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Bernard Grofman and Samuel Merrill

ABSTRACT

We propose three methods of ecological inference that guarantee feasible solutions but are simpler
to implement than the method of King (1997). Each procedure provides estimates at the level of the
ecological unit as well as a more aggregated level. The first method uses a simple squared distance
minimization algorithm on the tomographic line segments. The second also generates a distance
minimization, but in a space keyed to the slopes and intercepts of possible regression lines. The third
determines the regression line that minimizes the sum of the areas between it and pairs of constraint
line segments that are generated by a variant of the Duncan~Davis method of bounds. The procedures
are implemented on an Excel spreadsheet and are available over the Internet. We present empirical
applications, for which the first and third methods yield results that are quite similar to those produced
by King’s algorithm,

5.1 INTRODUCTION

In ecological inference we seek to make use of data that is aggregated at the level of ecological
unitsto make inferences about the behavior of individuals. The ecological fallacy (Robinson,
1950) occurs when relationships between variables that obtain at the aggregate level are not
found at the individual level. In this chapter three methods of ecological inference are
proposed that are simpler than the sophisticated statistical models offered by King and his
colleagues.

King estimates the unknown parameters of interest using maximum likelihood estima-
tion (MLE) methods on a truncated bivariate normal or Beta distribution overlaid on the
tomographic lines in (8%, B*) space. The first of our three methods uses a simple squared
distance minimization algorithm on the tomographic lines. The district level solution is that
point on the district tomographic segment that minimizes the (weighted) sum of the squared
distances to the feasible tomographic line segrmentsfor the ecological units. For each unit the
estimates for the parameters of interest are the coordinates of the nearest point on the unit
tomographic line segment to the district solution. The analytic solution we obtain from this
method is very similar to that of the Goodman regression model, but — unlike regression —
our approach guarantees feasible solutions at both the precinct and the district level.

The second and third methods we propose can each be thought of as forms of
constrained Goodman ecological regression. The first of these latter methods generates a

* A previous version of this work was presented at the Ecological Inference Conference, June 17-18, 2002, at
Haryard University, Cambridge, MA, The listing of authors is alphabetical, The first-named author is indebted
for helpful conversations with John DiNardo and Anthony Salvanto, and for comments on a much earlier draft
of this paper by Gary King. Errors remaining are solely the responsibility of the authors.
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distance minimization in (m, b) space (where m and b are the slope and intercept of possi-
ble regression lines) rather than in (8%, B*) space. The last method operates in the original
(X, T) space and finds the regression line that minimizes the sum of the areas between it
and pairs of constraint line segments that are generated by a variant of the Duncan-Davis
method of bounds.

These methods demonstrate that the contrast between ecological regression in the form
proposed by Goodman (1953, 1959) and ecological inference of the sort described in King
(1997) is too easily exaggerated, Each uses either King's extension of the Duncan-Davis
(1953) methodofbounds or asimple variant thereof. Each operates without any assumptions
about the distribution of parameters, but bootstrap standard errors can be obtained to assess
the results.

We compare the results of our methods with that of King for several artificial and
real data sets. Our methods are implemented in Excel spreadsheets, which are available
on the websites http://www.cbrss .harvard.edu/events/eic/book.htm and
nttp://course.wilkes.edu/Merrill/. Two of the three methods produce results
that are, in general, very close to those produced by King’s algorithms.

5.1.1 Background

. Since the critiques of scholars such as Robinson (1950), the use of ecological methods to

attempt to specify individual level behavior from data that is available only at the level of
ecological units has been both uncommon in the social sciences and highly suspect. It is now
well known that ecological methods can sometimes yield quite misleading estimates, even
of apparently simple statistics such as correlations, There have been a variety of attempts
to resuscitate the use of ecological methods, such as the efforts of Goodman (1953, 1959)
and Duncan and Davis (1953) to provide ecological estimates a solid statistical footing. In
particular, these methods have been adopted for use in the analysis of racial bloc voting data
inlegal challenges to districting plans brought under the Voting Rights Act or the Fourteenth
Amendment (Grofman, 2000).! But it is only following publication of Gary King’s (1997)
seminal work on ecological inference that the use of aggregate data on ecological units
for purposes of directly inferring (mean levels of) individual behavior among individuals
(entities) sorted into dichotomous or polychotomous categories has been undergoing a
renaissance in political science research.

King (1997) argues that his approach to ecological inference is superior to Goodman’s
classic form of ecological regression for a number of reasons. Most notably, it makes use of
all the information available about the data and the bounds on feasible parameter values,
and guarantees that all estimates of unobservable individual parameters will be consistent
with the feasible values for those parameters at the level of the ecological units used for
analysis. While it is widely accepted that King (1997) represents a major advance on earlier
methods such as Goodman’s bivariate approach to ecological regression, King's approach to
ecological inference hasalso been subject to strongattacks by scholars inboth political science

I In voting rights challenges to districting plans (brought under Section 2 or Section 5 of the Voting Rights Act of
1965 as amended in 1982, or brought directly under the Fourteenth Amendment), analysis of voting by race was
a legally mandated component of any litigation. Because survey data on local (or even state) elections s rarely
available, analyses of the relationship between aggregate level voting patterns in the elections (usually measured
at the precinct level) and the racial characteristics of these aggregate units has been used to make inferences
about how members of each race are voling { Grofman and Migalski, 1988; Grofman, 1992). Despite the general
disrepute of ecological methods over the past three decades, one area where ecological methods have been used
by necessity is in the analysis of patterns of racial voting,
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(Cho, 1998, 2001; Cho and Yoon, 2001; Anselin and Cho, 2002) and statistics (Freedman,
Klein, Sachs, Smyth, and Everett, 1991; Freedman, Ostland, Roberts, and Klein, 1999). These
authors argue that there are circumstances where his methods will be either inconclusive
or wrong and that errors in inference may go undetected by his diagnostics. Others have
argued that King overstates the distinctness of his approach from that of more traditional
estimation techniques (McCue, 2001).

