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Abstract. ``Subset voting'' denotes a choice situation where one ®xed set of
choice alternatives (candidates, products) is o�ered to a group of decision
makers, each of whom is requested to pick a subset containing any number
of alternatives. In the context of subset voting we merge three choice para-
digms, ``approval voting`` from political science, the ``weak utility model''
from mathematical psychology, and ``social welfare orderings'' from social
choice theory. We use a probabilistic choice model proposed by Falmagne
and Regenwetter (1996) built upon the notion that each voter has a personal
ranking of the alternatives and chooses a subset at the top of the ranking.
Using an extension of Sen's (1966) theorem about value restriction, we
provide necessary and su�cient conditions for this empirically testable
choice model to yield a social welfare ordering. Furthermore, we develop a
method to compute Borda scores and Condorcet winners from subset choice
probabilities. The technique is illustrated on an election of the Mathematical
Association of America (Brams, 1988).

1. Introduction

In an election there are many ways of tallying choices so as to determine one
or more election winners (Levin and Nalebu�, 1995; Lijphart and Grofman,
1984). Among them, approval voting (AV) is particularly interesting, espe-
cially in political science. Under AV each candidate that a voter approves of
scores a point1. If there are k alternatives to be elected then the k candidates
with the highest AV scores are the winners.

Soc Choice Welfare (1998) 15: 423±443

1 We use the words ``alternative'' and ``candidate'' interchangeably, and the same
holds for the terms ``subject'', ``agent'' and ``voter''.



Approval voting is a particular example of a choice paradigm that we call
subset voting (SV) or sometimes subset choices. By subset choices we mean a
voting, polling, or other choice situation, in which the participants are pre-
sented with a ®nite set C of alternatives, candidates, products, or brands, and
they are asked to choose a subset of any size containing those alternatives
that they ``approve'' of, i.e. regard as satisfactory. Although variants of AV
have been independently invented by a number of authors this method is
most closely associated with S. Brams and P. Fishburn, who have extensively
explored its properties.

Approval voting has been used e.g. by the American Statistical Associ-
ation, the Institute of Electrical and Electronics Engineers, the Mathematical
Association of America, the National Academy of Sciences, the Institute of
Management Science (now the Institute for Operations Research and
Management Science), the Society for Social Choice and Welfare, and the
United Nations. There is an extensive literature about AV (e.g. Baigent and
Xu, 1991; Brams, 1988, 1990; Brams and Fishburn, 1983, 1985, 1988, 1992;
Brams, Fishburn, and Merrill, 1988a, 1988b; Brams and Nagel, 1991; Carter,
1990; Cox, 1985; De Maio and Muzzio, 1986; Felsenthal, Maoz, and Rap-
oport, 1986, 1990; Fishburn and Little, 1988; Merrill, 1988; Merrill and
Nagel, 1987; Niemi, 1984; Nurmi, 1987; Rapoport and Felsenthal, 1990;
Saari, 1994; Saari and Van Newenhizen, 1988a, 1988b; Weber, 1995).

The main purpose of the present paper is to 1) use a simple empirically
testable descriptive model of subset choice behavior, 2) formulate social
welfare concepts in a model based framework, and 3) show how one can
estimate the optimal social choice (according to the Borda and/or Condorcet
criteria) from the SV data by using the psychological model as a measure-
ment device. Put di�erently, within the subset voting context, we integrate
axiomatic concepts from social choice theory in the Arrowian tradition
(Arrow, 1951; Heiner and Pattanaik, 1983; Murakami, 1968; Pattanaik,
1971; Sen, 1966, 1969, 1970) with descriptive probabilistic models of judg-
ment and decision making as they are encountered in mathematical psy-
chology (e.g. Luce and Suppes, 1965). While there exists a vast literature on
computer simulations and analytical results in social choice theory, the
present paper emphasizes how the social choice theoretic performance of SV
can be determined empirically for real elections.

The paper proceeds as follows. First, we introduce a simple (probabilistic)
psychological model of subset choice behavior, originally proposed by Fal-
magne and Regenwetter (1996). This size-independent model assumes that
each agent has a linear preference order on the alternatives and approves of a
subset at the top of that ranking. After summarizing the relevant known
properties of the model (c.f. Doignon and Regenwetter, 1977, Regenwetter,
Marley, and Joe, 1996) we translate some key concepts of social choice
theory, such as transitive majorities, Condorcet (majority) winner, Borda
scores and Borda winner as well as Sen's (1966) value restriction into prob-
abilistic terms appropriate for the choice model.
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For instance, Sen's (1966) value restriction is a su�cient condition for
social choice to be transitive and is restated here in probabilistic terms. In the
case of three candidates, the choice model yields a unique probability dis-
tribution on the latent preference rankings underlying the choices if and only
if our probabilistic version of Sen's value restriction holds.

