschre fundamental to
all branches of scientific inquiry (Saari and Sigpe2001). After discussing two
very general insights we derive from the aggregatiterature, we look at how
wholes may sometimes be reconstructed from theis pghen we weight the parts
appropriately, and we show that the notion of wiidhaverages can be used to
make sense of seeming paradoxes: including howyfandome can go down even
though per capita income is going up; how standaritest scores can go down
even though the scores of every racial and ethmigpytaking the test is going up;
why most people think that roads are crowded etiengh most of the time there
may be hardly any cars on the road; why teacherdazech mostly small classes, yet
students can take mostly large ones; why Georgé Bosld have won the Electoral
College in 2000 even though he loses the popults; \and why your friends can be
expected to have more friends than you do.
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Questions involving aggregating parts into wholesfandamental to all branches of
scientific inquiry. (Saari and Sieberg, 2001). Egample, there is huge literature on
aggregation issues in social choice theory (seewsvin Saari, 1994, 1995; Nurmi,
1999), and another one in statistics with statitipplications ranging from demog-
raphy to brain imaging (see e.g., King, 1997) forimation pooling (see e.g., Grof-
man and Owen, 1986). After a brief review of som&ghts from this literature we
will focus on the implications of the simple idebao“weighted” average, and show
that understanding the properties of weighted ayeallows us to understand some
seeming paradoxes and puzzles involving composéftetts. We conclude this es-
say with a few brief observations about other inguatrtypes of averages most nota-
bly the geometric mean and the harmonic mean.

1 Threelnsightsinto Aggregation

Before we proceed to a discussion of specific isdneolving weighted averages,
we wish to make two broad points derived from aading of the aggregation lit-
erature, and then state the third insight that teeheart of this essay

Insight 1: if data isbroken into different pieces, the properties of the whole may
be different from a summation performed on each of its parts, and exactly how
we divide something into parts can matter a great deal.

Here we are not making any kind of metaphysicaintlabout “emergent proper-
ties.” Rather we are simply observing that how \wede things up into pieces mat-
ters for the results, and, thus in particular, aggting information from some of the
possible piecewise divisions need not give us #mesresult as looking at the
whole.

Most of the social choice discussion of this insiglvolves properties of major-
ity rule and related voting rules such as so-calachdoxes like thparadox of cy-
clical majorities Hillinger's paradox, Anscombe’s paradox, Ostrodd's paradox
the referendum paradgxand theparadox of compound electiorfsee e.g., Saari,
1994, 1995; Nurmi 1999; Saari and Sieberg, 2001y iB this essay we will be
looking at the majority rule preference aggregaponcess only in passing. Instead,
we will illustrate the insight above with a familimmathematical operation, timee-
dian, since this illustration makes many of the sammtgp but without the “phi-
losophic baggage” that comes with discussing téiktesdemocracy or majority rule.

Consider the sequence of numbers 1 through 9. Tédiam is, of course, 5. If
we take these nine numbers and divide them intathhee sets of three numbers
each: {1, 2, 3}, {4, 5, 6} and {7, 8, 9}, the thremedians are 2, 5, and 8, and thus the
“median median” is again 5. But now, divide the is¢d groups as {1, 2, 3}, {4, 6,
8} and {5, 7, 9}. Now the medians are 2, 6 and ¢ ao the median median is 6.
We can also readily create groups whose mediananadi4, e.g., {1, 2, 5}, {3, 4,
6} and {7, 8, 9}. The alert reader will notice, hewver, that there are constraints on
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how far away the median median can be from theadlveredian in this example,
and we can work out the mathematics to define tbosstraints.

It is useful to consider the limiting case. Imagmeery very large set from 1 to
n, nodd, to be divided into k still very largeued]y sized pieces, with k a divisor of

n, such that each piece has s = n/k elements,sntho an odd numbérLet us put
the s(k-1)/4 smallest numbers into the first (KR1ljieces, and let us put the next s(k-
1)/4 smallest numbers into the remaining (k — (L= (k+1)/2) pieces, with the
same number of elements in each piece. Now notteeagmallest s(k-1)/2 elements
can be a median median, since the median mediabevd median in the last set of
pieces, and in each of those the median elemertt lmeusome element with a larger
value, since aminority of the elements in each such piece come from e lesr
numbers. But, with this “trick” in mind we can cdéngt a partition in which the
median median is simply the median among the langé&s- (s(k-1)/2) = s(k +1)/2)
numbers. But that means that, for n large, we cestcuct examples where the me-
dian median is ((n+1)/2 + n)/2 = (3n + 1)I43n/4 . In a similar manner, we can
work out a partition in which the median median({g+1)/2 + 0)/2 = (n + 1)/21n/4.