5.1.2 Proposed Methods

Our primary focus in this paper is not on critiques of ecological inference methods, but on
offering three new methods of ecological inference that are easy to explain and very easy to
calculate, e.g., using just an Excel spreadsheet. We suggest that each of these methods, which
uses either King’s extension of the Duncan—Davis method of bounds or a simple variant
thereof, has many of the same nice properties as the methods proposed by King (1997) and
King, Rosen, and Tanner (1999).2 We will demonstrate that the contrast between Goodman-
style ecological regression and ecological inference in the style of King is not so great as may
appear.®

For simplicity of exposition, we will only look at bivariate analyses of the sort that can
be done using the basic version of King’s EZI computer program. We illustrate ecological
methods as they might be applied to ascertain patterns of voting behavior in biracial con-
tests involving at least one white candidate and one black candidate, using aggregate data
(gathered, let us say, at the precinct level). Here, we wish to understand what proportion of
each group’s votes go to a candidate identified with their own group.® Of course, our results
have a much broader applicability than to the specific context of racial bloc voting.

We establish notation similar to that specified in Chapter 1:
For the ith precinct, let

X; = proportion of the voters that are black,

T; = proportion of the vote that goes to the black candidate,

B! = proportion of black voters who vote for the black candidate,
B} = proportion of white voters who vote for the black candidate.

For the entire district, let

X = proportion of the voters that are black,
T = proportion of the vote that goes to the black candidate,

2 For more on this point see Grofman and Merrill (2002) and Silva de Mattos and Veiga (this volume,
Chapter 15).

3 Although this stark contrast is not King’s own view (personal communication, 2001), we believe that, in large

part because of the way the contrasts are emphasized in King (1997), most who have read this book have viewed

King's method of ecological inference and Goodman’s approach to ecological regression as almost completely

opposite in nature.

We will assumne for convenierice that we are only dealing with two groups of voters and that these two groups are

mutually exclusive and exhaustive. As noted earlier, we refer to them as “black” and “nonblack,” with “white”

as a synonym for “nonblack” We also present our analyses for situations in which there is only one minority
candidate, but extensions to situations with more than one minority candidate are straightforward.

5 Analysis of racial bloc voting patterns is a context where it has been argued that the likely problems of ecological
inference are minimized (Grofman, 1991, 1993, 2000). In that context, empirically, most methods yield very
similar estimates, and methods such as standard ecological regression, when correctly applied and interpreted,
have withstood legal challenges as well as challenges by expert witnesses skeptical of their accuracy.
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BY = proportion of black voters who vote for the black candidate,
B"™ = proportion of white voters who vote for the black candidate.

The organization of this chapter is as follows.

We illustrate the direct link between the Goodman approach to ecological regression and
the Duncan—~Davis method of bounds, and we provide a theorem that allows us to derive a
condition under which the results of the King (1997) approach and the answer obtained by
ecological regression will be identical.

Next, we specify three “new” methods of ecological inference that use straightforward
minimization algorithms that can be solved simply, e.g., using the Solver function in an
Excel spreadsheet. For certain special cases, we can provide closed-form analytic solu-
tions for these methods. Each of these methods draws, either directly or in transformed
form, on King’s (1997) seminal idea of using the Duncan—Davis (1953) method of bounds
to construct line segments on which all feasible values of the unknown parameters must
lie.

The first of these new methods operates in the same (Y, B™) space as that of King
(1997). Rather than using MLE methods involving a truncated normal distribution or
the Beta (see King, Rosen, and Tanner, 1999) or some other distribution, we solve a simple
distance minimization problem to obtain the best-fitting joint prediction of the mean values
of B® and B*. We then look at the projections from that point to the precinct-specific
constraint boundaries (line segments) in (8%, B") space to determine the best estimates of
the individual Yand B;*values.

The last two of our new methods can be viewed as variants of the Goodman ecological
regression approach. They first produce a best estimate of the overall best-fitting bivariate
regression, which yields feasible district values of B" and B*, and then use proximity to
that line to generate precinct-specific estimates of the slopes m; and intercepts b; for the
best-fitting overall regression lines for each precinct, from which the 8and 8¥values can
be inferred. Empirically, we compare the results of our methods with the results of King’s

methods for artificial and real data sets.

5.2 ANALYZING THE LINK BETWEEN INDIVIDUAL BEHAVIOR AND BEHAVIOR RECORDED AT
THE AGGREGATE LEVEL

We first illustrate the Duncan~Davis method and the simplest form of King’s (1997) eco-
logical inference model with an eleven-precinct set of hypothetical data (see Table 5.1) for

which all methods will give essentially the same answer.
In each precinct, by the accounting identity,

