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a b s t r a c t

Perceptual learning often shows substantial and long-lasting changes in the ability to classify relevant
perceptual stimuli due to practice. Specificity to trained stimuli and tasks is a key characteristic of visual
perceptual learning, but little is known about whether specificity depends upon the extent of initial train-
ing. Using an orientation discrimination task, we demonstrate that specificity follows after extensive
training, while the earliest stages of perceptual learning exhibit substantial transfer to a new location
and an opposite orientation. Brief training shows the best performance at the point of transfer. These
results for orientation–location transfer have both theoretical and practical implications for understand-
ing perceptual expertise.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Visual perceptual learning refers to improvements that develop
expertise, through practice, in distinguishing differences in visual
sensory features, such as contrast (Yu, Klein, & Levi, 2004), orienta-
tion (Dosher & Lu, 1998, 1999; Jeter, Dosher, Lu, & Petrov, 2009) or
position (Ahissar & Hochstein, 1997; Karni & Sagi, 1991), see Fahle
and Poggio (2002), for a review). Perceptual learning differs in
magnitude depending upon the task (Fine & Jacobs, 2002) and
may be most useful as a training or therapeutic tool if it generalizes
or transfers to other similar visual tasks or attributes, such as spa-
tial position, orientation and spatial frequency (Huang, Zhou, & Lu,
2008; Li, Polat, Makous, & Bavelier, 2009; Polat, 2010). More often,
however, specificity (failure of transfer) to trained stimulus attri-
butes or tasks is cited, although partial specificity and partial trans-
fer (Ahissar & Hochstein, 1997; Ramachandran & Braddick, 1973)
are often observed. The specificity of visual perceptual learning is
the trademark finding that has led many researchers to infer that
experience-dependent training alters representations in early vi-
sual cortex in areas with small receptive fields that are selective
for orientation and position (Fahle & Poggio, 2002; Karni & Sagi,
1991; Gilbert, Sigman, & Crist, 2001).

What determines the extent of (partial) transfer or specificity?
Knowing how specificity develops may greatly improve our under-
standing of perceptual learning. Specificity has typically been as-
sessed only after the initial training approaches asymptotic level.
ll rights reserved.
Here we ask, does specificity develop over training, and if so,
how? We hypothesized that the amount of training on the initial
task can be a critical factor determining the specificity of percep-
tual learning. To our knowledge, there are no prior studies that
have manipulated the amount of initial training and measured
subsequent specificity of visual perceptual learning. In this study,
we manipulate the number of blocks of training over sessions
(and not the number of trials in block, i.e., Censor & Sagi, 2009).
Using a high precision orientation discrimination task, and transfer
of learning to a new orientation and location, we show that speci-
ficity is a dynamic property, and that the extent and nature of spec-
ificity depends critically upon the extent of initial training.

1.1. Specificity and transfer

Early reports of the extraordinary specificity of visual percep-
tual learning to the trained stimuli, for example in a texture search
task (Karni & Sagi, 1991), led to the conclusion that learning in dif-
ferent locations or for different stimuli occurs in independent rep-
resentations, perhaps corresponding with V1 cells that code
relatively precisely for retinal position and orientation (Fiorentini
& Berardi, 1981; Gilbert et al., 2001). One classic study of orienta-
tion discrimination (Schoups, Vogels, & Orban, 1995) found speci-
ficity to different retinal positions, following some transfer from an
initial training at fovea. Other studies (Crist, Kapadia, Westheimer,
& Gilbert, 1997; Shiu & Pashler, 1992) found specificity to trained
orientations. A number of these cases showed partial specificity
and partial transfer (Beard, Levi, & Reich, 1995; Fahle & Poggio,
2002). Other studies of perceptual learning in visual search, motion
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Fig. 1. A schematic illustration shows full specificity (top), partial transfer/partial
specificity (middle) or full transfer (bottom). Black lines show hypothetical
improvements in a threshold performance measure with perceptual learning, with
the learning curves on the left for initial training, and the learning curves on the
right for transfer phase training. Blue vertical lines mark the improvements in
performance due to transfer, while red vertical lines mark the converse failure to
transfer, or specificity. The transfer can also be characterized in terms of the
equivalent amount of practice required to yield the performance level at the point
of task switch, shown by the green lines dropped to the practice axis at the
equivalent blocks of learning at the point of transfer.
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direction discrimination, and orientation judgments (Ahissar &
Hochstein, 1997; Jeter et al., 2009; Liu & Weinshall, 2000) found
that specificity was a property of more demanding, high precision
tasks (i.e., discrimination between very similar orientations), while
transfer occurs more readily for low precision tasks. Recent studies
also suggest that transfer may be greater if the tasks retain com-
mon judgment properties (Webb, Roach, & McGraw, 2007), or if
a location has been previously trained in another task (Xiao
et al., 2008; Zhang, Xiao, Klein, Levi, & Yu, 2010).

