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Abstract

We develop a general concept of majority rule for finitely many choice alternatives that is
consistent with arbitrary binary preference relations, real-valued utility functions, probability
distributions over binary preference relations, and random utility representations. The underlying
framework is applicable to virtually any type of choice, rating, or ranking data, not just the linear
orders or paired comparisons assumed by classic majority rule social welfare functions. Our
general definition of majority rule for arbitrary binary relations contains the standard definition for
linear orders as a special case.
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1 . Introduction

Much of the work in social choice theory on the topic of preference aggregation
involves one or more of the following restrictions on the domain of study.

Firstly, beginning with Arrow’sSocial Choice and Individual Values (Arrow, 1951),
social choice theories have tended to posit that actors have linear order or weak order
preferences. More general binary preference relations have largely been ignored.

Secondly, until recently, much of the work posited deterministic preferences rather
than allowing for probabilistic preferences, including relative frequencies of determinis-

1tic preferences as a special case of a probability measure over preference relations.

*Corresponding author. Tel.:11-217-333-0763; fax:11-217-244-5876.
E-mail address: regenwet@uiuc.edu(M. Regenwetter).
1However, there are some notable exceptions, including the literature on probabilistic voting schemes
(Coughlin, 1992; Enelow and Hinich, 1984, 1989; Fishburn and Gehrlein, 1977; Fishburn, 1975, 1984;
Intriligator, 1973; Schofield and Tovey, 1992).
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Thirdly, to our knowledge, the social choice literature has not treated the various
deterministic and probabilistic representations of preferences and their relationship to
various deterministic and probabilistic representations of utility in a unifying way. For
instance, very few social choice results have been explicitly stated in terms of random

2utility representations.
In this paper we focus on one particularly important preference aggregation mecha-

nism, namely majority rule. Our general concept of majority rule (with respect to a finite
number of choice alternatives) is applicable to all binary preference relations, real-valued
utility functions, probability distributions over binary preference relations, and random
utility representations. The definition of majority rule forbinary preferences has the
following simple form. For a profile ofn many binary preference relations (possibly
with repetitions), alternative A is majority preferred to alternative B if and only if the
total number of preference relations in which A is preferred to B exceeds the total
number of preference relations in which B is preferred to A. Much of the social choice
literature has dealt with deterministic preferences. Because probability distributions over
binary relations contain relative frequencies/ tallies as a special case, we make use of a
probabilistic framework. Here, given a probability distribution over binary preference
relations, alternative A beats B by a majority if and only if the total probability of those
relations in which A is ‘better than’ B exceeds the total probability of those relations in

3which B is ‘better than’ A.
There are several reasons for developing a definition of majority rule that is fully

general in the way specified above. Firstly, it is desirable to have a concept of majority
rule that is general enough to be well defined in a random utility modeling framework.
Secondly, mathematical generality is obviously desirable in and of itself, e.g. all binary
relations, not just linear and weak orders, should be accounted for. Thirdly, the literature
on preference and utility provides considerable evidence that actual preferences are
much more general than linear or weak orders and discusses a panoply of utility
representations (Fishburn, 1970; Kahneman and Tversky, 1979; Loomes and Sugden,
1982; Luce, 1959; Luce and von Winterfeldt, 1994; Luce and Suppes, 1965; Tversky,
1969; Tversky and Kahneman, 1986). Indeed, sometimes this literature suggests that
individual preference need not even be transitive (Tversky, 1969; Gehrlein, 1989; Vila,
1998). Fourthly, most ballot data or preferences recorded in public opinion surveys do
not explicitly require or record all, or even any, pairwise comparisons. Thus, if we wish
to reconstruct majority preferences from empirical data, we need a general framework
which permits such inferences. This paper provides exactly such a framework. In an
empirical companion paper, using approval voting and feeling thermometer survey data,
we demonstrate that the inferred majority preferences may critically depend on the
assumed form of the preference or utility representation.

2Although there are, again, noteworthy exceptions (Falmagne and Regenwetter, 1996; Regenwetter, 1997;
Tangian, 2000).

3This includes the possibilities of cycles at the individual preference level. Considering just the pair A,B the
cycle ‘A preferred to B preferred to C preferred to A’ would be tallied for A ‘better than’ B, and the reverse
cycle ‘A preferred to C preferred to B preferred to A’ would be tallied for B ‘better than’ A.
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The paper has four more sections. Section 2 reviews the most commonly used
(deterministic)binary preference relations.

Section 3 offers a general concept ofmajority rule in terms of binary preference
relations. We begin that section with a definition ofnet preference probability, which is
key to most of the subsequent theorems. The net preference probability of a binary
relation is equal to the probability of the binary relation minus the probability of the
binary relation that is obtained by reversing all pairs in the first relation. For instance,
the net preference probability, which we sometimes abbreviatenet probability, of a
ranking ‘a best,b second,c worst’, is the probability of the ranking ‘a best,b second,c
worst’ minus the probability of the ranking ‘c best,b second,a worst’. We use the idea
of net preference probabilities to define majority rule social welfare relations for finitely
many choice alternatives in a way that is consistent with all binary preference relations,
and probability distributions over such binary preference relations. Since most of the
existing literature focuses on linear order preferences, we provide the only possible way
to translate a net probability distribution on general binary relations over triples into a
net probability distribution over linear orders on the same triples that preserves pairwise
net preference probabilities (Theorem 1). This theorem essentially allows us to translate
tallies on (probability distributions on) binary relations into tallies on (probability
distributions on) linear orders in a fashion that preserves majority rule.

Section 4 discusses random utility representations. We begin by summarizing known
results on deterministic real-valued representations of various types of binary preference
relations (Theorem 2). We also review previous work on the corresponding relationship
between probability distributions over preference relations, on the one hand, and random
utilities, on the other (Theorem 3). We extend the existing results by adding new
theorems on a random utility representation for strict partial orders of dimension less
than some numberk (Theorems 4 and 5). As a consequence of these representations, our
general definition of majority rule in terms of preference relations is naturally extended
to utility functions and random utility representations (Observations 1 and 2).