More generally, we can “force” the median mediaméo(essentially) any num-
ber in the range from the first quartile to therdhquartile in the distribution by
choosing our partition appropriately. (With smalkhnd k values we cannot quite get
to these limits, as shown in the example we loaiteshrlier.)

Insight 2: the results we get when some portion of the information about the
data is not available to us, need not be the same as when we have all the data to
examine.

What we have identified as insight 2 seems likdhsut obvious point that one might
wonder why we have listed it as a fundamental msiBut in fact there are exam-
ples where we can get unexpected insights fronizieglthis simple point (though

usually only after doing a lot more thinking anghisticated theoremizing about its
implications).

Consider, for example, the work of vdr Hout, de 8wand ter Veer (2006).
They axiomatize properties of pure list systemgufportional representation in
terms of what they call thglurality ranking rule namely one which “assigns to each
combination of individual preference orderings bé tparties a social ordering of
those parties, where a party higher (receives reeats) when it is the first prefer-
ence of more voters (receives more first votesO@ 460) They look at a property
they call consistency which says, very roughly &peg that if a party “does better”
in two disjoint subsets than does another pargmn thshould still do better than the
other party when the subsets are combined into @hkey question in studying ag-
gregation. They prove some theorems about whaskifiggrocedures satisfy consis-
tency and some other properties generally thoughiet normatively desirable such
as neutrality, anonymity, and faithfulness (whicloks at what would happen if

2 We restrict ourselves to odd numbers so as tadas@inplications caused by findirige
median for an even number of cases.
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there is only one voter, and requires that thaenstpreferences be honored). For
present purposes, however, their most importanitrbas to do with party fragmen-
tation. Roughly speaking, they show (2006: 466} trdy proportional representa-
tion rules that make use of only first preferengerimation areparty fragmentation
proof, i.e., such that splitting a party into two separkésts can never improve its
summed seat allocation. Thus, they argue that maiire case can be made for

rules that “throw away” informatiod.

On the other hand, Saari (1994, 1995) has mad®iagstase for the Borda rule
to be used in choosing a single winner becausertiatis the most attractive of all
the “scoring rules” and scoring rules, unlike pagsvcomparisons, take into account
the entire structure of voter preferences andhdb“throw away” information by
only looking at pairwise comparisons. Moreover,regognizing that pairwise com-
parisons throw away information, Saari argues tbsillts such as Arrow’s Theorem
which require the condition of independence of ¢atted) irrelevant alternatives,
should not be regarded as either paradoxical dvi@naatic for democratic theory.

Insight 3: while the whole is not the simple sum of its parts, sometimes we can
reconstruct the whole from the parts by appropriately weighting the parts.

2 Partsand Wholes

How can it be that most households in the UniteateSt are headed by unmarried
adults, yet most adults are married? How can famitpme be going down even
though per capita income is going up? How can statiged achievement test scores
(e.g. SAT scores) be going down over time evendhate scores of every racial
and ethnic group taking the test is going up? Haw most people think that roads
are crowded even though most of the time there lmaalyardly any cars on the road?
How can it be that most classes at a universitysarall and yet nearly all the stu-
dents find that most of their classes are large® Ean George Bush win the Elec-
toral College even though he got fewer votes thampponent?