However, we may have transitivity also when more than one solution
exists for the distribution of preferences underlying the size-independent
model, even though Sen's value restriction would not hold. In order to ac-
count for possible transitivities in settings where value restriction is violated,
we provide new results that generalize Sen's theorem in terms of net pref-
erence probabilities (for related concepts, see Feld and Grofman, 1986; Ga-
ertner and Heinecke, 1978). This generalization involves two observable
properties that are together necessary and su�cient for the existence of a
social welfare ordering for a given probability distribution on rankings. The
two conditions are called net value restriction and net preference majority,
respectively, and are weaker than Sen's value restriction condition.

When the size-independent model is satis®ed by a set of subset choice
data, then we can use the latent probability distributions on rankings that are
compatible with those data to check whether a transitive social welfare order
exists. The latter exists if either of the two conditions above is satis®ed.
Moreover, even when no social welfare ordering exists, the size-independent
model allows us to check for a Condorcet winner. Furthermore, we o�er a
model based analytical solution to compute Borda scores directly from the
subset choice probabilities. The estimated social welfare order and the esti-
mated ordering according to Borda scores can both be compared with the
ordering induced by the AV scores. This allows us to evaluate the perfor-
mance of AV as a social choice mechanism.

We illustrate our technique on a data set2 from an election of the
Mathematical Association of America (see Brams, 1988; Brams and Fish-
burn, 1992). On this data set we show that the conditions for the size-inde-
pendent model hold, we check for the existence of a social welfare order and/
or Condorcet candidates, and we compute the Borda scores. The estimated
social welfare order is not unique, while the ordering according to Borda
scores turns out to match the ordering derived from the AV scores. An
empirical companion paper (Regenwetter and Grofman, in press) system-
atically and successfully applies the tools of the present paper to several
election data sets from various sources.

2. A size-independent model of subset voting

Throughout the paper, a weak order is a transitive, connected binary relation,
a strict weak order is a negatively transitive, asymmetric binary relation and a

2 This was kindly provided by Prof. S. J. Brams.
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(strict) linear order is a transitive, asymmetric and weakly connected binary
relation (c.f.Roberts, 1979).

Notation. Let II denote the set of all linear orders on C � f1; 2; . . . ;Ng with
N � 3. In some cases, N is explicitly assumed to be equal to three. We denote by
X � C any subset ofC, and for any subset X ofC, we writePX for the collection
of all linear orders inP which rank the members of X ahead of all other members
of C. A glossary at the end of the paper gives an overview of the notation.

The size-independent model of subset voting of Falmagne and Regenwetter
(1996)3 assumes that the choice behavior of a voter in the population takes
the form of the joint realization of three random variables: V (as in vote), R
(as in ranking) and S (as in set size). Accordingly we write V � X ;R � p; and
S � s, respectively, for the events that a randomly drawn voter approves of
subset X � C; has latent linear preference order p 2 P; or approves of
s 2 f0; 1; . . . ;Ng many elements, respectively.

Because the subset chosen by the voter and the number of candidates
contained in their vote are observable, the realizations of the random vari-
ables V and S are observable. Since the realizations of R are, however,
unobservable, this is a latent variable, the distribution of which we would like
to at least partially characterize using the observed votes. The size-indepen-
dent model assumes that

P�V � X � � P�S � jX j� � P�R 2 PX �:
The probability that a randomly picked voter chooses the set X is the

product of the probability that s/he votes for as many alternatives as X
contains times the probability that s/he likes all candidates in X better than
all others.4

Although the product form suggests a certain degree of independence
between the latent preferences and the number of objects chosen, Regen-
wetter et al. (1996) show that the model can take into account some direc-
tionality biases, say, in a case with a single candidate from one party, and
two candidates from an opposing party. They also compare the model with
competing probabilistic models of subset choice.

In statistical terms this model has more parameters (namely N !� N ÿ 1)
than the choice probabilities have degrees of freedom (namely 2N ÿ 1). Al-
though this might suggest that the model is empirically vacuous, Falmagne
and Regenwetter (1996) give examples of empirical constraints implied by the
model. Doignon and Regenwetter (1997) show that a simple transformation
of the model-compatible choice probabilities produces a 2N ÿ N ÿ 1 di-

3 In Falmagne and Regenwetter (1996) subset voting is called approval voting. Here
we have chosen the more general term subset voting to abstract from the particular
tallying procedure.
4 Whenever we view the vote participants as being the entire sample space (endowed
with the trivial relative frequency probability measure), the above statements are
equivalent to relative frequency statements.
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mensional convex polytope in R2N
. They have characterized the resulting

approval-voting polytope for linear orders for N � 5, whereas the problem
remains unsolved for larger N . The so-called facet-de®ning inequalities that
they derive (for N � 4) all have interpretations as constraints on the prob-
abilities over the observable subset choices.