In Section 5, we comment on how to generalize the impartial culture and related
cultures of indifference to our general framework (Observation 3).

2 . Preference relations

Most commonly used representations ofpreference take the form of binary (order)
relations. Here we present results for linear orders, strict weak orders, semiorders,
interval orders, strict partial orders of dimension# k, and even arbitrary binary relations

4on finitely many choice alternatives. We state most of our results in terms of arbitrary
binary relations (which we project down to the family of asymmetric binary relations,
with a mathematical ‘trick’ and without loss of generality for our results on majority

4As noted earlier, theorems on social choice are often stated only in terms of linear orders or (strict) weak
orders. A noteworthy exception is Brady and Ansolabehere (1989) who discuss a palette of representations
ranging from linear orders to the family of all transitively closed binary relations.
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rule). Of course, because the various types of orders are special cases of binary relations,
the results apply as a consequence to them as well.

Throughout the paper we focus on a basic finite set# of choice alternatives
(commodities, political candidates) and we denoteu#u by N. A binary relationB on # is

2 5a setB # # . For (x, y)[B, we also writexBy (as in ‘x is better than y’). Given a
21 2¯binary relationB, we write B 5 h(y, x)u xByj and B 5# 2B. The relative product

2BB9 of two binary relationsB and B9 is the binary relationh(x, z)[# u'y [# s.t.
xByB9zj. I 5 h(x, x)ux [# j denotes the identity relation on#. A strict partial order B on

21# is an asymmetric (i.e.B >B 5 5), transitive (i.e.BB #B) binary relation.
An interval order is a strict partial orderB with the additional property that]
21BB B #B (see, for instance, Roberts, 1979). The key idea behind interval orders

(Fishburn, 1970, 1985) is that we cannot always distinguish between choice alternatives
that are very similar. Therefore, interval orders capture the idea that an object is
preferred to another if and only if it is sufficiently superior to the other. The threshold of
distinction may depend on the objects that are being compared, i.e. it may be variable. A
semiorder is an interval order with a fixed threshold (Luce, 1956, 1959), the latter being]

21captured by the additional property thatBBB #B (see, for instance, Roberts, 1979). A
¯ ¯ ¯strict weak order is an asymmetric and negatively transitive (i.e.BB #B ) binary

relation. A linear order is a strict weak order without ties, in other words, a weakly
21¯connected (i.e.I #B <B ) strict weak order. When the set# is given, we use the

notationP to refer to the collection of all linear orders over# andp for a given linear
order. There is a one-to-one correspondence between linear orders and what is
commonly referred to as ‘rankings without ties’. We will use the two terms inter-

21 2changeably. Aweak order is a connected (i.e.B <B 5# ), transitive binary relation.
It is well known that each strict partial order can be written as an intersection of linear

orders. Thedimension of a strict partial order is the smallest numberk such that the
strict partial order is the intersection ofk many linear orders. Dimension theory is a
thriving research domain, for instance Trotter (1992) provides a detailed analysis. In
addition to their use in combinatorics and operations research, strict partial orders are
also studied in much detail in the mathematical social sciences. For instance, Falmagne
(1997) and others develop stochastic processes on (strict) partial orders to study the
evolution of preferences over time. Regenwetter et al. (1999) successfully analyze a
national election panel with two time points using strict weak orders. There is also
continued interest in (strict) partial orders in economic theory (see, Duggan (1999) for a
recent example).

3 . A general concept of majority rule

By covering all binary relations, we are able to derive the existence or nonexistence of
majority rule transitive social welfare orders even when many members of a population

5We will not go into the detailed semantic distinctions between strict and weak individual preference, or
between indifference and incomparability, because these distinctions do not affect majority rule outcomes.
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have cyclic (individual) preferences. In other words, we allow for the possibility that
society may be ‘rational’ even when many individuals are not.

As already pointed out, majority rule is usually defined in terms of hypothetical
pairwise competitions of each candidate against each of the others. In contrast to the
conventional definition, virtually no social choice procedure explicitly requires or
records pairwise comparisons or complete rankings. Therefore, following the same logic
as Regenwetter and Grofman (1998a,b), we will redefine majority rule in terms of
different primitives: the distribution of (possibly unobservable) utilities or preferences in
the population at large. Indeed, a problem neglected by many empirical analyses of
voting and social choice in political science is that ofstatistical identifiability. One of
our priorities here is to define majority rule in such a way that we can treat the problem
of finding a majority winner in a manner general enough to be compatible with a
statistical sampling and inference framework. In the empirical companion paper, we
demonstrate how such inferences can crucially depend on the underlying model
specifications. Furthermore, a separate line of work (Regenwetter et al., 2002a; Tsetlin
and Regenwetter, 2002) tackles the statistical issues raised by the sampling and
inference framework.

In majority rule, what really matters is whether C is preferred to D more often than D
is preferred to C, or vice versa. Motivated by this observation, Regenwetter and
Grofman (1998a,b) study so-called net preference probabilities for linear orders, which
we now formally define for arbitrary binary preference relations. Similar deterministic
concepts are discussed in Feld and Grofman (1986), Gaertner and Heinecke (1978), and
Saari (1995).

Definition 1. A probability distribution on a collection@ of binary relations is a
21mappingP:@ → [0, 1] whereB∞P(B) ando P(B)5 1. Writing, as before,B 5B[@

h(b, a)uaBbj for the reverse ofB, and given a probability distributionP on a collection@
@of binary relations, thenet preference probability (on@) of B [@, NP (B), is given by

21 21P(B)2P(B ) if B [@,@NP (B)5HP(B) otherwise.

@The mappingNP :@ → [21, 1] is a net ( preference) probability distribution. The
binary net preference probability of (the preference of)a over b is

@ @NP 5O NP (B). (1)ab
B[@
aBb

(The empty sum is assumed to be equal to zero.)

In order to be able to state our results succinctly for many different classes of relations at
once, we will use the following convention (mathematical ‘trick’).