Transfer is the improvement in performance – here contrast
threshold – in a new task at the point of the task switch, relative
to an untrained baseline1 (see Dill (2002), for a general discussion).
Full transfer occurs when performance after the task switch contin-
ues at the trained level of the initial task. Specificity is the return to-
wards untrained baseline performance at the point of task switch. If
initial performance after the task switch is exactly what it would
have been without the initial training, then there is no transfer,
and complete specificity. Fig. 1 schematically illustrates full specific-
ity (no transfer), full transfer (no specificity), and a mixed condition
of partial specificity and partial transfer. Transfer, or the difference in
performance level from an untrained baseline, is marked by vertical
blue lines and specificity, or the difference from a fully trained level,
is marked by vertical red lines. A specificity index (i.e., Ahissar &
Hochstein, 1997) often is defined as the proportion of total improve-
ment in the first training stage that is not transferred to the new task
at the point of the task switch (see Section 2). By analogy, a comple-
mentary measure of transfer can also be expressed as the amount
(blocks) of training that would have led to the improved perfor-
1 See later in the Introduction for a consideration of baseline issues in the current
matched-task paradigm.
mance on the new task (see Jeter et al., 2009), illustrated in the green
lines dropped to the practice axis.

In this paper, the effects of extended practice on transfer are
studied for high precision orientation discrimination for a task
switch that changes both the reference angle of the discrimination
and the visual location of the test. This relatively high precision
task and transfer condition (Jeter et al., 2009) is known to lead to
partial transfer and partial specificity after an intermediate level
of training. This allows for the measurement of either less or more
specificity (or transfer) after different amounts of training.

1.2. Possible frameworks for specificity and transfer

The vast majority of perceptual learning studies train for many
sessions and many trials per session, i.e., to asymptotic levels, be-
fore testing for transfer to different positions, orientations, or stim-
uli (Fahle & Poggio, 2002). In this study, we manipulate the extent
of training prior to a task switch from very preliminary training to
near-asymptotic levels of training over different groups of observ-
ers, and observe the extent of transfer to the new task, or extent of
specificity of learning to the initial training task.

There are at least four frameworks for understanding specificity,
or conversely transfer, in perceptual learning that make predic-
tions for the effect of varying the extent of training.

The dominant framework for understanding specificity is sepa-
rate neural representations (Karni & Sagi, 1991; Gilbert et al., 2001).
If the specificity of learning is due to plasticity in early visual cortex
for tasks whose different retinal positions or orientations drive rel-
atively independent representations, then specificity should be a
consequence of training different cell populations regardless of
the amount of training. Specificity occurs because the transfer task
uses a new set of previously untrained representations. Under this
view, two tasks, say in different locations, will recruit distinct pop-
ulations in early visual system (i.e., V1) and will show no transfer,
or 100% specificity. In this view, specificity is the default, and it is
transfer that requires explanation. A modified version could allow
a small and constant amount of transfer between the tasks as a
consequence of task familiarization.2 Although this framework is
often taken to imply modification of early sensory representations,
in fact studies examining transfer between plausibly distinct cortical
representations are consistent with either changing sensory repre-
sentations or reweighting (see below) (see Dosher and Lu (2009)
and Petrov, Dosher, and Lu (2005), for a task analysis and review).

An incremental transfer framework reasons that something must
be learned before it can be transferred, so additional training might
lend itself to more transfer of a perceptual skill. One can transfer
only what is learned, and the incremental transfer is one reason-
able corollary. If even some of the improvement during a session
transfers, then each added block of training should lead to more
improvement – measured as better (absolute) performance on
the new task at the point of the task switch. Indeed, at every stage
of practice, if any of what is learned in the next block of training is
transferred, then performance at the point of transfer should still
improve with every incremental block of training. Partial transfer
and partial specificity after extensive training is a very common,
and perhaps the dominant observation in perceptual learning stud-
ies (Crist et al., 1997; Schoups et al., 1995) (see Dosher and Lu
(2009) for a review). The ubiquity of partial transfer in the exper-
imental literature is compatible with, but does not directly test,
the incremental transfer framework. The incremental transfer pre-
diction is phrased in terms of absolute levels of performance, in
which transfer refers to any improvement in second task relative
2 However, in this experiment the early stages of learning are not easily associated
with such factors as learning the key presses or the general experimental environ-
ment due to removal of early trials in threshold staircases.
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to baseline at the point of the task switch; specific predictions
about specificity indexes must be computed for each case.

Another possible framework is the reverse hierarchy theory
(RHT) of Ahissar and Hochstein (1997, 2004). RHT states that
‘‘easy” tasks are learned at higher levels of the visual hierarchy
and therefore are transferrable, while ‘‘difficult” tasks require
learning at lower levels of the visual hierarchy, and are specific
to spatial location and for features such as orientation or spatial
frequency. More recently, we (Jeter et al., 2009) showed that the
operational factor is not task difficulty (in the sense of how accu-
rately a task can be performed), but task precision (i.e., the similar-
ity of to-be-discriminated items). The RHT could make one of two
predictions about practice of a high precision task (a ‘‘difficult” task
in their labeling), such as the task used in the current experiment.
One prediction of the RHT might be that learning in the ‘‘difficult”
task in the current experiment is entirely at a low and specific level
of the visual hierarchy, and so shows full specificity. Another pos-
sible prediction of the RHT is that early improvements reflect
changes at high and transferrable levels in the visual hierarchy,
while subsequent improvements reflect changes at lower, fully
specific, levels. So, the RHT yields the same predictions as the inde-
pendent neural representation framework, namely, complete spec-
ificity with the possible exception of a constant transfer benefit
due to the small amount of early and high level learning across
all levels of training.