It might appear as if these puzzles have nothirgpinmon. Certainly, they deal
with totally different substantive arenas. Yet,ves show below, each of these ap-
parent paradoxes can be resolved by understaniéngation of average in two dif-
ferent ways, (1) as an average over a whole, andgan averaged average, i.e., an
average over a set of parts. Since these partsarecessarily equal to one another,

3 might also note that, when vdr Hout, de Swart ger Veer (2006) use the term ‘plural-
ity ranking rule’ to characterize list PR the imjilidinkage they draw between plurality vot-
ing rules and list PR voting is at odds with howstangystems are commonly treated in politi-
cal science. In the electoral systems literatuith anly a handful of exceptions (see Kurrild-
Klitgard, 2008; Grofman, forthcoming) list PR systeand plurality systems are regarded as
at opposite ends of a proportionality continuund #reir great similarity in focusing on only
first place preferences tends to be overlooked.
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we may think of an “averaged average” as a “weightaverage -- where the
weights are related to the relative sizes of thespahe two types of averages,

weighted and unweighted, need not coincide andeeddcan be very far apért.
Each type of average gives us a different “perspetthat helps us make sense of

the world.>

2.1 Types of households

How can we explain that almost half of the houséfah the United States are
headed by unmarried adults, yet most adults areied& Well, it's not really very
complicated once we realize that every marriagelwagartners. Consider a simple
example: suppose that there are 15 single adutd@married couples, composing
25 households in a very small town. Here househattier contain single persons or
married persons. The majority of households (154%) headed by single people,
but the majority of the people are married and Hmglin households headed by
married people (20 married out of 35 adults). We ttenk of this in weighted aver-
age terms as follows: if we count people, then naostmarried; if we look at units
(households), then to convert back to people wet muesght the proportions of
household containing married persons by the numlbenarried persons in such
households, and then normalize by the ratio of ébalsls to people (25/35). In other
words, the proportion of adults who are married

4 Because Simpson (1951) was perhaps the first twlgletate the apparent paradox of
different outcomes for averages (or other featuodg)arts and whole, compositional para-
doxes of the sort we review here are often knowregeally asSimpson’s paradofsee e.g.,
Wainer and Brown, 2004). However, the statisticalitron goes back at least as far as Yule
(1903), and the basic intuition has been well kndeyrhundred of years, showing up for ex-
ample in Eldbidge Gerry’s manipulation of constitag boundaries in early f&entury Mas-
sachusetts to yield a majority of the seats vé#is lthan a majority of the votes, a now classic
instance of what has of what has come to be callgite U.S., in Gerry’s (dis)honor, tiger-
rymander Nurmi (1999) refers to gerrymandering as a speeise of what he calls thefer-
endum paradoxWe prefer to think of both gerrymandering and teferendum paradors
special cases of paradoxes involving weighted aesaand thus as special cases of what we
might think of as th@eneralized Simpson’s paradd$ee also our earlier discussion of com-
positional effects involving the median.) There atenerous essays that touch on Simpson’s
paradox. Some look at how Simpson’s paradox atedlto causal inference (in particular,
the problem of confounding variables: see e.g.rIP2@00), or at other statistical issues (see
e.g., Blyth, 1972; Samuels, 1993), while some Idokstances of the paradox in various sub-
stantive domains (see e.g., Baker and Kramer, 20@iner, 1986).

S Also, depending upon how we weight there can Kerdint types of weighted averages
for the same data.
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= 20/35
= (2*10 + 0*15)/35
= 2*(10/25)*(25/35) + 0*(15/25)*(25/35).

So to convert back from averages based on unitg tihe proportions of units
headed by a married person, to an average foratietg as a whole, here the pro-
portion of married persons in the society, we weitie units containing married
persons by 2*(25/35) and we weight the units doirig unmarried persons by
0*(25/35).

Note that we are not claiming that one type of ageris correct and the other
wrong. A sociologist studying marriage and divoreeuld certainly need to know
the proportion of people who are married. For esghte agents, on the other hand,
the fact that most households are headed by uredaadults is what matters, be-
cause that tells them an important fact about thture of the clientele for real estate

rentals and salds.

2.2 Family and per capitaincome

How can family income be going down even thoughgagita income is going up?
Well, once again the key is to understand thatsufhiere families) come in different
sizes. Imagine a simple world. In the beginningréhare 15 families of mean size
six, giving us a population of size 90, and avenagecapita income is $5,000. Here,
average family income is $30,000. Some years l#tere are 25 families of mean
size four, giving us a population of 100 persoms] average per capita income is
$7,000. In this second time period, average famitpme is $28,000. Even though
society is getting much richer -- in the sense th&al GDP has gone up by 56%
(from $450,000 to $700,000) and per capita incoaeihcreased by 40% -- if we
look at families they appear poorer. Why is that@lWbasically families are smaller
in period two than they were to start, so when wmvert per capita income to fam-
ily income we would need to take into account farsike.