Definition 2. Consider any probability distributionP on a collection@ of binary
@relations on# and the corresponding net probability distributionNP defined in

21Definition 1. Writing AS(D)5D 2 (D >D ) for the asymmetric part of a binary
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relationD, define the net probability distributionNP (without the superscript) on the set
of all asymmetric binary relations on# as follows: for any asymmetric binary relation

2B # # (not necessarily in@)

@NP(B)5 O NP (D), (2)
D[@

B5AS(D )

where an empty sum is set to be zero. The correspondingbinary net preference
probability NP of (the preference of)a over b is given byab

NP 5O NP(B). (3)ab
B[@
aBb

@Notice that with this definitionNP 5NP . In other words, (1) we embed theab ab

collection of any linear orders, strict weak orders, semiorders, interval orders, strict
partial orders naturally in the collection of all asymmetric binary relations, and (2) we
collapse all binary relations into their asymmetric part because relationships of the form
aBa are not relevant for binary net preference probabilities, and relationships of the form
aBbBa cancel out with themselves in the binary net preference probabilities. In
particular, whenever we refer to a probability distribution on binary relations, we can,
without loss of generality for majority rule outcomes, assume that the probabilities of

21symmetric relations (i.e. relationsB such thatB 5B) or reflexive relations (i.e.
relationsB such thatI #B) are zero, since we can project those relations down to their

6asymmetric parts. This is the convention being used whenever we leave out the
@superscript@ from NP . Some authors distinguish ‘aBb andbBa’ (often referred to as

‘indifference’ betweena and b) from ‘neither aBb nor bBa’ (often referred to as
‘incomparability’ of a and b). We do not go into these issues here, because they are

7inconsequential to the analysis of majority preferences.
We now proceed to provide a general definition of majority rule based on a set@ of

arbitrary binary preference relations. (In order to be able to keep track of particular
cases, we state the definition with the superscript.) Grandmont (1978) develops
somewhat related concepts.

6For instance, the asymmetric part of a symmetric relation is the empty set, i.e. the strict weak order
representing complete indifference between the choice alternatives. More interestingly, the asymmetric part of
the (reflexive) weak orderh(a, a), (a, b), (b, b), (b, c), (c, c), (a, c)j on the setha, b, cj is the strict weak order
h(a, b), (b, c), (a, c)j on the setha, b, cj.

7Suppose that 2/3 of the population has the weak orderh(a, a), (b, b), (c, c), (a, b), (a, c), (b, c), (c, b)j and the
remaining 1/3 of the population has the weak preference orderh(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)j. Using
Definition 2, we will treat that situation as though 2/3 of the population had the strict weak order preference
h(a, b), (a, c)j and the remaining 1/3 the strict weak order preferenceh(b, c), (c, a), (b, a)j. So, for instance,
‘bBc andcBb’ is replaced by ‘neitherbBc nor cBb’ in the preference relation held by 2/3 of the population.
The majority preference relation, with the indifference relationships excluded, ish(a, b), (b, c), (a, c)j, which,
we believe, is also the only reasonable definition of the majority relation for the original distribution (with the
indifferences included). In other words, the indifference relationships cancel out in majority rule calculations.
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Definition 3. Given a probability distributionP on a set@ of binary relations over a
@finite set# and given the corresponding net preference probability distributionNP ,

definemajority rule social welfare relations K and s through,;c, d [#,
@cKd⇔NP $ 0, (4)cd

@c s d⇔NP .0. (5)cd

We say thatc has aweak majority over d (including the possibility of a tie) whenever
cKd. We also say thatc has astrict majority over d (excluding the possibility of a tie)
wheneverc s d.

In words,a has a strict majority overb if a is preferred tob strictly more often (or
with more total probability mass) thanb is preferred toa.

Some notation for various individual preference relations is in order. Suppose for a
moment that# 5 ha, b, cj. We write

a
b
c

for the binary relationh(a, b), (a, c), (b, c)j, a linear order. We write

a
b c

for the binary relationh(a, b), (a, c)j, a strict weak order in whichb andc are tied and
both are dominated bya. Similarly, we write

b c
a

for the binary relationh(b, a), (c, a)j, a strict weak order in whichb andc are tied and
both dominatea. The symbol

a
b

stands for the binary relationh(a, b)j, a strict partial order (which is also an interval
order, and, in fact a semiorder) wherea andc are tied, and alsoc andb are tied, whilea
is strictly preferred tob. The symbol

a
s

c b

stands for a (forward, clockwise) cycleh(a, b), (b, c), (c, a)j. The symbol

a
. b
c

denotes the nontransitive binary relation (read clockwise)h(a, b), (b, c)j. Finally, abc
denotes the state of total indifference between the three choice alternatives, i.e. the
empty relation5. Up to relabeling of the choice alternatives, the above six relations are
all possible asymmetric binary relations on three choice alternatives, which makes a total
of 27 different relations.
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Because the conditions involved in the study of social orders, namely transitivity and
negative transitivity, are conditions on triples, we now investigate various properties for
triples of choice alternatives. Note that every strict partial order on three choice
alternatives is in fact also a semiorder and an interval order. There are 19 different strict
partial orders on three choice alternatives, 13 of which are strict weak orders, of which
in turn six are linear orders. Notice also that we always haveNP(abc)5 0. Thus, going
from the most general to the most specific binary relations, the net preference probability
distribution is positive on at most 13 binary relations, nine semiorders, six strict weak
orders, three linear orders.

@Definition 4. Given a net preference probability distributionNP (associated with some
probability distributionP) on a set@ of binary relations over a finite set#, if u#u$3 and
ha, b, cj,#, then themarginal net preference probabilities over ha, b, cj are defined as

2follows: for B9# ha, b, cj

@ @NP (B9)5 O NP (B).
B[@

2B>ha,b,cj 5B 9

The next theorem and its corollaries show how the general case of majority rule tallies
on binary relations, strict partial orders, semiorders, interval orders and strict weak
orders can be translated into equivalent majority rule tallies on linear orders. We use the
fact that, for any strict partial orderB over a set# and for any triplehx, y, zj# #, the

2binary relationB > hx, y, zj is a semiorder. We also continue to use the convention (of
Definition 2) that net probabilitiesNP(B) are defined only on asymmetric binary
relationsB.