Finally, the decision optimization or reweighting framework
(Dosher & Lu, 1998, 1999; Lu, Chu, Dosher, & Lee, 2005; Petrov,
Dosher, & Lu, 2006; Petrov et al., 2005) claims that perceptual
learning optimizes connections (decision weights) for a given task
by learning incrementally with practice to exclude the least rele-
vant and noisiest information and to up-weight the most relevant
and least noisy information. Specificity is a characteristic of the
learned connections between early visual representations and
task-related decision units, and not a property of the visual repre-
sentations themselves. The reweighting framework, initially pro-
posed by Dosher and Lu (1998, 1999), was implemented as an
Augmented Hebbian Reweighting Model (AHRM) by Petrov et al.
(2005, 2006) and experimentally tested with repeated alternation
between training phases of discrimination of oriented targets
embedded in right-tilted and left-tilted external noise. Continued
practice produced both general learning and increased optimiza-
tion specific to one noise context over the other, seen as persistent
switch costs after extended training. To the extent that optimiza-
tion of weights in the two tasks are not consistent, then training
until performance reaches asymptote reinforces learning that is
unlikely to transfer, or will transfer negatively to the related task
or context. While the transfer between tasks in different retinal
locations will require an elaboration of the AHRM computational
model for multiple locations, the general principle is that extended
practice optimizes specifically for one task and increases switch
costs for the transfer task so long as the optimized weight struc-
tures for the two differ substantially (see Petrov et al. (2005,
2006) and Dosher and Lu (2009), for reviews). Although the specific
predictions depend upon the exact training protocol (see Lu, Liu,
and Dosher (2010), for fits of the model to the data of sample
experiments), this model predicts early improvements at transfer
due to generalized learning, but increased switch costs (lack of
transfer, or specificity) after longer periods of training and
optimization.

1.3. Experimental approach

Our goal in the current experiment is to measure the amount of
transfer, or conversely specificity, following different amounts of
training on the initial task. As indicated previously, the paradigm,
selected from Jeter et al. (2009), evaluated specificity to a feature
(orientation) plus location change between tasks. Modeled on the
tasks of Karni and Sagi (1991) and of Ahissar and Hochstein
(1997), this paradigm produces intermediate levels of transfer (Jet-
er et al., 2009), which might then increase or decrease with differ-
ent levels of practice. Observers trained and tested on a two-
alternative high precision (±5� from a fixed, oblique reference an-
gle) identification task with and without external noise masks
(see Fig. 2a and b and Section 2). Four groups of observers experi-
ence differing amounts of practice prior to transfer, ranging be-
tween 2 and 12 blocks. This task showed robust learning in both
high and no noise tests and exhibits partial transfer and partial
specificity for moderate levels (eight blocks) of training (Jeter
et al., 2009), so the extent of transfer after different amounts of
training may be measured. There is room to measure both higher
and lower specificities as training extent is varied. There is evi-
dence in the literature showing partially independent learning
mechanisms with and without external noise masking, so it is pos-
sible that the results would differ in the two noise environments
(Dosher & Lu, 1998, 2005, 2006; Lu & Dosher, 2009).

There are two approaches to the measurement of transfer in
perceptual learning, a matched-tasks method and a pre-test meth-
od. The current experiment uses the matched-task method in
which the initial training task and the transfer task are equivalent
and the tasks are randomly assigned to subjects. In this case, the
first measurements on the initial training task are the control for
performance in the transfer task. The matched-task approach is a
good one for the current question because it allows a direct com-
parison of performance in the two phases. It is also advantageous
because there is a clear outcome for 100% specificity – exact equiv-
alence (independence) in the two stages of learning – and a clear
outcome for 0% specificity or 100% transfer, in which the perfor-
mance on the transfer task simply continues that on the training
task. The alternative is to pre-test the transfer task, then train on
the primary task, and then measure performance on the transfer
task after the switch. The pre-testing approach is more compli-
cated to interpret because it requires an estimation of whether
the amount of improvement between the first (‘‘pre-test”) session
to the first session after the transfer switch is larger than some
‘‘normal” amount of improvement from a first to a second session
(Dosher & Lu, 2007). Additionally, the pre-test approach is called
into question by recent work on the enabling of transfer by double
training (Xiao et al., 2008), in which transfer may in many cases be
specially ‘‘promoted” by pre-training some task in the transfer
location; in other words a pre-test in the transfer location may
set up a special condition in which transfer is more likely to occur.
While these double training effects must be understood, and
deserve independent study, they complicate the current question.
For all these reasons, we selected the matched-task approach to
measure specificity and transfer following different amounts of
training.
2. Methods