T = B/ Xi+B(1— X, (5.1)

and similarly, for the district as a whole,
T=p"X+p"(1-X). (5.2)
While X and T are observable, the parameters of real interest, namely, the proportion
of blacks who support the black candidate and the proportion of whites who support the

black candidate, which we denote using f’s, are unobservable. The problem is to get from
the values we do know to those that we want to know about. By using the identity given
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Table 5.1 Hypothetical illustrative eleven-precinct data set
1 0.05 0.225 0.00 1.00 018 0.24
2 01 0.25 0.00 1.00 017 0.28
3 0.2 0.30 0.00 1.00 0.13 0.38
4 0.3 0.35 0.00 1.00 0.07 0.50
5 0.4 0.40 0.00 1.00 0.00 0.67
6 0.5 0.45 0.00 0.90 0.00 0.90
7 0.6 0.50 0.17 0.83 0.00 1.00
8 07 0.55 0.36 0.79 0.00 1.00
9 0.8 0.60 0.50 0.75 0.00 1.00
10 0.9 0.65 0.61 0.72 0.00 1.00
11 0.95 0.675 0.66 0.72 0.00 1.00
OVERALL MEAN 0.5 0.45 0.00 0.90 0.00 0.90
PRECINCT MEAN 0.5 0.45 0.18 0.89 0.04 0.75
GROUP POP 05 0.45 0.35 0.82 0.09 0.55

in Equation 5.1 above, which links T; and Xj, with /3}’ andB, and combining it with our
knowledge that vote proportions mustlie between 0 and 1 (no ifs, ands, buts, or maybes), it
is easy to show that any given pair of precinct values (X;, T;) gives rise to linear constraints
on the feasible values of the B? and B} values for that precinct.

To see how this works, consider a simple example. Let us look at the data from Precinct 7
in Table 5.1. In that precinct, we have X; = 0.6 and T; = 0.5. Now, since 60% of the voters
in the precinct are black and the black candidate got only 50% of the vote, at most five-sixths
of the black voters (= 50%;/60%) voted for the black candidate. On the other hand, even if
all the white voters voted for the black candidate, since only 40% of the voters are white, at
least one-sixth [= (50% — 409%)/60%)] of the black voters must have supported the black
candidate. Similarly, it is mathematically possible that every single white voter voted for
the black candidate, and it is also possible that none of the white voters did so. By using
data only from this precinct, the bounds we get on feasible patterns of black voting in the
precinct do tell us that (given the actual X; and T; values) we must have between one-sixth
and five-sixths of the black voters in that precinct supporting the black candidate, but the
proportion of white voters who supported the black candidate could be anywhere between
0% and 100%.

The Duncan—Davis (1953 ) method can be used to get tight bounds either in precincts that
are racially homogeneous or in precincts that vote lopsidedly for a candidate of one race.
We have shown in Table 5.1 the maximum and minimum values of 87and g7 for each of the
eleven precincts. It isapparent that, for Precinct 1, the most heavily white precinct, although
the bounds on the black vote are not at all informative, we can pin down the proportion
of white voters supporting the black candidate as falling between 18% and 24%, Similarly,
for Precinct 11, the most heavily black precinct, although the bounds on the white vote are
not at all informative, we can pin down the proportion of black voters supporting the black
candidate as falling between 66% and 72%.
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5.2.1 Tomographic Plots

When X; = 0.6 and T; = 0.5, not only is it true that (é, 1) and (g, 0) are feasible outcomes,
but it is easy to see that all points on the line segment between the points (%;, 1) and ( %, Q)
are also feasible, and are given by the equation

wo Sgn 3
B =SB+

The only portion of this line that is of interest is the line segment containing the feasible
values, i.e., the values on this line that lie at or between the points (é, 1) and ( g, 0). We show
in Figure 5.1 the precinct-based constraints on the joint (87, ) pairs for the data in Table
5.1, This type of joint constraint diagram, known as a fomographic plot, with values plotted
in (8%, B*)space, was first introduced into the social sciences by King (1997) on p. 81 of his
book, and used repeatedly thereafter.

Understanding what such a diagram shows is absolutely critical to understanding King’s
approach to the problem of reliable ecological inference and our own ‘similar approaches.
It is also critical to understanding alternative approaches such as the neighborhood modet
of Freedman et al. {1991). :

Note that all the feasibility constraint lines in Figure 5.1 intersect at a single point
(.70,.20). The parameter values at this intersection point correspond to the estimate for the
mean value of the unobserved parameters we get from Goodman’s ecological regression for
the same data set. King’s EZI algorithm also yields these same mean values for this data set,
as it usually does when the tomographic segments meet at a point,

We now offer a simple result linking the values in the tomographic plots generated as
the basis for King’s method of ecological inference and the results of the classic Goodman
ecological regression for the special case of the feasibility constraint lines intersecting at a
single point.

Theorem 1. Ifthe tomographicline segments used as the basis for King’s ecological inference
have a unique intersection, this intersection will be at a point, (BY, B"), which corresponds
to the (BY, B*) values de;ived from Goodmar’s method of bivariate ecological regression.

Proof. See Appendix 1.
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Unfortunately, even when there is a unique intersection point of the tomographic plot
lines, that intersection need not be within the unit square, i.e., need not be a feasible value.®
Indeed, we might anticipate that, even in the absence of a unique intersection of the line
segment bounds in the tomographic plot, when Goodman’s ecological regression method
yields a feasible estimate of mean (BY, B*) values, it is likely that the results of Goodman’s
approach and that of King’s approach to ecological inference will not be far apart. The
differences between the two approaches appear likely to arise when Goodman’s ecological
regression yields out-of-bounds estimates for one or more of the mean (or precinct spe-
cific) parameters. We will return to this issue, i.e., the circumstances under which different
methods are likely to give rise to different answers, later in the chapter.