Theorem 1. Let NP be a net probability distribution (associated with some probability
Pdistribution P) on the set of all asymmetric binary relations over #. Let NP be a net

Pprobability distribution (associated with some probability distribution P ) on the set P
of all linear orders over # and let # 9# # with u# 9u5 3. Then the identity

PNP 5NP , ;x, y [# 9, x ± y, (6)xy xy

holds if and only if

a a
PNP b 5NP bS D S D

c c
a ba a b a b . c1 1/2 NPS D1NPS D1NPS D1NPS D2NP 2NP . aS S D S DDb c c b c b c

a a
. b s1NP 1NP , (7)S D S D
c c b

for all relabelings ha, b, cj5# 9. Suppose that (7) holds for all three-element subsets
P# 9# #. Then, K as defined in Definition 3 agrees for NP and NP . The same holds for

s .
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The proof is provided in Appendix A.
Obvious special cases occur when individual preferences are all strict partial orders

(semiorders, interval orders) or all strict weak orders. We present the cases for strict
partial orders (Corollary 1) and strict weak orders (Corollary 2).

32Corollary 1. Let NP be a net probability distribution (associated with some
32probability distribution P ) on the set 32 of all strict partial orders over # and let

P PNP be a net probability distribution (associated with some probability distribution P )
on the set P of all linear orders over #. Let # 9# # with u# 9u5 3. Then the identity

P 32NP 5NP , ;x, y [# 9, x ± y, (8)xy xy

holds if and only if, for all relabelings ha, b, cj5# 9,

a a a aP 32 32 32 32 32a b bS S D S D S D S DDNP b 5NP b 1 1/2 NP 1NP 1NP 1NP .S D S D b c c b cc c
(9)

Suppose that (9) holds for all three element subsets # 9# #. Then, K as defined in
P 32Definition 3 agrees for NP and NP . The same holds for s .

A parallel corollary holds with32 replaced by the set02 of strict weak orders on#.

02Corollary 2. Let NP be a net probability distribution (associated with some
02probability distribution P ) on the set 02 of all strict weak orders over # and let

P PNP be a net probability distribution (associated with some probability distribution P )
on the set P of all linear orders over #. Let # 9# # with u# 9u5 3. Then the identity

P 02NP 5NP ;x, y [# 9, x ± y, (10)xy xy

holds if and only if, for all relabelings ha, b, cj5# 9,

a a aP 02 02 02 a bS S D S DDNP b 5NP b 1 1/2 NP 1NP . (11)S D S D b c cc c

Suppose that (11) holds for all three element subsets # 9# #. Then, K as defined in
P 02Definition 3 agrees for NP and NP . The same holds for s .

The proofs of the two corollaries are straightforward.

4 . Majority rule based on utility functions or random utility representations

In this section we move from preference relations to utility functions. We first discuss
the relationship between preference representations and utility representations, both
deterministic and probabilistic. Then we define a general concept of majority rule in
terms of utility functions and random utility representations. We subsequently show how
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majority rule defined in terms of preference representations relates to majority rule
defined in terms of utility representations.

Most mathematical representations ofutility rely on real-valued functions that map
objects into their utility values. A very general conceptual framework to represent and
quantify the variability of utilities is provided by random utility theory. Here, the utility
of an object is (the value of) a random variable (or a random vector). Just as preference

nrelations are in close correspondence with utility functions from# into R (for somen),
probability distributions over preference relations are in close correspondence with
random utilities. Just as probability distributions over preference relations generalize and
include deterministic preference relations, so do random utilities generalize and include
real-valued deterministic utility functions. Note that we make no assumptions about
where the randomness comes from. Probabilities may capture random error, random
sampling, probabilistic mechanisms inside the decision-maker’s head, or they may
simply quantify the ‘proportion’ of the population which satisfies some property. In
particular, we require no independence assumptions.

Since people interact and communicate we do not impose the impartial culture
(uniform distribution) assumption but instead allow interindividual preferences to be
interdependent and/or systematically biased in the following sense: in a probability
distribution over preference relations, interdependencies can simply be quantified
through setting the probabilities of certain preference orders very high or very low; in
the random utility framework, the interdependent nature of utilities is captured and
quantified through the joint distribution of the utility random variables. We also make no
assumptions about that joint distribution. We first review deterministic representations
and then discuss random utility representations.

There is a close relationship between preference orders and real valued utility
functions. This well-known relationship (in the deterministic realm) has been spelled out
in representation theorems of the following kind (for references, see for instance,
Fishburn, 1985; Krantz et al., 1971; Roberts, 1979). (Note that these formulations hold
only for finite #. The infinite case is more complex.)

Theorem 2. Let B be a binary relation on a finite set #. B is a strict weak order if and
only if it has a real representation u:# →R of the following form:

aBb⇔u(a). u(b).

If B is a linear order, then it has the above representation, but the converse holds only if
u is a one-to-one mapping. B is a semiorder if and only if it has a real representation
u:# →R of the following form:

aBb⇔u(a). u(b)1e,

where e is a fixed (utility) threshold. B is an interval order if and only if it has a real
representation l, u:# →R, with l(x), u(x) ( for all x), of the following form:

aBb⇔l(a). u(b).

In the interval order representation, the utility functions u and l can be interpreted as
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upper and lower utility, respectively, and thus the function (u 2 l) can be interpreted as
an object-dependent utility threshold.

We now move on to variable preferences and utilities. There is no particular reason why
individual preference orders should not vary and why the utility of a commodity should
not differ for different observers. A natural and general way to account for and quantify
variability is through probability measures. We can simply introduce a probability
distribution over binary preference relations of a given type, as we have seen already.
Alternatively, we can define the utility of an object to be a random variable. (For ease of
reading, random variables will be written in boldface.)