2.1. Participants

Seven observers participated in each of groups that varied in the
amount of initial training of 2, 4, 8, and 12 practice blocks (T2, T4,
T8, and T12). All subjects provided written consent under the UC
Irvine Institutional Review Board protocol.
2.2. Stimulus and display

The signal Gabor patch was 64 � 64 pixels (3� � 3� visual angle
at a viewing distance of 72 cm):
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Fig. 2. Sample stimuli, display, and data. (a) Stimuli for a high-precision discrimination task are Gabor targets with and without noise tilted ±5� from an implicit reference
angle (+55� shown here, or �35�). (b) Observers trained at one of two pairs on either the NW–SE or the NE–SE diagonal and reference orientation in the training stage and
switched both position and orientation in the transfer stage. (c) Average contrast thresholds (75%) during initial training and subsequent practice in the transfer task are
shown for conditions trained for either 2, 4, 8, or 12 blocks, in zero noise or in high external noise. High noise trials require higher contrast thresholds than no noise trials.
(Black: Train 2 Blocks (T2), Yellow: Train 4 Blocks (T4), Purple: Train 8 Blocks (T8), Green: Train 12 Blocks (T12)). All groups practiced for an additional eight blocks in the transfer
stage, after switching both positions and angles. The switchback session returned to the original testing conditions. Error bars are two standard deviations estimated using
Monte Carlo simulations that resampled from each subject based on the mean and standard deviations of staircase reversals, and averaged over subjects at each data point
(resampled 1000 times).
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lðx; yÞ ¼ l0 1:0� c sinð2pf ðy sinðhÞ � x cosðhÞÞÞ � exp
x2 þ y2

2r2

� �� �
;

with angle h of �35� ± 5� or +55� ± 5�, spatial frequency f = 2 cpd,
standard deviation of the Gaussian envelope r = 0.4 degrees. The
±5� angular-difference is a relatively high precision judgment (Jeter
et al., 2009). The contrast c is the maximum contrast of the Gabor,
and l0 is the mid-gray luminance. The No Noise and High Noise con-
ditions were intermixed within each testing block. Each 64 � 64
noise image had individual 2 � 2 pixel noise elements with Gauss-
ian-distributed values with mean value l0 and standard deviation
0.33. Signal and noise images were combined via temporal integra-
tion (15 ms per frame). Two Gabor frames were ‘sandwiched’ be-
tween pairs of external noise (or blank) frames, so signal and
external noise were combined through temporal integration. Fresh
noise images were generated for each trial. The stimuli could occur
in one of two pairs of retinal positions, either NW/SE or SW/NE cor-
ners of the screen, approximately 5.67� of visual angle from fixation
(Fig. 2b). On any individual trial, only a single Gabor patch ap-
peared. Each block involved only two diagonally opposite positions.
If the first phase of training used the NW/SE diagonal, then the
transfer tests used the NE/SW diagonal, and vice versa. All stimuli
were generated using MATLAB 5.2 (The Mathworks, 1999) and
PsychToolbox 2.34 extensions (Brainard, 1997).

2.3. Apparatus

Stimuli were displayed on a 1900 Viewsonic color monitor by a
Macintosh G4 using the internal 10-bit video card (refresh rate
67 Hz, resolution 640 � 480 pixels). Luminance calibration was
performed both with psychophysical matching judgments and
with a Tectronix Lumacolor J17 photometer. The lookup table di-
vided the luminance range (from 1 cd/m2 to 67 cd/m2) into 127
levels for the noise frames and 127 gray levels in the assigned con-
trast range for the Gabor targets. A chin rest stabilized the obser-
ver’s head.

2.4. Design

Subjects discriminated between a Gabor tilted clockwise (from
top to ‘‘Right”) or counterclockwise (from top to ‘‘Left”) from a ref-
erence angle of either �35� or +55�. The presentation position was
randomized on a diagonal (NW/SE or NE/SW). The reference angle
and presentation diagonal were randomly assigned to subjects for
initial training (2, 4, 8 or 12 blocks), and switched to the opposite
reference angle and diagonal for the transfer tests (all eight blocks).
The Gabor orientation discrimination task required high precision
judgments of stimuli differing by d� = ±5� in orientation.

2.5. Procedure

Observers completed 1248 trials per session. Each session was
divided into two blocks and separated by brief rest periods. There-
fore, T2 trained for 2 blocks (1248 trials in one session in one day),
T4 trained for 4 blocks (2496 trials in two sessions over different
days), T8 trained for 8 blocks (4992 trials in four sessions over dif-
ferent days) and T12 trained for 12 blocks (7488 trials in six ses-
sions over different days). Contrast thresholds were tracked using
adaptive staircases (Levitt, 1971). For the first session in the initial
training, transfer and switchback phases, the participant com-
pleted 10 practice trials and two practice trials on all other ses-
sions. Additionally, early, ‘level-finding’, trials (the first 3–5
reversal points or corresponding to 35–60 trials) in each of four
interleaved adaptive sequences (see Section 2.6) are not included
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in the threshold measurements. On each trial, the participant fix-
ated on a small cross at the center of the screen. A beep occurred
250 ms after the fixation cross. Another 250 ms later, the stimulus
sequence (2 white noise frames + 2 Gabor frames + 2 new noise
frames) appeared for a total of 90 ms (15 ms/frame). A precue ap-
peared 150 ms after fixation. The short lead-time of 100 ms prior to
the oriented Gabor prevented eye movements. A negative feedback
tone was presented after each error. The next trial began 750 ms
after the key press response.