5.3 A SIMPLE DISTANCE MINIMIZATION ALGORITHM FOR ECOLOGICAL
INFERENGE: METHOD |

It follows from equations (1) and (2) that

-X T
W Tlghy T 5.3
B =t (53)
and
— T
I Bb 4 ——. (5.4)

In the example specified in Table 5.1, B¥ = —BY + 0.9, and similar equations hold for
each precinct. Any pair of (B, B") values that lie on the district line segment specified in
Equation 5.4 is compatible with the overall pattern of racial bloc voting in this data. But
which point on this line segment is the most plausible estimate of this pair of values?

A simple approach is to look to see how far the various points on this line are from the
other line segments in the tomographic plot. If, for example, there is a unique intersection
of all the other line segments with each other, then the aggregate line-segment bound must
also pass through that intersection. In this special case, it would seem that a very compelling
case can be made for choosing the intersection point as our “best” estimate of the ( B?, BY)
values, at least if that point consists of jointly feasible values. In general, we can find the
squared distance from each point on the aggregate line segment to each of the precinct line
segments, and find the point that minimizes the (weighted) sum of those distances. Such
distances will be interpreted later.

Ourplan is to compute numerically - for each point on the overall tomographic constraint
line defined by Equation (4) — the sum of the squared distances from that point to each
of the precinct-level tomographic line segments. If the perpendiculars to the precinct-level
tomographic lines intersect these lines at points in the feasible region, then a closed form
solution for ( B%, B") can be derived (see Equations 5.13a and 5.13b below). If, instead,
a perpendicular to a precinct-level tomographic line falls outside the feasible region, the
shortest distance from a given point on the district line to the precinct-level segment must

6 1f, for example, the (X, T) values are (.3, .2), (.5, .5), and (.7, .8), the tomographic lines intersect at ﬁb =125
and B = —0.25, which represent a point outside the unit square,
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be computed to the nearer endpoint of the segment. The specifications of these endpoints
Piand P, follow simple rules:’

IfT; <1— X; then P = | 0, T \;
P i 1—-X;/
T —(1— X;
otherwise P = (——-——(*—Q > 1) . (5.6a)
X;
T > X; then P, = (1, 220
i 2 Apthen = » T X, H
. T;
otherwise P, = | —, 0. {5.6b)
X; .

To implement this plan, it remains only to determine formulas for the points of intersection
(to be used when they lie in the feasible region). As noted above, we have

T
1—X;

gy = —%

_ 5.7
PTIox (5.7)

Bl +

as the equation for each precinct constraintline. If (B, B*) lies on the aggregate constraint
line, the line through this point and perpendicular to a precinct constraint line given by
Equation 5.7 is given by

oL Xig g 1=K

BE, 5.8
; X; ;7 (5.8)

The point of intersection of the precinct constraint line and this perpendicular is given by

b XiT— B"X(1— X;) + BY(1 — X,)?

i XF4(1— X;)2 59

and B} can then be obtained from Equation 5.8.

In general, what we want to do is find the point on the district-level tomographic line
that minimizes the sum of the squared distances from that point to all the line segments
that define the precinct-specific joint bounds on the 8 ," and B values. First note that, from
Equation 5.8,

_..X’.
pr -8 =222 (g

b _ pb
X B8

!

7 Note that the conditions on T} in Equations 5.6a and 5.6b need not be complementary; it is the two conditions
within 5.6a and within 5.6b that are complementary. In the degenerate case for which X; = 1, if <1~
X; then P = (0, 1); if T} > X; then P, = (1, 0).
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so that the square of the distance from (B?, B*) to the precinct constraint line, i.e., to the
point of intersection given by Equation 5.9, is

df = (6 - B)" + (87 - B")’
2 X,-2 + (1~ X;)?
X3 ‘

1

= (8! - BY) (5.10)

However, using Equation 5.9, we obtain

XiT, ~ BYX;(1 ~ X;) — X?BY
X+ (- X;2

B~ B =

Together with Equation 5.10, this implies that

2o G- %8 —(-X)B"]
a X+ (1- X))
=w} [T - X;B" - (1 - X)) B*]", (5.11)

where the weights w; are given by

1
T S —
X1~ X)?

Note that the distance d; can be interpreted as the weighted difference between the
Pproportion of voters for the black candidate in the ith precinct and what that proportion
‘would beifthe proportions voting for the black candidate broken down by race were given by
BP¥and BY, that is, the same as in the district as a whole. Hence, it makes sense to seek values
of B’and B” that would minimize the squares of these differences. In fact, the numerator
in Equation 5.11is (T; — 7)?, where T} is the ith fitted value under Goodman regression.

If all points of intersection are in the feasible region, we simply minimize ), d? sub-
jectto the constraint that BY and B" are feasible (lie on the district constraint line), i.e., that

XB'+(1-X)B" =T, (5.12)

Solving this constrained optimization problem by Lagrange multipliers, we obtain two linear
equations in B"and B":

BY Y wiXi(Xi~ X)+ B* Y whl - X)(X; ~ X) = S wiT(X; — X),
i i i

B'X+B*1-X)=T,
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which yield the solutions

TwiX = X) (1= X)T - (1- X)T]

b
BY = Z le(X‘ — X)Z > (5.133)
i

Y wHX; — X) [ X T — XT]

v L . 5.13b
B S~ 17 (5.13b)
1

Thus, in the special case in which all intersection points are in the feasible region, we
have obtained closed-form solutions for B’and B*. These solutions are simple to compute
on a spreadsheet and closely resemble the form of solutions to an ordinary least squares
regression problem.® However, in solving our optimization problem, we are only interested
in points of intersection (ﬂ,-l’, B}) that specify feasible values for the respective precincts.
Accordingly, if the point of intersection is outside the feasible region, we modify d? to be
the squared distance to the nearer endpoint of the precinct line segment where it intersects
the boundary of the feasible region. We then choose those values of B’and BY that lie
on the district tomographic line and that minimize ", 4.