For the case of three alternatives, Doignon and Regenwetter (1997) also
derive closed form solutions for the possible distributions of R underlying V

when the size-independent model holds. Writing C�X � � P�V�X �
P�S�jX j�, when it is

well de®ned, C � C�fcg�;DE � C�fd; eg� etc., and cde for the ranking
(overfc; d; eg) in which c is best and e is worst, the following theorem
summarizes some crucial results from Doignon and Regenwetter (1997).
Note that the ratios C�X � can be directly estimated from the data.

Theorem 1. (Doignon and Regenwetter, 1997) Suppose that C � fc; d; eg.
1) Then the size-independent model is satis®ed if and only if for each element

x 2 C and for each k 2 f1; 2; 3g the quantity
Pk�x� �

X
Y�cÿfxg
jY j� kÿ1

C�fxg [ Y � ÿ
X

Z�cÿfxg
jZj� kÿ2

C�fxg [ Z� �1�

is nonnegative (where the second sum vanishes when k � 1).
2) The quantity Pk�x� is the marginal ranking probability that R ranks alter-

native x at position k (this holds also when jCj > 3).
3) Given that Pk�x� � 0 for all x and k, the possible probability distributions on

the latent rankings can be computed in closed form: Writing Pp for
P�R � p�,

Pcde

Pdec

Pecd

Pced

Pdce

Pedc

0BBBBBB@

1CCCCCCA �
C � CD� DE
C � D� DE

1
ÿCDÿ DE
ÿC ÿ DE
ÿC ÿ D

0BBBBBB@

1CCCCCCA� k

ÿ1
ÿ1
ÿ1
�1
�1
�1

0BBBBBB@

1CCCCCCA �2�

where k 2 �max�C � D;CD� DE;C � DE�;min�C � CD� DE;C � D�
DE; 1��:

4) The distribution of R is unique if and only if at least one Pk�x� is equal to
zero.

Note that the range of k is not a statistical con®dence interval but rather a
continuum of possible closed form solutions. As Falmagne and Regenwetter
(1996) show, their model naturally belongs to the class of (nonparametric)
random utility models of discrete choice (Anderson, de Palma, and Thisse,
1992; BarberaÂ and Pattanaik, 1986; Falmagne, 1978; Fishburn, 1992; Heyer
and NiedereÂ e, 1992; Koppen, 1995; Marley, 1990; Marschak, 1960;
McFadden and Richter, 1970; Suck, 1992). Before applying Theorem 1, we
introduce further concepts.
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3. Linking social choice concepts to subset voting through a probabilistic model
of preferences

3.1. Stochastic transitivity

The social choice literature says that a vote is transitive if the following
property holds. If candidate c has a majority over d and d has a majority
over e, then c has a majority over e. Unless we explicitly ask the voters to
perform paired comparisons, it is not quite clear what this should mean in
general: No binary choices are being observed in subset voting. As we shall
see, the framework of a probabilistic choice model can bridge the gap be-
tween the observable choices and the theoretical concept of transitive ma-
jorities through the intermediary of (latent) preference rankings underlying
the choices.

Why do we want transitive votes? Typically we like to construct an ag-
gregate preference relation of the voters, ideally a strict linear order or a
weak order: a social welfare ordering (Arrow, 1951; Heiner and Pattanaik,
1983; Pattanaik, 1971; Sen, 1966, 1969, 1970). Transitivity of votes is closely
related to what the psychological choice literature calls ``weak stochastic
transitivity'' and to the well known ``weak utility model'' (Luce and Suppes,
1965). This model assumes that in a binary choice paradigm each paired
comparison is a Bernoulli trial with a well de®ned probability of a choice for
either alternative. The following de®nition is from Luce and Suppes (1965).

De®nition 1. A weak utility model is a set of binary choice probabilities for
which there exists a real-valued function w over C such that

pcd � 1
2, w�c� � w�d�;

where we write pcd for the probability of a choice of c when c versus d are being
o�ered.

The weak utility model is equivalent5 to weak stochastic transitivity of the
binary choice probabilities, which we de®ne next.

De®nition 2. Weak stochastic transitivity of binary choice probabilities means
that

pcd � 1
2 & pde � 1

2 �) pce � 1
2 :

For a given probability distribution p 7!P�p� over p, we write Pcd �P
�c;d�2p P�p� for the marginal pairwise ranking probability of c to be ranked

ahead of d. Note that there exists a substantial literature trying to explain
probabilities of (observable) binary choice by probabilities of (latent and
unobserved) rankings through

pcd � Pcd : �3�

5 This uses the assumption that C is ®nite.
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Given a set of binary choice probabilities, the existence of probabilities on
rankings satisfying (3) is not at all a trivial matter and is still the object of
intense research (Block and Marschak, 1960; Campello de Souza, 1983;
Cohen and Falmagne, 1990; Dridi, 1980; Fishburn, 1990, 1992; Fishburn
and Falmagne, 1989; Gilboa, 1990; Heyer and NiedereÂ e, 1989, 1992; Kop-
pen, 1995; Marley, 1990; Marschak, 1960; McFadden and Richter, 1970;
Suck, 1992).