2.6. Staircase method

Two adaptive staircases (Levitt, 1971) were used to track
threshold Gabor contrasts in each stimulus condition. The 3/1
and 2/1 staircases track accuracies of 79.3% and 70.7% correct,
respectively. Signal contrast levels were reduced by 10% after
either three or two consecutive correct responses and increased
10% after each incorrect response. Separate staircases for all stim-
ulus conditions (including retinal position) were interleaved. There
were 168 and 144 trials, respectively, for the 3/1 and 2/1 staircases
for a total of 312 in each block. Reversals in staircase direction
were determined from the sequence of responses. Threshold con-
trast levels were computed by averaging an even number of rever-
sals for each staircase sequence, excluding the first four or five.
(The number of reversals excluded is either even or odd so as to al-
low averaging over an even number; this guarantees that every
low reversal is balanced with a high reversal, limiting estimation
bias.) An overall contrast threshold was estimated by averaging
the thresholds of all staircases every two blocks per session (day)
in no noise and high noise.

2.7. Methods of analysis

The mean contrast thresholds in different groups were com-
pared with analysis of variance or t-tests or with corresponding
non-parametric Kruskal–Wallis or Mann–Whitney U tests. The
contrast thresholds as a function of blocks of practice were fitted
with power function models, with a lower (minimum threshold)
asymptote a and initial incremental threshold k and a rate q:
c(t) = kt�q + a, where t is the number of training blocks. Transfer
of perceptual learning at the point of transfer can be measured
as the amount of experience that transfers in the context of power
function models of perceptual learning: c(t) = k(t + te)�q + a, where
the experience parameter te summarizes the transfer expressed as
the number of blocks of training to yield an equivalent perfor-
mance (see Dosher & Lu, 2007; Jeter et al., 2009).

In the fullest models, each curve has independent parameters
(ki qi ai, for each condition i), while constrained (nested) models
held certain parameters equal (equating ki = kj, qi = qj, and/or ai = aj

over groups). If groups differ by one or more parameters, then a
nested model comparison equating those parameter(s) will
significantly reduce the quality of fit when tested by a nested-
model F:

Fðdf 1; df 2Þ ¼
r2

fuller � r2
less�full

� �
=ðkfuller � kless�fullÞ

1� r2
fuller

� �
=ðn� kfullerÞ

;

df 1 ¼ ðkfuller � kless�fullÞ; df 2 ¼ ðn� kfullerÞ:

In some cases, the p-values of several parametric or non-para-
metric tests are combined through the Fisher’s v2 ¼ �2

Pk
i¼1 ln pi,

where k is the number of significance tests, and df = 2k (Fisher,
1932).

Specificity can be measured in several ways. The specificity in-
dex introduced by Ahissar and Hochstein (1997) expresses speci-
ficity as the proportion of the improvement during initial
training that does not transfer, a score that expresses specificity
as a percentage in the dimension of contrast threshold:

Sc ¼ Ci
X1 � Ci

Tend

� �
= Ci

T1 � Ci
Tend

� �
, where Ci

T1 and Ci
Tend are the con-

trast thresholds for the first and last blocks of the initial training

phase and Ci
X1 is the contrast threshold for the first block of the

transfer test, where i indicates the group or condition. Ahissar
and Hochstein’s specificity index is best suited where initial train-
ing is asymptotic. The current experiment measures transfer after
small amounts of practice in certain conditions (T2, T4), and in

these situations the index can be improved by replacing Ci
Tend with

Ci
Tendþ1 – the value where the contrast threshold is expected to be at

the next testing block under full transfer. This index is:

S0c ¼ Ci
X1 � Ci

Tendþ1

� �
= Ci

T1 � Ci
Tendþ1

� �
. Alternatively, the transfer

value te from the power function models of perceptual learning
provides a measure of transfer in the dimension of practice blocks;
a te of 0 corresponds to no transfer, of full specificity, while a
te = tTtotal corresponds to full transfer, or no specificity.

3. Results

3.1. Learning curves for initial training

Four groups received different amounts of 2, 4, 8, or 12 blocks of
practice before transfer, labeled T2, T4, T8, and T12, respectively.
Observers are assigned at random to these groups that vary only
in the amount of initial training. After training, all groups switched
to the opposite retinal positions and orientation and completed
eight additional blocks of practice on the transfer task. Two blocks
of training occurred per day. Task performance is indexed by the
average (threshold) contrast required to produce a criterion
accuracy level (i.e., 75% correct) by averaging two adaptive stair-
cases, 70.7% for a 2/1 staircase, and 79.3 for a 3/1 staircase (see
Methods).