We can again think of this in weighted average teas follows: to convert from
family income to per capita income, we simply weitdmily income by the ratio of
families to persons. In other words, per capit@ime in time one

= $5,000
= ($30,000)* (15/90).

Similarly, per capita income in time two

6 Also relevant to real estate agents is the avesageof household. We would expect av-
erage size of household to differ between housshwadd by someone married and those not.
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=$7,000
= ($28,000)* (25/100).

Once again both per capita income and family incaneemeaningful numbers. But,
if we compare family incomes for time periods wHamilies are very different in
average size, we are in effect, comparing appldsoaanges. Also, if per capita in-
come is increasing, but family size is going dowram even faster rate, so that the
ratio of per capita income to persons per familglides, then we will observe a de-
cline in family income even though the society mall be getting richer (as in the
example above)! So we must be very careful to wtded why the two indices of
income don’t need to go up (or down) in sync.

2.3 Standardized test scores

How can SAT (standardized test) scores be goinghdawen though the SAT scores
of every racial and ethnic group taking the tegfdeg up? Well, what we have here
is a compositional effect that can easily be untders in terms of weighted aver-
ages. The average SAT score is given by the sodrb® various groups taking the
test multiplied by (i.e., weighted by) the proportiof test takers coming from that
group.

Consider a simplified world where we divide tedtetas into two groups, His-
panic and non-Hispanics and compare two differeititp in time. Imagine that, the
SAT test scores for both Hispanics and non-Hisgairicreased from time one to
time two, but that in both periods the SAT scaredHispanics are lower than those
of non-Hispanic test takers. Imagine further tiat proportion of Hispanic test tak-
ers increased between the two test periods. To rniakeexample concrete, let us
imagine that, at time one, Hispanic SAT Verbal ssoare, say, 500, while non-
Hispanic SAT Verbal scores are 600, and that 5%heftest-takers are Hispanic;
while at time two, Hispanic SAT Verbal scores a2® and non-Hispanic SAT Ver-
bal scores are 610, but now 20% of the test-taegsHispanic. The mean SAT
score in the first period is .95*600+.05*500 = 598jile the mean SAT score in the
second period is .8*610+.2*520 = 592. How couldrage scores in toto go down
even though performance within each group of tletits was going up? Well, quite
simply, a higher proportion of the lower test-sngrigroup was now taking the
exam. Overall average scores here are given byeightedaverage of the scores of
each of the groups taking the test, with the waighé proportion of test takers com-
ing from that group.

There are numerous variants of this kind of compm®al effect. Imagine, for
example, that in a given university, within eactadyrate department, men and
women are equally likely to be accepted relativéhtar proportions in the applicant
pool. Yet overall, it still might be the case thsday, more women than men are ac-
cepted to the university if women and men do n@afo all departments in equal
proportions, and if the acceptance rate is highéhé units where mostly women are
applying. We can even construct hypothetical exaspl which the GPA (or GRE)
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score of students who are not admitted for gradsatdy in a given university is
higher than the GPA (or GRE) of students who amepied to that university All
we need to do is to find a case in which the depamts that admit (substantially)
more students have (substantially) lower threshofdscceptance in terms of under-
graduate GPAs or GREs.

2.4 Crowded roads

How crowded are the roads? Well, if we took a shap®f the roads at various
times of day, we would find that a large part & ttme the roads are (nearly) empty,
and, thus, from this perspective, we would probablyclude that, on average, roads
weren't very crowded. But now look at things frohetperspective of the drivers.
When they are out, it is likely that they will ba the road when it is crowded,; thus,
most drivers will experience crowded roads.

To see how this works imagine a very simplified rapée. Imagine that the
roads are either empty, which they are 22/24thh@time, or every driver is on the
road (rush hour, coming and going), which occugsiftfs of the time. Now the av-
erage crowdedness of the roads is 8.3% relativihegototal number of cars that
might be there (=1* 2/24 + 0*22/24), but every @rihinks the roads are 100%
crowded because that is their only experience! Wherroads are empty there are
no drivers on the road to experience that emptiness

2.5 Classsizes

Assume, for simplicity, that, at a given universigach of its m faculty teaches the
same number of courses, say k, and that the totallment in all courses taught in
some semester is E. Clearly we have n, the nunfossusses, equal to mk. The av-

erage class taught by facult, thus contains E/n students. It must also be dise ¢
that, if the ith class is of sizg then