In the probabilistic framework it is appealing and straightforward to
de®ne an aggregate preference relation through: ``c is aggregately preferred
to d if and only if the choice probability pcd � 1

2 in the Bernoulli trial''. Such a
preference relation is transitive if and only if weak stochastic transitivity
holds. Thus, for probabilistic binary choice, the existence of a transitive
social welfare order, weak stochastic transitivity and the weak utility model
are equivalent. The function w in De®nition 1 can thus be labeled a social
welfare function.

Probabilistic subset choice models o�er an elegant way of de®ning
transitivity also for subset voting. We call a subset vote (induced by linear
orders) transitive if the underlying (theoretical) probability distribution on
the strict linear orders satis®es weak stochastic transitivity (for rankings),
de®ned as follows.

De®nition 3. A probability distribution P on P satis®es weak stochastic tran-
sitivity ( for rankings) i� the induced marginal (pairwise) ranking probabilities
satisfy

Pcd � 1
2 & Pde � 1

2 �) Pce � 1
2 :

Suppose for a moment that, for a given vote, the size-independent model
holds, and that we have reconstructed a probability distribution on the linear
orders from the data using the model. If this probability distribution is
stochastically transitive, then we can derive a social welfare ordering from it,
and call that the social welfare order of the subset vote.

Remark. It should be emphasized that the weak utility model, i.e. the concept
of weak stochastic transitivity is only ordinal, and thus that the social welfare
function w is unique only up to arbitrary monotonic transformations (Luce
and Suppes, 1965). We might like to think that the higher the margin of c
over d, the more c and d are di�erent. To be meaningful, this statement
requires a stronger model such as the ``strong utility'' model (or ``Fechnerian
model'' in psychophysics, e.g. Falmagne, 1985; Luce and Suppes, 1965). Here
the probability of choosing c over d is a monotonic function of the di�erence
in utility between c and d (alternatives with equal utility value are discrim-
inated at random, with equal probability). Such a representation implies
strong stochastic transitivity, i.e.

Pcd � 1
2 & Pde � 1

2 �) Pce � max�Pcd ;Pde�;
which is however not su�cient. The Fechnerian model is unique only up to
linear transformations, thus ratios of utilities have no meaningful interpr-
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etation. We do not consider models as strong as the Fechnerian model or the
strict utility model (also known as the Bradley-Terry-Luce model) here. The
interested reader is referred to Critchlow, Fligner, and Verducci (1991),
Falmagne (1985) or Luce and Suppes (1965).

3.2. Condorcet winners

A second important normative concept in the social choice literature is that
of the Condorcet winner, especially when there exists no social welfare order.
A Condorcet candidate (also known as a majority winner) is usually de®ned
as the candidate(s) (if they exist) who would get a majority against all other
candidates if they were to compete pairwise (Black, 1958; Condorcet, 1785;
Felsenthal et al., 1990; Young, 1986, 1988). The Condorcet winner is the
most commonly accepted normative criterion for a legitimate winner of a
social choice procedure to select a single alternative.

Again, absent data on binary comparisons, we de®ne a Condorcet winner
in terms of (latent and unobserved) probabilistic rankings.

De®nition 4. Given a probability P on P, candidate c 2 C is a Condorcet
winner i�

Pcd � 1
2 8 d 2 Cÿ fcg:

This concept of a Condorcet candidate is compatible with the idea that, if the
voters were indeed asked to do a paired comparison instead of a subset
choice, they would choose the alternative that is ranked ahead of the other in
the corresponding sampled preference order.

3.3. Value restriction

Sen's Value Restriction is a su�cient condition for the existence of a tran-
sitive social welfare ordering. It actually consists of 3 conditions on triples of
alternatives, often referred to as NW (``never worst''), NM (``never middle''),
and NB (``never best''). Assuming that each voter has a strict linear prefer-
ence order, a triple of alternatives satis®es NW i� there is one alternative
among the three that is never ranked worst. NM and NB are de®ned anal-
ogously. Sen's value restriction states that all triples satisfy either NW, NM,
or NB. The underlying intuition is that in each triple of candidates there
should be at least one about which all voters agree that s/he is not the worst
(middle, best)6.

We translate these conditions into probabilistic terms.