Group average contrast thresholds (at 75% correct) were plotted
as a function of practice block separately for ‘no noise’ and ‘high
noise’ test conditions (Fig. 1c, left half). The smooth curves in
Fig. 2 are fits of a power function model of improvement in con-
trast threshold as a function of training block: with a lower (min-
imum threshold) asymptote a and initial incremental threshold:
c(t) = kt�q + a, applied independently to the initial training and
transfer phases for each group separately. Explicit estimation of
transfer within a joint power function model appears in Section 3.3.
Thresholds were higher with external noise masks than without
(all p < 0.001). All curves showed significant reductions in thresh-
olds between the first and last block in the training phase, with
more training producing larger contrast threshold reductions
(paired t-tests, all p < 0.03).

Although the total amount of learning should increase with in-
creased training, we expected no differences in the common (over-
lapping) portions of the training performance as the four groups
differ only in random assignment of observers. The first two blocks
of all groups (T2, T4, T8, T12) showed no differences in either the
high external noise or no noise conditions (all individual p > 0.46
in Kruskal–Wallis tests), with Fisher’s v2 = 2.26, df = 4, p = 0.688
for high noise and Fisher’s v2 = 1.09, df = 4, p = 0.896 for low noise.
The first eight blocks of T8 and T12 did not differ significantly (all
individual p > 0.23 in high noise and >0.18 in no noise in Mann–
Whitney tests), with Fisher’s v2 = 14.14, df = 16, p = 0.588 for high
noise and Fisher’s v2 = 17.41, df = 16, p = 0.360 for low noise.3 In
short, more training produces more learning, but the groups – as
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Fig. 3. Perceptual learning data in high and no noise for individual data and the group average. Contrast thresholds are plotted for the seven individuals in each group and the
group average data: (a) T2, (b) T4, (c) T8, and (d) T12. The smooth curves are the best-fitting power function model with experience, or transfer parameter, te, free to vary
shown in Table 1. See the text and Table 2 for comparisons with other nested models.
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expected – were statistically equivalent for the shared portions of
the training curves.

3.2. Transfer phase performance

The key question of this research is whether the performance on
the transfer test depends upon the amount of initial training.
Group T2 yielded the best average performance on the transfer
task, while T12 showed the worst average performance on the
transfer test, and so the least gain given the amount of training,
with Groups T4 and T8 showing intermediate values (Fig. 2c). Com-
paring the shortest and longest training groups (T12 versus T2)
with Kruskal–Wallis tests, T12 showed poorer transfer perfor-
mance in high external noise (Fisher’s v2 = 40.37, df = 16,
p < 0.001; ps for the eight transfer blocks [0.025–0.338]) and in
no noise (Fisher’s v2 = 37.33, df = 16, p < 0.001; ps for the eight
transfer blocks [0.035–0.227]). (The corresponding parametric
analysis of variance tests were significant for high external noise
and just missed significance in no noise.)

Power function models of the average group data during the
transfer phase also documented worse transfer performance in
T12 (contrast thresholds were higher) than in the T2 training
group. A model that restricted the power function learning curves
in the training phase to be the same (equating k2 = k12, q2 = q12, and
a2 = a12) was easily rejected in both high noise (F(3, 10) = 26.68,
p = 0.001, for the nested model test) and no noise
(F(3, 10) = 16.75, p = 0.001), again indicating poorer performance
at transfer following more training.
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Fig. 3 (continued)

4 Subsidiary analyses showed separate rates of learning q in the initial training and
transfer phases when compared directly. Whenever te is greater than 0, the elaborated
power function itself embodies a slower (instantaneous) rate of learning due to the
transfer phase starting farther along the power function.
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By all these measures on the aggregate data, more training
yielded significantly less transfer (worse contrast threshold perfor-
mance) after the task switch than did brief training.

3.3. Power functions and Te

This section uses expanded power function models that explic-
itly estimate a transfer or experience parameter after different
amounts of practice. This approach has advantages: (1) It derives
a model-based estimate of transfer, and (2) It can be applied and
tested for significance in individual as well as group data. The ini-
tial training phase and the transfer phase are taken together, with
parameter te estimating the benefit from prior training in the
transfer phase – measured in blocks of training required to match
performance at the point of initial transfer (see Dosher & Lu, 2007;
Jeter et al., 2009). The initial training and transfer phases are fit
with common asymptote a, initial incremental threshold k, and a
rate q – reflecting the structure of the matched-task design. The
value of te is set to 0 in training and is estimated from the data
for the transfer phase.4

Individual data are shown in Fig. 3a–d, with separate panels for
each training group. Table 1 lists the estimated values of the expe-
rience parameter te, and R2 summarizing the quality of fit for high
external noise and no noise for each individual and the group
average. While the threshold levels and rate of learning differ be-
tween subjects (individual learning is notoriously variable in per-
ceptual learning studies, Fine & Jacobs, 2002), there is a relatively



Table 1
Estimated te transfer scores for primary model.