Definition 5. A random utility representation on a finite set# of choice alternatives is a
collection of jointly distributed real valued random variablesU 5 (U )i,c i51, . . . ,k ;c[#

(with a finite k) on some sample space with probability measureP. Given a measurable
u# usetX #R , we writeP(U [X) for the probability that the joint utility takes a value in

X.
We will always use the same symbolP for the probability measure on the sample

space underlying a random utility representation, since this does not lead to any
ambiguities. For instance, we can interpret the probabilityP(U [X) as the proportion of
people in the population who give the candidates joint utilities inX. In particular, if

#X 5 h(x ) [R ux 5 x ; ;d, e [# j, and k 5 1, thenP(U [X) can for instance bec c[# d e

interpreted as the proportion of voters who are completely indifferent between all
candidates, in the sense that they assign equal utilities to all of them. Another
interpretation, in a sampling framework, would be thatP(U [X) (with the above choice
of X) is the probability that a randomly selected voter is completely indifferent between
all candidates.

In order to situate our approach, several remarks are in order. See Fishburn (1998) for an
excellent overview of the related literature.

1. Much traditional research in random utility modeling (Ben-Akiva and Lerman, 1985;
McFadden, 1991, 1998; Thurstone, 1927a,b) places all randomness in an error term
by assuming the following form:

U 5U 1E,

whereU is a real vector (interpreted as thetrue utility of the objects in#) andE is a
family of jointly distributed random variables (interpreted as a vector of random
errors orexogenous shocks). Furthermore, random utility models often assume that
the mean ofE is zero, and/or thatE belongs to a particular parametric family,
typically either the multivariate normal (Thurstone, 1927a,b) or the multivariate
extreme value family (Joe, 1997; McFadden, 1998). While this scenario is a special
case of our framework, we will generally not make any assumptions about the joint
distribution of the familyU. Furthermore, we emphasize that randomness has many
substantive interpretations, including error only as a special case. In fact, for the
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study of social choice, the interpretation of random utility astrue value plus noise is
not very useful, interesting or realistic. The purpose of social choice theory is not to
eliminate random error, but rather to aggregate truly variable preferences via a social
welfare function.

2. The research on nonparametric random utility models is quite extensive and has
focused mainly on the characterization problems of probabilistic binary choice
(Fishburn, 1992; Koppen, 1995; Marley, 1991; Marschak, 1960; Suck, 1992, 1995)

´ ´and of probabilistic multiple choice (Barbera, 1979; Barbera and Pattanaik, 1986;
Falmagne, 1978). The interpretation of our familyU of jointly distributed utility
random variables is simply that utilities of objects vary and co-vary. The distribution
of utility values together with their interdependencies is formally captured by the
joint distribution of the relevant random variables.

3. As far as probabilistic (preference) relations are concerned, there also exists a
literature on parametric models here, for example the work by Critchlow et al. (1991,
1993), Mallows (1957) and Marley (1991).

In sum, we argue that variable preferences can be represented appropriately by a
probability distribution over a set of preference relations and variable utilities can be
represented appropriately through jointly distributed random variables. The relationship
between these two frameworks is reasonably well understood. For instance, Block and
Marschak (1960) showed that most families of jointly distributed random variables
induce a probability distribution over linear orders (i.e. rankings without ties), and that,
conversely, each probability distribution over linear orders can be associated with a
(highly nonunique) family of jointly distributed utility random variables. In other words,
it is equivalent, for instance, to assume that a randomly sampled observer has a strict
linear order preference over all choice alternatives or to assume that s /he assigns utilities
to objects according to a joint outcome of a family of random variables (satisfying

´certain properties). Recent developments in mathematical psychology (Niederee and
Heyer, 1997; Regenwetter, 1996, 1997; Regenwetter and Marley, 2001; Suck, 1995)
have extended this result to arbitrary relations, including the special cases where the
individual preferences are transitive binary relations, strict weak orders (i.e. rankings
with possible ties), semiorders (Luce, 1956, 1959)—which capture thresholds of utility
discrimination—and interval orders (Fishburn, 1970, 1985)—which are a generalization
of semiorders to the case with variable thresholds.

The most general framework for discussing random utility representations is dis-
tribution-free in that it makes no assumptions about particular parametric families for the
underlying distributions. The following theorem summarizes various known results
concerning the intimate link between (distribution free) random utilities and (distribution
free) probabilistic preference relations. (Detailed citations to the original papers are
provided after the theorem statement.) This theorem, as well as the two theorems that
follow it, will allow us to have a unified definition of majority rule that applies to
(probabilistic) preference representations and (random) utility representations simul-
taneously.

Theorem 3. A family of jointly distributed real valued utility random variables (U )c c[#

satisfies the following properties.
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Random utility representations of linear orders: if noncoincidence holds, that is, if
P(U 5U )5 0, ;c, d [# then P induces a probability distribution p∞P(p) on thec d

set P of linear orders over # through, for any linear order p 5 c c . . . c , (c is1 2 N 1

best, . . . , c is worst)N

P(p)5P(U .U . . . . .U ). (12)c1 c2 cN

Random utility representations of weak orders: regardless of the joint distribution of
U, P induces a probability distribution B∞P(B) on the set 02 of strict weak orders
over # throug h

P(B)5P > (U .U )> > (U #U ) . (13)a b c dS D2(a,b)[B (c,d )[# 2B

Random utility representations of semiorders: regardless of the joint distribution of
U, P induces a probability distribution B∞P(B) on the set 62 of semiorders over #

11through, given a threshold e [R ,

P(B)5P > (U .U 1e)> > (U 2U #e) . (14)a b c dS D2(a,b)[B (c,d )[# 2B

Random utility representations of interval orders: consider U 5 (U ) (upperc c[#

utility), L 5 (L ) (lower utility), jointly distributed, and such that P(L #U )5 1.c c[#

Then P induces a probability distribution B∞P(B) on the set (2 of interval orders
over # through,

P(B)5P > (L .U )> > (L #U ) . (15)a b c dS D2(a,b)[B (c,d )[# 2B

Conversely, each probability distribution on linear orders, strict weak orders, semior-
ders, or interval orders over # can be represented in the above fashion (nonuniquely)
by a joint distribution of random variables.