Standard errors and confidence intervals can be computed by a bootstrap method, This
is done by repeated sampling with replacement from the data set, recomputing the param-
eter estimates, and determining the standard deviation of these estimates (see Efron and
Tibshirani, 1993),

Each precinct-level estimate is the pair (8%, 8Y) that minimizes the expression (B! -
BY)? + (B} — B™)? Itis the intersection point of the perpendicular to the precinct tomo-
graphic line if this value is feasible, and otherwise is the nearest endpoint of the precinct
tomographic line segment to the district solution point (B, B¥). These computations can
be implemented in an Excel spreadsheet and are available on the websites http: //www.
cbrss.harvard.edu/events/eic/book.htm and http://course.wilkes.
edu/Merrill/ through Internet Explorer.

Disttict parameter estimates for Method I are presented later for several artificial and real
data sets in Tables 2-4; precinct-level estimates are given for one real data set in Table 3.
These results are discussed in Section 5.5.

If not all precincts are of equal size, we weight the d? by the number N; of voters in
precinct , i.e., we minimize ) N;d}. Equations 5.13a and 5.13b are replaced by

D wIN(X = X) [(1 = X)T — (1= X))T)

BY = , (5.14a)

T WIN(X; — X)?
7

LWIN(X - X) [ X; T — XTj]
7

BY = (5.14b)

L wWENI(X — X)?
i

§ In this special case, the solution would be identical to the ordinary Jeast squares solution if the weights w; in
Equation 5.13 were all identical.
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5.4 EXTENDING THE DUNCAN-DAVIS METHOD OF BOUNDS TO DEVELOP TWO NEW FORMS
OF GOODMAN’S ECOLOGICAL REGRESSION APPROACH: METHODS 11 AND Il

King’s ecological inference approach makes use of tomographic plots that constrain the
values of unobservable individual-level parameters ;35’ and B}) to lie within feasible bounds
for each of the ecological units. Ecological inference uses maximum likelihood methods
to derive overall estimates of these unobservable parameters. We show that Goodman’s
approach to ecological regression can be adapted to make use of distance minimization
methods that constrain the values of slope and intercept parameters so that the estimates of
the unobservable individual-level parameters (8¢ and B!"), and the mean values for-those
parameters, remain within feasible bounds. Indeed, we provide two different methods for
doing so.

5.4.1 Adapting our Previous Distance Minimization Algorithm for Use in (m, b) Space
Rather than (3%, 3%) Space: Method II

Qur first proposed integration of ecological inference and ecological regression uses a math-
ematical device to shift from the usual (X, T) space to a new space defined interms of m and
b, the slope and intercept parameters of the bivariate ecologicalregression. We derive the
defining values for the line segments in that space from the Duncan—Davis (1953) method
of bounds. Because

m=,3b——/3w
and
b= g",

we have

m—(b——i— t_‘)f_b_"_b_{_T
- 1-X/)\ =X X X

This expression may be rewritten as
T = mX + b.

For our example for which (X, T) = (.5, .45), the expression for the feasible overall line in
(m, b) space is

m=—2b+0.9.

Similar equations hold for each precinct.

Once we have constructed this set of equations, we apply the same methods as in the Sec-
tion 5.3 to find the point on the line in the equation above that minimizes the (constrained)
sum of squares to the various precinct-specific line segments. Only, now we are operating
in (m, b) space rather than in (BY, B*) space.

The feasible region in (1, b) space is a diamond with corners at (0, 0}, (0, 1), (-1, 1),
and (0, 1). The squared distance from a point (mq, by) on the district feasible line segment
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to a precinct feasible line segment is given by

dz-—'—X?——(b + T — myX;)?
i—(l_i_Xlz)a 0 i 0 <\

if the foot of the perpendicular to the precinct line lies in the diamond, and otherwise
by the distance to the nearest endpoint on that line segment. Because the transformation
from the feasible square of (8%, 8%) space to the diamond of (1, b) space alters distances,
the minimization problems in Methods I and II are not identical. Simple examples show
that precincts with symmetric patterns are treated symmetrically in (8 b B*¥)space, but not
in (m, b) space.” As expected, Method I yields estimates for (BY, B") that may be quite
different from those obtained by King (1997) or by our Method I (or by our Method III
below).

5.4.2 Operating Directly in (X, T) Space on the Set of Feasibie Regression lines: Method IH

Here we seck to build into the Goodman ecological regression approach the constraints on
feasible values generated by the Duncan-Davis (1953) method of bounds. We now specify
a pair of regression lines in the original (X, T) space that give bounds, for each ecological
unit, for the jointly feasible values of m; and b; derived from the set of constraints on jointly
feasible B¢ and B} values,

5.4.3 Defining the Cone of Feasible Values

Consider a point (X;, T;) that is an observed value for a given ecological unit (such as a
precinct). If an ecological regression line passing through that point is to yield values of m
and b that are feasible, it must be the case that the regression line intersects the line X = 0
somewhere between T = Oand T = 1 and that it also intersects the line X = 1 somewhere

? For example, consider a district with three precincts with (X;, T;) = (.3, .1), (.5, .5), and (.7, .9). The first and
third precincts are symmetric inall respectsand are equidistant from (and symmetric to) the district tomographic
line segment in (8%, ") space, In (m, b) space, however, the optimizing point on the district line is closest to
an interior point on the feasible segment for precinct 1 but to an endpoint for the feasible segment for precinct
3. The distances involved are not the same.
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Figure 5.3. Bounding lines for cones of feasible values for 11 precincts for data from (a) Table 1, (b)
Carter.

between T =0 and T = 1. To see how these constraints apply, divide the unit square in
standard (X, T) space into quadrants, as shown in Figure 5.2.