Primary model with te free to vary
Group T2 Group T4 Group T8 Group T12
Subject te R2 Subject te R2 Subject te R2 Subject te R2

No noise
T2-S1 2.718 0.986 T4-S1 2.601 0.954 T8-S1 0.000 0.796 T12-S1 0.569 0.672
T2-S2 0.464 0.978 T4-S2 3.379 0.875 T8-S2 4.173 0.910 T12-S2 0.492 0.940
T2-S3 1.947 0.996 T4-S3 0.454 0.945 T8-S3 1.101 0.605 T12-S3 0.313 0.803
T2-S4 0.359 0.873 T4-S4 4.777 0.981 T8-S4 0.679 0.881 T12-S4 1.602 0.810
T2-S5 3.000 0.974 T4-S5 1.029 0.944 T8-S5 4.894 0.971 T12-S5 1.300 0.835
T2-S6 3.000 0.883 T4-S6 1.412 0.978 T8-S6 0.000 0.870 T12-S6 2.769 0.976
T2-S7 1.330 0.981 T4-S7 0.380 0.874 T8-S7 0.475 0.829 T12-S7 0.000 0.764

Group 1.850 0.990 Group 1.966 0.992 Group 0.659 0.969 Group 0.841 0.928

High noise
T2-S1 1.540 0.970 T4-S1 2.265 0.886 T8-S1 0.000 0.764 T12-S1 0.001 0.748
T2-S2 0.291 0.908 T4-S2 0.304 0.773 T8-S2 2.215 0.862 T12-S2 0.405 0.867
T2-S3 1.645 0.990 T4-S3 2.696 0.762 T8-S3 1.023 0.722 T12-S3 0.000 0.360
T2-S4 3.000 0.340 T4-S4 1.298 0.722 T8-S4 0.596 0.575 T12-S4 0.001 0.566
T2-S5 1.693 0.905 T4-S5 2.054 0.783 T8-S5 1.549 0.798 T12-S5 0.003 0.700
T2-S6 1.945 0.898 T4-S6 3.124 0.678 T8-S6 0.302 0.617 T12-S6 0.775 0.943
T2-S7 2.198 0.898 T4-S7 0.000 0.758 T8-S7 0.908 0.823 T12-S7 0.521 0.711

Group 1.810 0.960 Group 1.443 0.909 Group 0.930 0.948 Group 0.006 0.824

Note: This table reports the estimated experience or transfer factors te and the quality of fit, R2, of the extended power function model: c(t) = k(t + te)�q + a, where te � 0 for
initial training, and te estimated for the transfer phase. For the current matched-task design, aT = aX = a, kT = kX = kT, and qT = qX = q, with subscripts T for initial training and X
for transfer. This model assumes that the two phases are identical except for transfer factor te.
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consistent pattern of increasing specificity with added training.
Values of te show a downward trend or less transfer for groups
receiving more training (see Table 1). The average te’s in high
noise were 1.81, 1.44, 0.93, and 0.01, for T2, T4, T8, and T12,
respectively (v2 = 9.26, df = 3, p = 0.03), and in low noise were
1.85, 1.96, 0.66, and 0.84, respectively (v2 = 1.79, df = 3, p = 0.618
by non-parametric Kruskal–Wallis tests). Considering compari-
sons of T2 and T12: In high noise conditions, the average
te = 1.81 for T2 and te = 0.01 for T12 differed significantly
(z = �2.75, p = 0.006 by Mann–Whitney test). In no noise condi-
tions, te = 1.85 for T2 and te = 0.84 in T12 (z = �1.34, p = 0.18). In
short, T12 shows significantly worse performance at the point of
transfer than T2. Indeed, the average estimated transfer decreases
systematically from near full transfer at T2 towards little transfer
at T12.

3.4. Nested model tests for T2 and T12 groups

The results of individual observers, as well as the average, can
be tested for significant differences from 100% specificity (te = 0)
or 100% transfer (te = number of initial practice blocks) through
nested model test comparison with models in which te is an esti-
mated (free) parameter. Full specificity (te = 0) is consistent with
the independent representations framework as a consequence of
training and testing different neural representations regardless of
the amount of training. For the T2 group, the constrained model
(Table 2, bottom), where te = 0 (100% specificity) was rejected in
the average data in both high external noise (F(1, 6) = 31.65,
p = 0.001) and no noise (F(1, 6) = 185.27, p = 0.0001). It was re-
jected for 5 of 7 individuals in high noise and for 6 or 7 individuals
in low noise conditions. In the cases where the 100% specificity
model was rejected, with freely estimated te > 0, indicating signif-
icant transfer. For the T2 group, setting te = 2 (the number of blocks
of initial training in T2) was statistically equivalent to the model
with te free to vary in both high external noise (F(1, 6) = .087,
p = 0.778) and in no noise (F(1, 6) = 0.277, p = 0.618) for the aver-
age data (see Table 2, top) and for the majority of individual
observers (6 of 7 observers in high noise and 5 of 7 observers in
no noise). In short, for the majority of observers and for the group
data, two blocks of training yielded results that are statistically
consistent with 100% transfer.