6 Feld and Grofman (1988, 1990, 1992) discuss some evidence of the degree to which
candidate preference rankings in actual elections satisfy value restrictedness.
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De®nition 5. Consider a probability P on p. For any given triple of alternatives,
we say that the marginal ranking probabilities induced by P on that triple
satisfy NW(c) i� the (marginal) probability for c to be ranked worst (in the
triple) is zero. When NW(c) holds, c is (almost surely) never worst. NM(c)
and NB(c) are de®ned analogously. P is (a.s.) value restricted i� in each triple
fx; y; zg � C there exists c with either NW(c), NM(c) or NB(c).

3.4. Borda winner

A fourth social choice concept is that of Borda scores (Black, 1958; Young,
1974, 1986, 1995). The Borda winner, i.e. the candidate with the highest
Borda score, is arguably the second most accepted normative criterion for
the ``best'' outcome of a social choice procedure to select a single alternative.
We rede®ne the Borda score in probabilistic terms as follows.

De®nition 6. Given a probability P on P, the Borda score B(c) of candidate c is

B�c� �
XNÿ1
k�1
�N ÿ k� � Pk�c�; �4�

where Pk�c� is the (marginal) probability that alternative c is ranked at po-
sition k. The reader may remember from Theorem 1 that Pk�c� can be com-
puted from the subset choices when the size-independent model holds. We derive
a more direct computation of B(c) later.

Alternatively, we may calculate Borda scores from binary preference
probabilities through

B�c� �
X
d 6�c

Pcd :

The two formulas are probabilistic versions of the usual de®nition, and their
equivalence is analogous to an equivalence result proven by Young (1974)
linking pairwise preferences to the more familiar point counting de®nition of
Borda scores.

De®nition 7. The Borda winners are the alternatives with the highest Borda
score.

In sum, social welfare orders and Condorcet candidates are traditionally
de®ned in terms of pairwise choices, which are observable only if the voters
perform paired comparisons. Similarly, Borda winners are de®ned in terms
of probabilistic preference rankings or pairwise preference probabilities.
Subset voting does not provide either data on paired comparisons or pref-
erence rankings. However, we can use the subset choice data to reconstruct
voter preferences through a testable choice model such as the size-indepen-
dent model. We have therefore rede®ned social welfare orders and Condorcet
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winners in terms of preference rankings (rather than choices). This reconciles
axiomatic social choice theory with empirical subset choice7.

4. A probabilistic version of Sen's theorem on value restriction

The following theorem is a variation of Sen's theorem on value restriction
(Sen, 1966, 1969, 1970), generalized to probabilistic terms.

Theorem 2. Given a probability P on P consider the relations R and P by

cRd , Pcd � Pdc , Pcd � 1
2 ; �5�

cPd , Pcd > Pdc , Pcd >
1
2 : �6�

If P is (a.s.) value restricted, then 1) R is a weak order, 2) P is a strict weak
order, and 3) if Pcd 6� Pdc; 8c 6� d then P is a strict linear order. Thus, (a.s.)
value restriction implies transitivity.

This and Theorem 1 imply the following result for the special case of three
candidates.

Theorem 3. Suppose that C � fc; d; eg and that the size-independent model of
subset voting holds. Then the following are equivalent (using the notation of
Theorem 1).

� The distribution of R is unique.
� At least one of the marginal probabilities Pk�x� in (1) is zero.
� The probability distribution induced by R on the linear orders is (a.s.) value

restricted.
� max�C � D;CD� DE;C � DE� � min�C � CD� DE;C � D � DE; 1�:

This gives us an observable property on the subset choices to check
whether the latent preferences are (a.s.) value restricted.

Corollary 1. Consider a subset vote with 3 candidates. If the size-independent
model holds and the probability distribution is unique, then R as de®ned in (5) is
a weak order, P in (6) is a strict weak order and, provided that
Pcd 6� Pdc; 8c 6� d; P is a strict linear order.

It is quite unlikely to observe data with exactly one solution for the
distribution of R. As we show in Regenwetter and Grofman (in press), none
of the elections analyzed there yields (a.s) value restriction. However, the
latter can be readily replaced by a set of two conditions which, together, are
necessary and su�cient for transitivity. This is shown next.

7 Sen's value restrictedness is already de®ned originally in terms preferences and not
choices.
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5. Net preferences and the social welfare ordering

The following two de®nitions are critical throughout the rest of the paper.

De®nition 8. Given a probability P on P, and denoting by pÿ1 the reverse order
of p, the net ranking probability (net preference probability) NP (induced by
P) is de®ned as

NP �p� � P�p� ÿ P�pÿ1�:
The net margins (net pairwise preference probabilities) (see also Feld
eGrofman, 1988) are de®ned as NPcd � Pcd ÿ Pdc: Net marginal ranking
probabilities of triples are de®ned analogously. We also write NPp for NP �p�;
and NPcde to denote the net marginal ranking probability that c is ranked before
both d and e, and that d is ranked before e.