Inquadrant 1, define a cone of feasible values passing through a point (X;, T;) by requiring
that one defining (extremal) line of the cone pass through the point (1, 0) and the other
defining line pass through (1, 1). Similarly, for points in quadrant 2, the defining lines of the
cone must pass through (0, 1) and (1, 1); for points in quadrant 3 they must pass through
(0, 0) and (0, 1); for points in quadrant 4 they must pass through (0, 0) and (1, 0). For
points in quadrant 1, one of the two defining lines of the cone [that which passes through
the point (1, 0)] must be a line whose m value is equal to — T /(1 — X;) and whose b value is
equal to T;/(1 — X;), while the other defining line [that which passes through the point (1,
1)] must be a line whose m value is equal to (1 — T;)/(1 — X;) and whose b value is equal
to (T; — X;)/(1 - X)).

Inlike manner, the cone of feasible regression lines for points in quadrant 2 is characterized
by a bounding line with m value equal to (1 — T;)/(~X;) and b value equal to 1, and
a second bounding line with m value equal to (1 — T;)/(1 — X;) and b value equal to
(T — X;)/(1 = X;). The cone for quadrant 3 is characterized by a bounding line with
value equal to T;/ X; and b value equal to 0, and a second bounding line with  value equal
to (1 — T})/(~X;) and b value equal to 1. Finally, the cone for quadrant 4 is characterized by
a bounding line with m value equal to T;/ X; and b value equal to 0, and a second bounding
linewith mvalueequalto —T; /(1 — X;) and bvalueequalto(T;)/(1 — X;). We canillustrate
these boundary lines for the set of data in Table 5.1 (Figure 5.3a), and for an 11-precinct
data set drawn from a real-world biracial legislative contest in the Deep South in the 1990s
(Figure 5.3b; see also Section 5.5),

Our plan is to choose values of m and b that satisfy the district-wide constraint

T=mX+0b,
i.e.,
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and minimize the sum of the areas between this line segment and the boundingline segments
of the cones associated with the precinct values X; and T;. These areas are restricted to feasible
values of X;, i.e., X; € [0, 1]. The detailed calculations are given in Appendix 2.

An Excel spreadsheet to implement these calculations for Method III is available on
the websites http://www.cbrss.harvard.edu/events/eic/book.htm and
http://course.wilkes.edu/merrill/. Standard errors and confidence intervals
can be constructed by bootstrap methods.

We can plot the (1, b) values for each pair of lines that constitute the extremal lines of the
boundary cones as points in (m, b) space. For example, if (X;, T;) is in quadrant 1, then the
two points are (— T/(1 — Xp), T/(1 — X)) and (1 — T)/(1 — X), (T; — X;)/(1 = X3)).
The line connecting these two points has equation b = — X;m + T;. In fact, the correspond-
ing line for each of the other cones has exactly the same equation.

5.5 COMPARING THE KING ECOLOGICAL INFERENCE ESTIMATES AND THOSE OF OUR
SIMPLIFIED APPROACHES

Aggregate parameter estimates produced by the basic version of King’s (1997) MLE program
and the estimates generated by our distance- or area-minimizing algorithms are typically
similar to one another, but need not be identical. We show this in Table 5.2 for three
hypothetical data sets (data sets A, B, and C).

The circumstances in which King’s basic method and our least squares and area-
minimizing approaches can be expected to give more divergent results occur when heav-
ily truncated tomographic line segments pull the solution away from a more plausible

Table 5.2 Parameter estimates for B and BY by alternative methods for artificial data sets

A gk .838 (,005) .830 (.023) .839 828 (.022) .833 (.020)
BY .282 (.005) 290 (.017) .281 292 {.015) .287 (.020)
B Bb 713 (.053) .748 (.068) .580 .656 (.069) 1.500 (.000)
BY ,287 (.053) .252 (.077) 420 .344 (.086) —.500 (.000}
c Bt 0917 (024) ,829 (.083) 672 937 (.135) 1.007 {.035)
B¥ .083 (.024) 171 (.098) .328 063 (.166) —.007 (.035)

Data set A:

Data set B;

Data set C:

Note: Bootstrap standard errors are given in parentheses.

X ! 0.10 018 026 034 042 050 058  0.66 0.74 0.82  0.90
T 1 034 037 044 050 053 052 0.64  0.59 0.69 075 0.79

X 0.30 634 038 042 046 050 0.54  0.58 0.62 066 0.70
T 0.10 018 026 034 042 050 0.58  0.66 0.74 082 090

X 610 o015 020 080 085 080
T 0.05 0,15 0.26 075 085 085
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convergence of other, less-truncated tomographic line segments. A case in point is data set
C (see Table 5.2 and Figure 5.4). Here the endpoints (.5, 0) and (1, .5) on tomographic line
segments 1 and 6 have what appear to be inordinate effects on the parameter estimates for
Method 1, For this data set, Method III and King’s method provide a more polarized but
more plausible solution than Method I. The facts that not more than 50% of the blacks vote
for the black candidates in Precinct 1 (in our example scenario) and not less than 50% of
the whites vote for the black candidate in Precinct 6 may seem inconsistent with the rest of
the district. Yet, given the small number of blacks in Precinct 1 and small number of whites
in Precinct 6, such statistics may commonly occur due to random variation.