The random utility representation of linear orders is the classical result of Block and
Marschak (1960) and has been used, e.g. by Falmagne (1978). The generalizations to
strict weak orders and semiorders were pointed out by Regenwetter (1996), and the
interval order case by Suck (1995) and Regenwetter (1997). Furthermore, Heyer and

´ ´Niederee (1989, 1992), Niederee and Heyer (1997), Regenwetter (1996), and Regenwet-
ter and Marley (2001) provide general abstract results including binary relations as very
special cases. We now add another pair of random utility representation results, which, to
our knowledge, have not been previously stated in the literature.

Theorem 4. Let 32(k) be the collection of all strict partial orders of dimension # k
over # (with k finite). Let U 5 (U ) be a family of jointly distributedi,c i51, . . . ,k ;c[#

random variables, and let P denote the set of all linear orders over #. For any strict
partial order B [32(k) we write

k
k k

P (B)5 (p ,p , . . . ,p )[P uB 5 > p .H J1 2 k m
m51



418 M. Regenwetter et al. / Mathematical Social Sciences 43 (2002) 405–428

Then U induces a probability distribution B∞P(B) over @ through

k

P(B)5P < > > (U .U ) (16)i,c i,dS Dk i51 (c,d )[p(p ,p , . . . ,p )[P (B ) i1 2 k

if and only if noncoincidence holds on each component (or dimension) i, that is,

P(U 5U )5 0i,c i,d

2for i 5 1, . . . , k, for (c, d)[# 2 I.

The proof is provided in Appendix A. As the next theorem shows, the converse of the
above theorem also holds, that is, given a probability distribution over a family of strict
partial orders of dimension# k, we can construct a family of jointly distributed random
variables such that (16) is true.

32 (k)Theorem 5. Consider a probability space of the form k32(k), 2 , Pl. Then, for any
measurable space kV, sl, the following two statements are equivalent.

1. There exists a probability measure P on kV, sl, and a family U 5 (U )i,c i51, . . . ,k ;c[#

of jointly distributed random variables on kV, sl such that

k

P < > > (U .U ) 5P(B). (17)i,c i,dS Dk i51 (c,d )[p(p ,p , . . . ,p )[P (B ) i1 2 k

2. There are at least as many disjoint nonempty events in s as there are atoms in
32 (k) 8k32(k), 2 , Pl.

The proof is provided in Appendix A.
We now move on to define pairwise net probabilities for (random) utilities. We start

with the situation where we believe that each respondent evaluates the alternatives
according tok many different dimensions simultaneously by taking the intersection ofk
linear orders. (Whilek is the same for all observers, the actual dimensions may differ.)
In other words, we first consider a random utility version of net preference probabilities
based on strict partial orders of dimension#k.

Definition 6. Given jointly distributed random variables (U ) , the k-i,c i51, . . . ,k ;c[#

dimensional binary net (preference) probability ofa over b is given by

k k

NP 5P > [U .U ] 2P > [U .U ] . (18)S D S Dab i,a i,b i,b i,a
i51 i51

As the following observation spells out in detail, Definition 1 and Definition 6 yield
identical binary net probabilities when the conditions in Theorems 4 and 5 (and thus the
resulting relationships) apply.

8An atom hBj is a single element event which has positive probability.
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32 (k)Observation 1. Let P be a probability distribution over32(k) and letNP be theab

pairwise net preference probabilities resulting from Eq. (1) of Definition 1 for thatP and
for all choices ofa ± b in #. Consider a family (U ) of jointly distributedi,c i51, . . . ,k ;c[#

random variables, such that the equalities (16) or (17) hold (with the random variables
being noncoincident on each dimension). Then, for all choices ofa ± b in #, NP ofab

32 (k)Eq. (18) in Definition 6 is identical toNP of Eq. (1) in Definition 1. Whenk 5 1ab

and we do not assume noncoincidence, then we get the case when only strict weak
orders have nonzero probabilities. Furthermore, the special case ofk 51, and where
noncoincidence holds, yields that only linear orders have nonzero probabilities.

Further special cases of interest are when only semiorders or interval orders (in
32(k)) have nonzero probabilities.

Besides the construction in (18), there is an alternative route for interval orders and
semiorders, based on the representation in Theorem 3, which again includes the strict
weak orders and linear orders as special cases. Using the random utility representation
(15) of interval orders, we can define the net preference probability ofa over b in
random utility terms as follows.

Definition 7. Given (U ) , (L ) , jointly distributed random variables with thec c[! c c[!

property thatP(U $L )51, thebinary net probability (derived fromU, L) of a over bc c

is given by

NP 5P(L .U )2P(L .U ). (19)ab a b b a

Observation 2. Let P be a probability distribution over the set(2 of all interval orders
(2on # and letNP be the pairwise net preference probabilities resulting from Eq. (1) ofab

Definition 1 for thatP and for all choices ofa ± b in #.
Let (U ) , (L ) be a family of jointly distributed random variables with thec c[! c c[!

property thatP(U $L )5 1 and such that Eq. (15) holds. ThenNP of Eq. (19) inc c ab
(2Definition 7 is identical toNP of Eq. (1) in Definition 1 for all choices ofa ± b in #.ab

Consider the special case whereP is a probability distribution over the set62 of all
semiorders, and whereL 5U 2e . 0 (everywhere and;c), with e [R a positivec c

constant, i.e. (19) becomes

NP 5P(U .U 1e)2P(U .U 1e). (20)ab a b b a

If the relation betweenP and P given in Eq. (14) holds, thenNP of Eq. (20) isab
62identical toNP of Eq. (1) in Definition 1 for all choices ofa ± b in #.ab

Consider the next special case whereP is a probability distribution over the set02 of
all strict weak orders, and wheree 5 0 in (20), i.e.U 5L in (19). Then Eq. (20)c c

becomes

NP 5P(U .U )2P(U .U ). (21)ab a b b a

If the relation betweenP and P given in Eq. (13) holds, thenNP of Eq. (21) isab
02identical toNP of Eq. (1) in Definition 1 for all choices ofa ± b in #.ab

Finally, consider the case whereP is a probability distribution over the setP of all
linear orders, and where noncoincidence is satisfied, that is,P(U 5U )5 0 (;c ± d). Ifc d
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the relation betweenP andP given in Eq. (12) holds, thenNP of Eq. (21) is identicalab
Pto NP of Eq. (1) in Definition 1 for all choices ofa ± b in #.ab

Now that we have defined and discussed binary net preference probabilities in terms of
random utilities, we can define majority rule in terms of random utilities as well, in a
way that is consistent with the previous definition in terms of probabilities on preference
relations.