De®nition 9. Given NP on P as above, de®ne welfare orderings R and P on C
through

cRd , NPcd � 0; cPd , NPcd > 0;

i.e. the relations already used in Theorem 2.

De®nition 10. Given NP on P as before, for any triple fc; d; eg � C;
NP satisfies NW �c� , NPedc � 0 & NPdec � 0;

NP satisfies NM�c� , NPecd � 0 & NPdce � 0;

NP satisfies NB�c� , NPcde � 0 & NPced � 0:

De®nition 11. NP is marginally value restricted for the triple fx; y; zg � C i�
there exists an element c 2 fx; y; zg such that NP satis®es NW(c) [or NB(c) or
NM(c)]. If this property is satis®ed, then marginal net value restriction holds
on the triple fx; y; zg. Net value restriction holds on C if marginal net value
restriction holds on each triple.

Remarks. If NP on P satis®es NW(c) for a triple fc; d; eg � C, then
NPecd � 0 ) NP satisfies NB�e�;
NPecd � 0 ) NP satisfies NB�d�:

Similarly, NB(c) implies either NW(d) or NW(e). Also, NM(c) means that
NPecd � 0 thus that at most two rankings have strictly positive NP values, and
that NW(d) or NW(e) hold. At most three elements in
fcde; ced; dce; dec; ecd; edcg have strictly positive net preference probabilities.
Furthermore, net value restriction is weaker than value restriction:

� P satis®es NW(c)) NP satis®es NW(c), but not conversely,
� P satis®es NB(c) ) NP satis®es NB(c), but not conversely,
� P satis®es NM(c)) NP satis®es NW(c), but not conversely.

A further de®nition is required before we can state our key theorem.
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De®nition 12. Given NP on P as before, p 2 P has a net preference majority i�

NP �p� >
X

p02Pÿfpg;
NP �p0�>0

NP �p0�:

Similarly, for any triple fc; d; eg � C; cde has a marginal net preference ma-
jority if

NPcde >
X

p02fced;dce;dec;ecd;edcg;
NPp0>0

NPp0 :

The following theorem is similar in spirit to Lemma 2 of Feld and Grofman
(1986), which unfortunately omits certain knife-edge situations caused by
possible ties.

Theorem 4. R as de®ned in De®nition 9 is transitive i� for each triple
fc; d; eg � C at least one of the following two conditions holds:

� NP is marginally value restricted on fc; d; eg and if at least one net pref-
erence is nonzero then it holds that �NPcde � 0) NPdce 6� NPced� (with
possible relabelings)

� 9s 2 fcde; ced; dce; dec; ecd; edcg such that s has a marginal net preference
majority.

� Similarly, P is transitive i� for each triple fc; d; eg � C at least one of the
following two conditions holds:

� NP is marginally value restricted on fc; d; eg
� 9s 2 fcde; ced; dce; dec; ecd; edcg such that s has a marginal net preference

majority.

Proof. Transitivity holds on C if and only if transitivity holds on each triple
fc; d; eg in C. There is thus no loss of generality to set C � fc; d; eg and
P � fcde; ced; dce; dec; ecd; edcg. Recall that at most three rankings have
(strictly) positive net preference probabilities.

First, suppose that none are positive, i.e. that all net ranking probabilities
are zero. Then transitivity holds because all alternatives are tied, i.e.
P � /;R � C2 and net value restriction holds (but there is no ranking with a
net preference majority).

Second, suppose that exactly one net ranking probability NPp is positive
(i.e. four net ranking probabilities are zero). Then transitivity holds since
R � P � p. Net value restriction holds, with NPcde � 0) NPdce 6� NPced (in-
cluding possible relabelings), and p has a net preference majority.

Third, suppose that exactly two net ranking probabilities are null, w.l.o.g
assume that NPcde � ÿNPedc � 0: Then N M�d� holds, and therefore also net
value restriction.
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a) If NPdce > 0& NPdec > 0 [and thus NPdce 6� NPced ] then transitivity follows:

NPdce > NPdec ) R � P � dce with a net preference majority,
NPdce � NPdec ) P � f�d; c�; �d; e�g; R � f�d; c�; �d; e�; �c; e�; �e; c�g;
NPdce < NPdec ) R � P � dec with a net preference majority;

b) If NPdce < 0 & NPdec < 0 [and thus NPdce 6� NPced � then transitivity follows:
NPdce > NPdec ) R � P � ced with a net preference majority,
NPdce � NPdec ) P � f�c; d�; �e; d�g; R � f�c; d�; �e; d�; �c; e�; �e; c�g;
NPdce < NPdec ) R � P � ecd with a net preference majority;

c) If NPdce > 0 & NPdec < 0 then

NPdce > NPced ) R � P � dce with a net preference majority,
NPdce < NPced ) R � P � ced with a net preference majority,

NPdce � NPced ) P � f�c; e�g;
R � f�d; c�; �c; d�; �d; e�; �e; d�; �c; e�g; �y�

�
where (y) is a violation of transitivity for R.

d) If NPdce < 0 & NPdec > 0 then

NPecd > NPdec ) R � P � ecd with a net preference majority,
NPecd < NPdec ) R � P � dec with a net preference majority,

NPecd � NPdec ) P � f�e; c�g;
R � f�d; c�; �c; d�; �d; e�; �e; d�; �e; c�g; �y�

�
where (z) is a violation of transitivity for R.