5.5.1 Weighting by Informativeness

Precincts that are mostly black are most informative in estimating B?, whereas those that
are mostly white are most informative in estimating B". Accordingly, we define a version of
Method I weighted by informativeness by replacing the raw distance between (B%, B¥) and
a precinct tomographic line segment with a metric in which the coordinates are weighted
by the proportions of blacks and whites. Thus, we define weighted squared distance

N; [X,- (8! - BY) +(1- X)) (B — Bw)z]a

where N: is the number of voters in precinct 7, and where we recall that X; and 1 — X; are
the proportions of blacks and whites, respectively, in the electorate. Given this weighting,
if all minimizing points (87, B}*) do lie in the feasible region, the solution for (BY, B¥)is
identical with that of ecological regression.

For data set C, weighting the coordinates by the proportions of blacks and whites makes
a substantial difference. The weighted estimates (see Table 5.4) for (B, B*) are (.957,
.043), in contrast to unweighted estimates of (.829, .171). King's estimates (.917, .083) are
intermediate, and closer to our weighted estimates.

In practice, when we are looking at data from U.S. elections involving candidates of more
than one race (especially data from the South), most methods are apt to yield values of at
least the aggregate parameters B” and BY that are reasonably close to one another.'® To

10 Tn the specific context of racial bloc voting analyses, they are also likely to be not very different from the estimates
generated by ecological regression, at least when those estimates are within (0,1) bounds (Grofman, 2000).
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Table 5.3 Comparison of parameter estimates from methods I-lll and King’s method for the Carter 11-
precinct data set

(a) District-leve! estimates for B® and BY

i

Carter 11- Bt 978 (,005) 074 (,043) 940 .964 (.059)

e

974 (,026)

precinct
sample B .136 (.005) .138 (.016) 155 144 (.016) 138 (.017)
Carter data:

X | 013 067 016 004 033 00z 004 002 031 099 095
7 o027 o089 o020 014 039 023 016 016 043 096 095

Note: Bootstrap standard etrors are given in parentheses.

(b) Precinct-specific estimates of 37 and 3" for the Carter data set

1 0.9580 0.9783 0.9540 0.9556 01672  0.1642 0.1678 0.1675
2 09683  0.9643 0.9503 0.9588 0.1250  0.1331 0.1616 0.1443
3 0.9383  0.9587 0.8484 0.9927 0.0591  0.0555 0.0765 0.0480
4 0.9500 0.9730 0.8914 0.9786 01063  0.1053 0.1087 0.1051
5 0.9546  0.9602 0.9108 0.9701 01119  0.1082 0.1335 0.1043
6 09592 09760 1.0000 0.9346 02161  0.2148 0.2143 0.2156
7 0.9474 09739 0.9121 0.9703 01272  0.1261 0.1287 0.1262
8 0.9562  0.9745 0.9286 0.9635 01438 0.1434 0.1443 0.1436
9 09700  0.9921 0.9775 0.9542 0.1874  0.1775 0.1840 0.1945
10 09683  0.9683 0.9680 0.9683 0.1428  0.1380 0.1695 0.1416
1 09924  0.9927 0,9905 0.9930 0.1448  0.1391 0.1813 0.1322

Note; Estimates of ﬂf’ for majority black precincts and of A} for majority white districts are indicated in bold,

see this consistency, we turn to working through two real-world examples: an 11-precinct
sample of data (Carter data set) from a biracial legislative contest in a Deep South state in
the 1980s, and a 284-precinct sample from the 1995 gubernatorial race in Louisiana, which
included a prominent black candidate, Cleo Fields.!! Our first data set was chosen to have a
small number of precincts so as to demonstrate that even for small data sets, if patterns are
clear enough, it is relatively easy to see what is happening.

For the Carter data set, King’s EZI gets a mean value of (B b, B*) of (.978,.136) (see Table
5.3a). Our three estimates for the district parameters are (.974, .138), (.940, ,155), and (.964,
.144) for Methods I, I1, and III, respectively. Note that, even though Method II has the poten-
tial to give results quite different from Methods I and Ill or from King’s basic EZI program, in
this real-world data set the three methods give results that are not very different. Furthermore,

H Cleo Fields was a state senator and former U.S. representative from majority black districts (see Voss, 1999, for
further background).
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Table 5.4 Comparison of Method | estimates, unweighted and weighted for
informativeness

Data set € B? 829 957 917

Bv A7 043 083

Carter 11- Bt 074 972 978

Precinct set BY .138 139 136

Clec Flelds Bt 874 800 901

284-precinct B 025 015 014
set

for the Carter data set (see Table 5.4) the Method I estimates weighted for informativeness
are (.972, .139), almost identical with the unweighted Method I estimates (.974, .138).

We can also compare precinct-specific values of 87 and B}*. We show those estimates for
our three methods, along with the corresponding values from King’s truncated normal MLE
method, in Table 5.3b. Again there is very high consistency in the estimates, particularly —
as expected — for estimates of Y for majority black precincts and of 8" for majority white
districts. These precincts are identified in bold in Table 5.3b. Indeed, the maximum difference
between our Method I and King’s method in estimating the8f and B} values for the majority
race is 0.004, while the maximum difference for the corresponding estimates for the minority
race is 0.027. These results are summarized in Figure 5.5, which plots the precinct-level
estimates B! (Figure 5.5a) and B} (Figure 5.5b) for each of our three methods and King's
method versus the black proportion of the population. It is apparent that — except for
Method II - the estimates of A7 are almost identical to each other for heavily black precincts
and that the estimates of B} are almost identical to each other for heavily white precincts.