S=3s/n. 1)
But, how large is the class size experienced byatlezage student? Well, if the ith
class is of size;sthen exactly sstudents experience a class of that size. Thas, th
average class size experienced by students isutierg-weighted class average, i.e.,
>sizs . (2)

In general, these two numbers, weighted and ureiigaverages (given by Eq. (1)
and Eq (2) respectively), will not be the same, they can be very far apart. Feld
and Grofman (1977) used data from the classdwedbtate University of New York
at Stony Brook to analyze this ratio for severdiedent majors and for the univer-
sity as a whole. For example, for the universityaashole, classes had a mean size
of 40.5 with a standard deviation of 65.8. Whileutty thought (correctly) that they
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were teaching classes with an average of just uAdlestudents in each, students
thought (correctly, as well) that they were takolgsses which averaged over 150

students{ {See text box below for mathematical details.)

The well known Herfindahl-Hirschman (H-H) index obncentration (Hirschmary,
1945; Herfindahl, 1950; cf. Taagepera and Grofmi®81), 1 -= p?, is a specia
case of a weighted average. In effect it is singkize-weighted average, i.e., if the
proportions in each of the various units are gibgm, then the H-H index gives the
average proportion weighted kigelf, and then subtracted from one. Here, the larger
the size of the bigger components in the distrdsuthe smaller will be the H-H in-
dex. The paradox of class sizes discovered by &ett Grofman (1977, 1980) |s
closely related to the Herfindahl-Hirschman index.

While the Feld and Grofman (1977) calculationsiareerms of raw numbers, |t
is easy to convert their formulae to percentagegalrticular, if we divide through
by E, the total enroliment, then we get the aveidgss size as a proportion of total

class enrollmentf , as being given by

P=spmn=1n. 1y
Similarly, the class size proportion experiendgdthe average student is given by
spilip = sp’ @

Feld and Grofman (1980) show that R, which isrdi® of Eg. (2) to Eq (1), or of
Eq. (2)' to Eq (1), is given by

R= 1+0%/12. (3)
Thus, the class size paradox (and also, we shatlg the H-H index) can be d
rectly linked to familiar ideas in statistics; ndgnéhe mean and the variance of a
distribution (cf. Feld and Grofman, 2007).

A professor with a six course load who finds hdrssdching, say, six classes with
75 students each may think it better to teach @@epkrson class to allow her to of-
fer five seminars to 10 students each. Howevehein“improved” situation, almost
all her former students (400 of the 450) are eadblh a 400-person class, and the
average class size from the perspective of theestadis a whopping 356, even
though the professor sees herself with the samemgeeclass size she had before,
namely 75 students per class! Many universitiepairt at the urging of their faculty,
have “changed” their course offerings in this wagparently without recognizing
the very large consequences for their students, sglecthemselves at a multiversity
despite the seemingly large number of small semittze faculty (correctly) insist
are being offered the student body!

7 See also Feld and Grofman (1980).
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2.6 Bush v. Gore: The 2000 U.S. presidential election

In addition to the claim that George W. Bush (andfe U.S. Supreme Court) stole
the election from Al Gore because of what happéndte Florida recount process,
a frequent claim about the 2000 U.S. presidentadtion has been that Bush won
the Electoral College vote despite Gore having wquiurality of the popular vote

because of the biases in the Electoral Collegednired by overweighting the small
states. The Electoral College is a form of weighteting, with states as units. Each
state gets a number of Electoral College votes lemuthe combined size of its

House and Senate delegations. Of course, while éegats are allocated propor-

tional to a state’s populaticfﬁeach state gets two Senate seats regardless whpop
tion.
It is true that, in the 2000 presidential cont@&atsh did better than Gore in the

smallest states, and Gore did better than Bushdriargest state§ which makes
blaming the discrepancy between Electoral Collagk @opular vote outcome plau-

sible.10 But even if (a) states were equipopulous ancéch state’s share of Elec-
toral College votes had been perfectly proportidgodts population, it is still possi-
ble for Bush to have won the Electoral College whising the popular vote. Such
an outcome could have happened under a winnerathkale for each state’s elec-
toral college vote if, Gore’averagemargin of victory in the minority of statelsat
Gore won was much larger than Bush’s average marfgvictory in the majority
of states that Bush won. Had this occurred, Geveld have wasted more votes

than did Bush:1

To see how this could work consider the simplessiide example. Imagine
that we have just three equipopulous districtshwitjual turnout in each. Republi-
cans win two with 60% of the vote, Democrats wire avith 85% of the vote. The

Democrats won more votes, yet capture a minorit;hefseatg-.2 The knowledge-

Young, 1982).