Definition 39. Given binary net probabilitiesNP (derived from a family of jointly
distributed random variables), definemajority rule social welfare relations K and s
through,;c, d [#

cKd⇔NP $0, (22)cd

cKd⇔NP .0. (23)cd

We say thatc has aweak majority over d (including the possibility of a tie) whenever
cKd. We also say thatc has astrict majority over d (excluding the possibility of a tie)
wheneverc s d.

Whenever Observation 1 or Observation 2 applies, we can see that Definition 39 is the
random utility counterpart of Definition 3 for probabilistic preferences and the two
definitions yield identical social welfare relations. This reconciles the concept of net
preference probability distributions with the general framework of random utility
representations. Note that the very way we derive pairwise majorities from random
utilities implicitly chooses a family of binary relations for the representation of
preferences. We have covered the most natural cases, which correspond to linear, strict
weak, semi-, interval, and strict partial orders, respectively. As a result of Observations 1
and 2 we can, without much loss of generality, from now on state our results only in
terms of probabilities over (asymmetric) binary relations.

Remark. Note that the interval order and semiorder net preference probabilities in (19)
and (20) cannot be obtained by simple substitution in (18) and, in that sense, are not

]
special cases of (18). Rather, the concept of a ( possibly variable) threshold is separate

9from the concept of dimension of a strict partial order. In other words, there exist two
fundamentally different random utility representations that yield the identical probability
distribution over semiorders or interval orders (and consequently the same net
preference probability distribution and majority rule social welfare relations), depend-
ing on whether we view a semiorder or interval order (of dimension .1) as a ranking
with a threshold of discrimination or as an intersection of two or more rankings (on
separate dimensions). While this may appear mathematically awkward, it is psycho-
logically intuitive, because the two random utility representations have fundamentally

9Incidentally, Bogart et al. (1976) have shown that a finite interval order can have arbitrarily high dimension,
whereas Rabinovitch (1978) has shown that finite semiorders have dimension#3, a result which was
extended to arbitrary semiorders by Fishburn (1985) and Duggan (1999).
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different interpretations as psychological processes: in the first case, the respondent is
unable to perfectly discriminate between every pair of alternatives, in the second case,
the respondent is able to discriminate perfectly between every pair of alternatives, and

10does that even on two (or more) distinct dimensions.

Thus, we can use random utility formulations and probabilistic preference formulations
more or less interchangeably as long as we specify which set of binary relations we are
referring to. Because of the above remark, we may, however, in some circumstance need
to keep track of how we translate certain strict partial orders into real representations and
vice versa.

5 . Generalizing the impartial culture and related cultures of indifference

The impartial culture is usually defined as a uniform distribution over all linear orders
(DeMeyer and Plott, 1970; Gehrlein and Fishburn, 1976) and occasionally defined as a
uniform distribution over weak orders (Jones et al., 1995; Van Deemen, 1999). The most
canonical generalization of the impartial culture to an arbitrary set of binary relations is
therefore a uniform distribution over that set of relations. If all preference relations have

21equal probability, and ifB [5 ⇒ B [5, then the probability thataBb is equal to the
probability thatbBa, and thus the net probabilityNP is zero for all distincta, b [#.ab

The impartial culture is therefore a special case of a so-calledculture of indifference
(Tsetlin et al., 2002), by which we mean a culture in which all pairwise majority

11relationships are complete ties.
As the following simple observation spells out, a culture of indifference (i.e. a

completely tied social welfare order) requires very strong but also simple conditions.

Observation 3.

(i) Given a net probability distributionNP (associated with some probabilityP) over
asymmetric binary relations on any finite set#, the majority social welfare order is a
total tie if and only if;a, b, c distinct in #

a a aa b bF S D S D S D S DGNP b 11/2 NP 1NP 1NP 1NPS D b c c b cc
(24)aa ab

. c s5 1/2 NP 1NP 2NP . b 2NP .. a S DF S D S DG S D
cb c c b

10This double interpretation has been there all along, of course, it has not been caused by the probabilistic
framework.

11The typical use of the impartial and other cultures is to study social welfare relations in random samples
drawn from such cultures. Of course, the majority preference relation in a random sample from the impartial
culture need not be a complete tie.
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32 32(ii) Given a net probability distributionNP (associated with some probabilityP )
over strict partial orders on any finite set#, the majority social welfare order is a
total tie if and only if;a, b, c distinct in #

a a a32 32 32 32 32a b bF S D S D S D S DGNP b 521/2 NP 1NP 1NP 1NP . (25)S D b c c b cc
02 02(iii)Given a net probability distributionNP (associated with some probabilityP )

over strict weak orders on any finite set#, the majority social welfare order is a total
tie if and only if ;m, n, k distinct in #

m m m n02 02 02n S DNP 5 2 1/2FNP 1NP S DG. (26)S D n k kk

In particular, the following property has to consequently hold for any choice of
distinct a, b, c:

a b c
02 02 02NP b 1NP c 1NP a 5 0.S D S D S D

c a b

P P(iv) Given a net probability distributionNP (associated with some probabilityP ) over
linear order preferences, the majority social welfare order is a total tie if and only if
;m, n, k distinct in #

m
P nNP 5 0.S D

k

6 . Conclusions

By defining majority social welfare orders in terms of the theoretical primitives that
are common to virtually all models of choice, rating or rankings, we provide a common
ground for the theoretical and empirical analysis of majority rule within a panoply of
basic and applied research paradigms. In an empirical companion paper (Regenwetter et
al., 2002b) we show that the reconstruction of majority and other social welfare relations
from ballot or survey data can critically depend on the underlying model of preferences
or utilities. This suggests that anyone who analyses ballot or survey data needs to worry
about the sensitivity or robustness of the results under variations or violations of the
implicit or explicit model of preferences and utilities used in the analysis. Another strand
of work also investigates the statistical issues in a sampling and inference framework
(Tsetlin and Regenwetter, 2002).
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A ppendix A