The Cleo Fields data set involves 284 precincts, many of which were heavily white or
heavily black. We would expect these to be most informative about the voting behavior of
the respective majority races. Table 5.4 compares the parameter estimates for Method I ~
weighted and unweighted — with those of King, for both the Carter and Cleo Fields data sets
as well as for data set C. Unlike the Carter data set, the Cleo Fields data set shows significant
differences when weighting is used; the weighted estimates of Method I are almuost identical
with those of King.

5.6 DISCUSSION

Since the least-squares and area minimization approaches we have offered are less general
than King’s method,!? why might anyone care about results derived from them? There
are several reasons. First, each generates closed-form solutions that are trivial to calculate,
albeit the distribution of precinct specific values each generates cannot be characterized as
a particular standard type (e.g., a truncated bivariate normal). In particular, because of the
simplicity of the numerical calculations needed for our methods, it is practical to extend

12 Bar example, to be comparable to the more advanced versions of King’s program we would need to develop
some explicit way of building in covariates,
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Figure 5.5. Precinct-level Estimates of (a) A} and (b) 8 by King’s method and our three methods
for Carter data,

them from 2 x 2 to m X n tables, as has been shown by De Sio (2003). Second, each has a
very simple mathematical exposition,'? and can be described in reasonably intuitive terms, '
Third, each offers either an indirect or a direct analogue to the OLS approach to ecological
regression, but with the advantage that parameter results are constrained to feasible values.
Fourth, although the following question needs considerable more investigation, based on
our explorations so far, it appears likely that two of these simple methods (Methods I and I1I)
will closelyapproximate the results generated by the basic MLE approach in King’s (bivariate)
EZI program. Finally, a comparison of the simple optimization aspects of our methods with
the MLE approach of King, and comparisons among the three methods we introduce, shed
some light on how ecological inference works and when it might be expected to fail.

APPENDIX 1. PROOF OF THEOREM 1

Theorem 1. If the tomographic line segment bounds used as the basis for King’s ecological
inference have a unique intersection, this intersection will be at a point, (B, B"), which
corresponds to the (B, B") values derived from Goodman’s method of bivariate ecological
regression,

13 The Monte Carlo nature of the MLE estimation procedure, combined with the complexities of estimating a
truncated normal distribution, renders King’s procedures much more complex than those we propose.

1 Grofman and Merrill (2002) discuss criteria for a good solution to the problem of ecological inference, and Silva
de Mattos and Veiga (this volume, Chapter 15) assess the predictive ability of several methods, including those
of Goodman and King.
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Proof. If (B®, B*)lies on all the constraint lines of a tomographic plot, the coordinates B
and B must satisfy

T= BYX; +(1— X;)B*
for all #. Thus, after averaging, we have
T=RB'X+(1-X)B"

as well, where X and T are the (weighted) averages for the entire district. But the slope
coefficient of ecological regression is given by

Y (Xi- X2

where

}: (X —X)T =) (Xi—X)[B' X+ (1 - X;)B]
= ZX,- — X)[X:(B" - BY) + B¥]
=3 (X — X)[(X; = X)(BY - BM]+ ) (Xi - X)B”
=Y (X — X)*[B - B"],

and where we have twice used the fact that ) (X; — X) = 0.
It follows that

M= BY— B,

But then the intercept of ecological regression is given by

b=T—mxX=(B"X+0-X)8") —(B'X - B"X)
o Bw)

so that B and B" are equal to the parameter estimates of ecological regression. q.e.d.

APPENDIX 2. AREA CALCULATIONS FOR METHOD fll

Before we tackle the general problem of minimizing the areas between the linem= (T —
b)/ X and the bounding line segments of the cones associated with the precinct values X; and
T;, we begin by specifying the area between any two lines contained in the range X € [0, 1].
Let one line be Ty = m X + by, and the other be Ty = my X + by. These lines intersect
at X, = —(by — by)/(my — my) = —Ab/Am, where Ab = by ~ by and Am=my — my.

There are two cases, depending on whether X; € [0, 1], Le., whether 0 < —Ab/Am < 1.
We summarize cases and results in the table below:

141



Bernard Grofman and Samuel Merrill

Case Intersection Area between two lines
A
I Outside X, € [0, 1] ‘—z—m +Ab
(AD)?}  Am
ithi , —— + — 4 Ab
I Within X, € [0, 1] A + 5 +

To verify the results given in the table, we look at the relevant integrals. For case I, the area
between the two lines is given by the absolute value of

1 1 1
f [Zb)-—- TE])] dX:f [m2X+ bg-—le—bl] dX-:-‘EAm—{‘Ab.
0 0

Similarly, for case II, if by < b, the areas between the two lines are given by

—Ab/Am 1
/ [Ty ~ Ty dX'i'/ [Ty - Tip] dX
0 —Ab/Am

~AbfAm 1
2/ [m2X+b2—m1X—b1] dX-I-/ [m1X+b1——m2X-b2] dX
0 —Ab/Am

—~AbfAm 1
=f [(Am)X + Ab] dX—/ [(Am)X + Ab] dX
0 —Ab/Am

_ l(Ab)2 _ (Ab)? + _l_(Ab)Z _ (Ab? 1

- — ZAm— Ab
2 Am  Am 2 Am  Am _2°™
2
1
I G Y
Am 2

If, instead, b, > b,, the same result is obtained without the negative signs. In each case, the
area is positive and hence is the absolute value of the expression. q.e.d.

Now, we can solve the general problem by finding the line whose b value minimizes the
sum of the appropriate areas for each pairing between that line and the other lines in the
set, subject to the constraint that the m and b values of that line must satisfy the equation
T=mX-+b.
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