Fourth, the only remaining possibility is that three net probabilities are
positive [and the others are negative, i.e. NPxyz � 0 cannot occur]. There are
eight such cases:

NPcde > 0 & NPdce > 0 & NPced > 0; �7�
NPcde > 0 & NPdce > 0 & NPdec > 0; �8�
NPcde > 0 & NPecd > 0 & NPced > 0; �9�
NPcde > 0 & NPecd > 0 & NPdec > 0; �10�
NPedc > 0 & NPdce > 0 & NPced > 0; �11�
NPedc > 0 & NPdce > 0 & NPdec > 0; �12�
NPedc > 0 & NPecd > 0 & NPced > 0; �13�
NPedc > 0 & NPecd > 0 & NPdec > 0; �14�

The cases (7)±(9) and (12)±(14) are all equivalent through relabeling of al-
ternatives: Starting each time from (7), the relabeling c$ d yields (8), d $ e
yields (9), c! d ! e! c yields (12), c! e! d ! c yields (13), and c$ e
yields (14). Similarly, (10) is equivalent to (11) through, for instance, the
relabeling c$ e. We thus need to consider only (7) and (10).
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If (7) holds, then net value restriction holds, cPe and furthermore

NPcde < NPced � NPdce ) dRc) dPe
eRd ) cPd;

�
NPcde � NPced � NPdce ) R � P � cde

each of which implies transitivity for both R and P .
If (10) holds (and thus net value restriction is violated) we obtain tran-

sitivity if and only if one of the three rankings cde; ecd and dec has a net
preference majority: Suppose that each of the three has a net probability
strictly smaller than the sum of the other two. Then R � P
� f�c; d�; �d; e�; �e; c�g, a violation of transitivity. Also, if one of the three has
a net probability equal to the sum of the other two, say NPcde �
NPecd � NPdec; then P � f�c; d�; �d; e�g;R � f�c; d�; �d; e�; �c; e�; �e; c�, which
both violate transitivity. (

The next Theorem o�ers a straightforward way to calculate the Borda
scores directly from the subset choice probabilities when the size-independent
model holds. Note that this applies also to large N , where the ranking
probabilities themselves cannot easily be computed.

Theorem 5.Whenever the size-independent model holds the Borda scores can be
estimated directly from the data, as follows:

B�c� �
X
X�C;
X3c

C�X � : �15�

Proof. The result is immediate from the de®nition of the Borda score and the
fact that

X
X�C;
X3c;
jX j�k

C�X � �
Xk

i�1
Pi�c�: (

6. An illustration

We illustrate our method with the analysis of a data set from an election of
the Mathematical Association of America (see Brams, 1988; Brams and
Fishburn, 1992). The raw frequencies as well as the estimates of C�X � (see
Theorem 1) are reported in Table 1. As Table 2 shows, the necessary and
su�cient condition (Pk�c� � 0�, for the size-independent model holds here.
The probability distribution induced by R on the rankings must be of the
form shown in Figure 1 (the net preference probabilities are reported in
parentheses). Furthermore, we derive the marginal pairwise preference
probabilities and net margins, reported in Table 4, where the value in row i
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Table 1. Subset choice frequencies NX, and estimated values gC�X� of C�X �

X NX
gC�X� X NX

gC�X�

; 224 1.000 {c,d,e} 30 1.000

{c} 1257 0.379 {c,d} 68 0.145

{d} 626 0.189 {c,e} 260 0.554

{e} 1434 0.432 {d,e} 141 0.301

Table 3. Borda scores estimated through

Theorem 5

c d e

1.078 0.635 1.287

Table 4. Estimated pairwise preference probabilities and net margins (in parentheses) with k 2 [0,
0.145]

c d e

c ± 0.554 + k (0.108+2k) 0.524)k (0.048)2 k)
d 0.446)k ()0.108)2k) ± 0.189 + k ()0.622 + 2k)

Table 2. Marginal ranking probabilities Pk�x�

c d e

1 0.379 0.189 0.432

2 0.320 0.257 0.423

3 0.301 0.554 0.145

Fig. 1 Possible probability distributions on the rankings with k 2 [0, 0.145]. Net probabilities are
given in parentheses.
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column j is the probability of preferring alternative i to alternative j, with k 2
[0, 0.145] (the corresponding net margins are given in parentheses).