9 The correlation between state size (measured éogitte of its congressional delegation
in 2000) and the Bush share of the two party presialevote in 2000 was only -.16.

10 For the record, we should note that Bush’s 200@igeatial victory was overdeter-
mined, i.e., can be “blamed” on many factors, fi@iture by Gore to hold his home state of
Tennessee, to excessive wasted votes by Gore iBléttoral College, to felon disfranchise-
ment that disproportionately froze out potentiahideratic-leaning voters (especially minor-
ity voters) from political participation in 200 Gore’s legal team’s mismanagement of the
legal issues in Florida, to the “spoiler” candidaéyRalph Nader.

11we can make the story more complicated by alloviimg@pportionment antlirnout ef-
fects (Grofman, Koetzle, and Brunell 1997; cf. GrafmBrunell, and Campagna,1997) .

12 actuality, however, Bush won his 31 states withaverage of 58% of the two-party
vote; while Gore won his 19 states (plus the Distof Columbia) with an average of 57% of
the vote.
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able reader will immediately recognize that what lveeve here is a form of gerry-
mandering (Grofman, 1990).

The 2000 House of Representatives was apportioasedbon the 1990 census.
Had the apportionment used in 2002 (based on tB8 Z&nsus, and thus closer to
the actual population figures in the states caO2@@en available for use instead,
i.e., had the Electoral College allocation thal W used in 2004 been used in 2000,
then Bush would have increased his Electoral Cellgliare from 50.5% to 51.8%.
Indeed, even had the 2000 Electoral College akatabtes based just on the 2002
House seats (with no bonus for Senate seats),daih aising a statewide winner
take all system, then (putting Florida into the Beslumn, as before), Bush would
still have won the 2000 election with 50.1% of thaes. Thus, if all other things
were equal, Bush might have been predicted (ca2)2@0do better in 2004 than he

did in 2000! And, of course, in fact he did.

2.7 Friendship networks

Most of us find that we have fewer friends than sarhour friends do. In fact, Feld
(1991) shows why we ought &xpect that the average person’s average frien@ has
friendship network that is larger than her own. fTisabecause the relatively few
people with many friends include many of us in tHafge friendship nets. Conse-
qguently, we number among our own friends a dispriipaately high proportion of
people with many friends. When we “average in” $iee of their very large friend-
ship networks with those of our other friends wéthaller rolladexes, we can still
expect to find that, on average, friends of oungeha large friendship netwotkan

we do.

3 Different Typesof Averages

Besides the distinction between weighted and uritedyaverages we have empha-
sized here, there are other types of averagesetveny social scientist should know
about.

3.1 Median

Consider thanedian the value such that half or more of the itema idistribution
are at or above that value while half or morehef items in that same distribution

13 Indeed, in 2004, even were there no Senate twio“lBeaus”, Bush could still carry a
weighted majority of the states.
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are at or below it as well. In addition to playiagcentral role in models of party
competition over a single policy or ideological @nsion (see e.g., Downs, 1957),
there are useful things to say about the mediasugethe mean highly relevant to
social science theory.

For example, Seymour Martin Lipset's famous thékipset, 1959)that rich
countries are more likely to be democratic thanrpoountries is almost always
tested with data omeanincome (Diamond, 1992). But that's nonsense. Tipeca
priate test ignedianincome; otherwise you fall prey to the “Abu Dhahllécy” of
thinking that a county with a few billionaires aluds of poor people is a rich coun-
try. In fact, unpublished work by one of the prdsauthors has shown that essen-
tially all of the current counterexamples to rickuntries being democratic are coun-

tries where there are huge differences between medmedian incom&?