Proof of Theorem 1. Let

a a b
x 5NP b x 5NP c x 5NP aS D S D S D1 2 3

c b c

a a b bx 5NPS D x 5NPS D x 5NPS D4 5 6b c c a c

a b ax 5NPS D x 5NPS D x 5NPS D7 8 9b c c

a
sx 5NPS D10

c b

b a a
x 5NP . a x 5NP . b x 5NP . cS D S D S D11 12 13

c c b

a a b
P P Py 5NP b y 5NP c y 5NP a .S D S D S D1 2 3

c b c

Now suppose that (6) holds, i.e.

Py 1 y 2 y 5NP 5NP 5 x 1 x 2 x 1 x 2 x 1 x 1 x 2 x 1 x ,1 2 3 ab ab 1 2 3 4 6 7 10 11 12

Py 2 y 1 y 5NP 5NP 5 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x ,1 2 3 bc bc 1 2 3 5 6 8 10 12 13

P
2 y 2 y 2 y 5NP 5NP 5 2 x 2 x 2 x 2 x 2 x 2 x 1 x 2 x 2 x .1 2 3 ca ca 1 2 3 4 5 9 10 11 13

It follows that

1
]y 5 x 1 (x 1 x 1 x 1 x 2 x 2 x )1 x 1 x ,1 1 4 5 7 8 11 13 10 122

1
]y 5 x 1 (x 2 x 2 x 1 x 1 x 2 x )2 x 1 x ,2 2 4 6 8 9 11 12 10 132
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1
]y 5 x 1 (x 1 x 2 x 1 x 2 x 1 x )2 x 1 x ,3 3 5 6 7 9 12 13 10 112

and thus (7) holds. Conversely, suppose that (7) holds. Then,

a a c
P P P Pc aNP 5NP b 1NP 1NP 5 y 1 y 2 yS D S D S Dab 1 2 3

c b b
a a c a aa cc a S D S D5NP b 1NP 1NP 1NP 1NPS D1NPS D S D S D b c bbc b b

aa b
s1NP . b 2NP 1NP. aS D S D S D

c c c b
5NP ,ab

i.e. (6) holds. The rest of the theorem is immediate.h

k kProof of Theorem 4. The setsP (B) form a partition ofP when we letB vary over all
k kof 32(k). Thus, forB ±B9 we haveP (B)>P (B9)5 5 and the corresponding events

entering the right-hand side of (16) are disjoint for suchB andB9. It is also evident that
all these events are well defined. We only need to check whether the probabilities sum to
1. Before we proceed, we introduce the following abbreviating notation:

k

C 5 < > > (U .U ),i,c i,d
k i51 (c,d )[p(p ,p , . . . ,p )[P (B ) i1 2 k

k

D5> > (U ±U ),i,a i,b
2i51 (a,b)[# 2I

whereI denotes the identity, as noted before. We now prove thatC 5D from which the
theorem follows.

(i) To prove that C #D, consider an arbitrary sample pointv [C. Then
k k

'(p , . . . ,p )[P and B [32(k) such that B 5 > p and such that;i,1 k i51 i

;(c, d)[pi

U (v).U (v).i,c i,d

2Therefore,;i, ;(a, b)[# 2 I we have

U (v)±U (v),i,a i,b

and thusv [D.
(ii) To prove that D#C, consider an arbitrary sample pointv [D. Then, ;i,

2
;(a, b)[# 2 I we have

U (v)±U (v).i,a i,b

Now, for eachi define
2

p 5 h(c, d)[# uU (v).U (v)j.i i,c i,d
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kClearly, eachp is a linear order. Finally, the relationB 5 > p is a strict partiali i51 i

order of dimension at mostk. Since, furthermore,;i, ;(c, d)[p it is the case thati

U (v).U (v),i,c i,d

we must conclude thatv [C.
Therefore, in order for the probabilities to sum to one, we verify that the

following equivalent conditio ns hold

O P(B)51⇔ P(C )5 1
B[32 (k)

⇔ P(D)5 1
k

⇔ P > > (U ±U ) 5 1,S i,c i,d D
2i51 (c,d )[# 2I

k
⇔ P < < (U 5U ) 5 0,i,c i,dS D2i51 (c,d )[# 2I

k

⇔O O P(U 5U )50,i,c i,d
i51 c±d

2(c,d )[#

2⇔ P(U 5U )5 0, ;i [ h1, . . . ,kj,;(c, d)[# 2 I. hi,c i,d

Proof of Theorem 5. To prove that (1)⇒ (2), notice that as stated at the beginning of
k kthe proof of Theorem 4, we haveP (B)>P (B9)5 5 for B ±B9. Thus, the corre-

sponding events on the left-hand side of Eq. (17) are disjoint for suchB andB9. From
that, (2) follows immediately.

To prove (2)⇒ (1), suppose that there areq many atomshA j, . . . , hA j in k32(k),1 q
32 (k)2 , Pl. By Assumption (2) we can partitionV into O , . . . , O [s. Consider1 q

kj [ h1, . . . , qj. Then there existsp , i 51, . . . , k, such that A 5 > p . Now,i j i51 i
2

;v [O , ;(c, d)[# , ;i 51, . . . , k, choose values forU (v), U (v) in any wayj i,c i,d

such that

U (v).U (v)⇔(c, d)[p .i,c i,d i

By construction,P(O )5P(A ). It is straightforward to extend the probability measurePj j
˜ ˜to all of s : pick any probability measureP on kV, sl such thatP(O )±0, for j 5 1, . . . ,j

k and for eachX [s define

q P̃(X >O )j
]]]P(X)5O .˜j51 P(O )j

As a result of this construction,U is a well-defined family of jointly distributed random
variables on the given sample space, andU satisfies (17). h
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