As all numbers in Table 2 are nonzero, (a.s.) value restriction is violated.
Thus, Corollary 1 can not be used here to guarantee transitivity. From
Theorem 4 it follows, however, that an aggregate strict linear preference
order in the sense of the weak utility model exists when k 6� 0:024. In fact, net
value restriction holds regardless of the particular value of k. The following
possible solutions are derivable: cPePd when k 2 (0,0.024), which has a net
preference majority for ced in that case, or ePcPd when k 2 (0.024,0.145],
which has a net preference majority for ecd when k 2 (0.094,0.145]. The
ordering according to approval voting scores is ecd; i.e. the same as the social
welfare order in most of the solution space. A unique Condorcet winner
exists here unless k � :024, in which case e and c tie as Condorcet candi-
dates8. The larger part of the solution space produces e as the Condorcet
winner.

From Theorem 5 and the data in Table 1 we directly compute the Borda
scores reported in Table 3. The ordering according to Borda scores is ecd
with e the Borda winner. Recall that ecd is also the ordering by approval
voting scores and a likely social welfare order. This is evidence that AV
would have elected a candidate who is both Condorcet and Borda.

The fact that we may end up with several possible Condorcet candidates,
depending on the value of k, i.e. the particular solution of the size-inde-
pendent model, may appear somewhat problematic. However, the reason for
this is that the size-independent model is nonparametric, and thus very
general. For a systematic analysis of several elections as well as a detailed
discussion about their substantive interpretations the reader is referred to
Regenwetter and Grofman (in press) where the relationships between AV
score ordering, Borda score ordering and social welfare orders are studied in
much detail.

7. Discussion

The work presented in this paper provides a method of crafting more realistic
models of social choice by embedding social choice analysis into a psycho-
logical representation of preferences and choice behavior. By formulating
social choice concepts in terms of a plausible and empirically testable cog-
nitive model of individual choice behavior we take a model-based approach
to the question of whether or not weak stochastic transitivity holds and
whether or not a Condorcet winner exists in paradigms, where no paired
comparisons are being observed.

8 Of course the meaning of the word Condorcet candidate is given by the size-
independent model as the candidate, if s/he exists, who would have a greater 1

2
probability of being ranked ahead of any given other candidate.
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Most social choice theory has proceeded in a purely axiomatic way (for
an exception see, for instance, Chamberlin, Cohen and Coombs, 1984). In
contrast, there is a strong tradition in mathematical psychology to formulate
descriptive models of choice behaviour in terms of empirically observable
primitives, as does the weak utility model of individual binary choice (Luce
and Suppes, 1965). In combining both traditions, we believe we contribute
to both literatures by showing some axiomatic underpinnings of probabilistic
choice models and their empirical applications to social choice concepts.

So far we have applied the model presented here to 10 three-candidate AV
elections. In 7 of these 10 instances the model satisfactorily ®t, and we were
able to apply the technique to test for the existence of a Condorcet winner
and a social welfare order and to compute the Borda scores. These results
along with further analyses are presented and discussed in detail in an em-
pirical companion paper (Regenwetter and Grofman, in press).

It may seem problematic that some results so far are only applicable to
three-candidate elections. The reason for this limitation is that the structure
of the approval-voting polytope underlying the size-independent model be-
comes rather complex when there are more than three candidates and re-
quires further study. Most social choice theoretic results in the present paper
are formulated for arbitrary values of N . In particular, parametric sub-
models of the size-independent model allow for applications with N taking
any value. Such parametrizations are still under development and a detailed
application is left for later.

The main contribution of the present paper concerns the mathematical
tools and the underlying research strategy. We demonstrate that it pays o� to
combine di�erent research traditions and, in particular, to base the analysis
of voting schemes on testable cognitive models of the decision making pro-
cess. We also consider it useful to formulate traditional concepts encountered
in social welfare in terms of such a model. By doing so, we make explicit our
assumptions about what determines voting behavior. This combines the
analysis of social choice theoretical properties of a voting scheme such as
approval voting with an empirical test of the fundamental assumptions about
the nature of voter choice. While the size-independent model may be too
simple to qualify as a comprehensive model of subset choice, it serves well as
a measurement instrument, the appropriateness of which we can evaluate
each time we use it.
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Glossary of symbols

9 there exists
8 for all
j such that
jX j cardinality of X
C set of choice alternatives or candidates
C�Y � conditional probability of Y given the size of Y
k a real valued scalar
NP net probability
pab binary choice probability of a over b
Pab binary preference probability of a over b
P probability
P welfare ordering
P collection of linear orders (rankings, permutations) over C
PX collection of rankings where the elements of X are ranked ®rst
p any element in P
pÿ1 converse of p
R welfare ordering
R preference relation random variable
S vote size random variable
V subset vote random variable
X subset of choice alternatives
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