3.2 Geometric mean

Another neglected type of average is tfeometric meanthe square root of the
product of the values to be averag8thtisticians regard the geometric mean as ap-
propriate when losses or gains can best be exgraspercentage terms; when rapid
growth is involved in the development of a baclestaviral population, or when the
data span several orders of magnitude (Good anditj&003:96). Consider com-
peting claims about the value of some quantitatanéable where one side has an in-
centive to lie on the high side and the other sidike on the low sideand the two
claims are orders of magnitude apditte physicist turned electoral systems special-
ist Rein Taagepera (personal communication, Seme&b2003) has proposed that.
rather than taking the arithmetic average of the t&lues, we are more likely to
come closer to the truth if we take the geomet@gaminstead.

Taagepera tells an amusing story to illustrate fibist. While still a high school
student in Morocco, Professor Taagepera heard tite different estimates of the
number of people killed in an incident involvingeRch troops and Moroccan pro-
testers. The protestors claimed that roughly 4@8€e killed; the French officials
that only 40 were. Taagepera did not believe eidstimate but he did believe that
they provided bounds on the feasible range. If wiply took the arithmetic average
of the two estimates to get a “best” estimate, veaild get 2,020, far closer to the
“official” than to the “local” estimates. Howeverne might more plausibly assume

14 some scholars have tried to "save" the Lipsetigh®g restating it as one where coun-
tries that are rich and whidilecomedemocratic are likelyo stayso. But if we look at median
income rather than mean income there is no ne@goue” the thesis in this way. Moreover,
the principal underlying mechanism implied by Lipsegamely the greater likelihood of there
being a substantial middle class in wealthierntdes than in poorer countries, makes far
more sense if operationalized in terms of mediaornme (or of other related features of the
income distribution) than when it is operationaliz®y per capita income.
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that each estimate is off by the same proportign,ex, 4000/x = x/40. Thus?x
4000*40 and the “best estimate” of the number witgsters killed is simply the
square root of 16,000, i.e., 400. Hence, assumat) @stimate is off by the same
proportiongives us the rule that the “best estimate” isstp@are root of the product
of the estimates, a.k.a. theometric meanrAs it turns out, the young Taagepera had
a friend in the police force who was in a positiorprovide a more reliable estimate
of deaths than the public estimate, and this estirpeoved to be very close to the

geometric mean calculated abdvR.

3.3 Harmonic mean

Lastly, we consider a useful use of the harmoniammé¢he simplest case of which,
for two values, sand s, is defined as 1/(1s+ 1/s) perhaps the most obscure mean
of all. We illustrate the uses of the harmonic mesth a Mother Goose tale. As is
well known, Jack and Jill went up the hill to fethpail of water. Jack fell down and
broke his crown and Jill came tumbling after. Nawagine the hill is one mile high
and Jack and Jill went up the hill at only two msifger hour, but they came tumbling
down the hill at 6 miles per hour. What was th&erage speed on the hill? Let d be
distance and s be speed. The answer is based diatmenic mean of 2 and 6 (see
figure below), and is given by the formula

d/ (/g + 1/s) =2/(1/2 + 1/6) = 3 miles per hour

Thus 3 miles per hour is the correct answer, hetstmple average -- four miles per
hour16

15 For other uses of the geometric mean see TaagRoa).

16 The figure below was drawn by a student, Gaelayd,| in Professor Grofman’s three
quarter undergraduate statistics course to illtestrboyd’s answer to a “Jack and Hill home-
work assignment” in the section of the course idgalith different types of averages. We
are indebted to Mr. Lloyd for permission to reproéihe figure.
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4 Discussion

Understanding the idea of weighted average helpaal® sense of many sociologi-
cal and social psychological puzzles of the satuksed above, as well as puzzles
in other social science disciplines-- such as hamagority can be outvoted on a ma-
jority of issues if we vote, not on policies oneaatime, but instead on policy plat-
forms combining multiple issues (Anscombe, 1976rmMiu1999; Saari and Sieberg,
2001); or how a minority of the voters can conarahajority of the seats in a legisla-
ture (see Grofman, 1990 and discussion of the &flakcCollege above). Moreover,
the notion of weighted averages shows up in a nurobelaces where you might
not expect it, e.g., in the Hirschman-Herfindahlasiere of concentration, which can
be thought of as a “self-weighted” average. In sisses of aggregation and so-
called aggregation paradoxes and the many variefiesrerage are all topics that
should be part of the common wisdom of the educstethl scientist.
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