In contrast, full transfer (setting te = 12) was easily rejected
(p < 0.001) for the T12 condition for the average data in both high
noise (F(1, 12) = 43.54, p < 0.001) and no noise (F(1, 12) = 38.41,
p < 0.001), and for all individual observers. Instead, the results for
T12 are closer to 100% specificity. In high noise, the average data
showed no significant difference from 100% specificity, or no trans-
fer (te = 0) (F(1, 12) = 0.005, p = .942), with 1 (and one marginal) of
7 observers showing significantly more transfer. In low noise,
although the estimated transfer scores were all less than 1, these
small levels of transfer were significantly different from zero for
the average data (F(1, 12) = 37.62, p < 0.001), and 6 of 7 observers.
Still, the extent of transfer is significantly less than te = 2, which
was rejected in high noise in the average data (F(1, 12) = 17.40,
p = 0.001) and for 6 of 7 individual observers, and was rejected in
no noise for the average data (F(1, 12) = 10.91, p = 0.005), and for
5 of 7 individual observers.

The most extended training group (T12) approximated 100%
specificity, especially in high noise – which might suggest com-
plete independence of learning in the transfer stage from the per-
ceptual learning in the initial training stage. If so, the eight blocks
of training after the task switch should equal the first eight blocks
of initial training in the same condition of this matched-task de-
sign. However, the data suggest that the rate of perceptual learning
in the transfer task for group T12 may be slowed in both no noise
and high noise. The power function model where all parameters
are free to vary for the first eight blocks in training in T12,
(q = �1.35 in No Noise and q = �0.61 High Noise) and during the
transfer stage for all eight blocks in T12 (q = �0.28 in No Noise
and q = �0.24 High Noise) are compared in a separate nested mod-
el test that equates q (rate) and a. The first eight blocks in the ini-
tial training differ from those in the transfer training for this
condition (F(2, 10) = 5.94, p = 0.02) in no noise, and
(F(2, 10) = 10.33, p = 0.003) in high noise indicating that the differ-
ence in rates between initial training and transfer differed signifi-
cantly. This suggests a more complicated interpretation for



Table 2
Nested-significance tests for several models of te.

Group T2 Group T4 Group T8 Group T12

Subject R2 F(1, 6) q Subject R2 F(1, 8) q Subject R2 F(1, 12) q Subject R2 F(1, 12) q

Te = Fixed # of training blocks
No noise

T2-S1 0.985 0.564 0.481 T4-S1 0.947 1.167 0.311 T8-S1 0.178 36.338 0.001* T12-S1 0.455 10.438 0.005*

T2-S2 0.893 23.295 0.003* T4-S2 0.874 0.093 0.769 T8-S2 0.907 0.436 0.522 T12-S2 0.647 78.101 0.000*

T2S3 0.996 1.186 0.318 T4-S3 0.7S6 29.401 0.001* T3-S3 0.424 5.732 0.034* T12-S3 0.576 18.440 0.001*

T2-S4 0.763 4.947 0.068* T4-S4 0.980 0.020 0.890 T8-S4 0.829 5.243 0.041* T12-S4 0.747 5.323 0.035*

T2-SS 0.958 3.619 0.106 T4-SS 0.829 16.412 0.004* T8-S5 0.957 5.363 0.039* T12-S5 0.767 7.259 0.016*

T2-S6 0.847 2.323 0.178 T4-S6 0.954 10.404 0.012* T3-S6 0.250 57.276 0.000* T12 S6 0.950 17.460 0.001*

T2-S7 0.975 1.556 0.259 T4-S7 0.845 1.832 0.213 T8-S7 0.577 17.834 0.001* T12-S7 0.312 30.460 0.000*

Group 0.990 0.277 0.618 Group 0.974 12.574 0.008* Group 0.754 86.482 0.000* Group 0.755 38 413 0.000*

High noise
T2-S1 0.968 0.324 0.590 T4-S1 0.871 1.040 0.338 T3-S1 0.274 24.898 0.001* T12-S1 0.193 35.621 0.000*

T2-S2 0.778 6.517 0.043* T4-S2 0.581 6.753 0.032* TS-S2 0.744 10.239 0.008* T12-S2 0.514 42.454 0.000*

T2-S3 0.987 1.549 0.260 T4-S3 0.759 0.032 0.862 T8-S3 0.524 8.392 0.013* T12-S3 0.053 7.680 0.014*

T2-S4 0.333 0.067 0.804 T4-S4 0.676 1.256 0.295 TS-S4 0.379 5.543 0.036* T12-S4 0.294 10.262 0.006*

T2-S5 0.904 0.061 0.813 T4-SS 0.751 1.186 0.308 T8-SS 0.701 5.934 0.031* T12-S5 0.196 26.905 0.000*

T2-S6 0.898 0.121 0.740 T4-S6 0.677 0.084 0.780 T8-S6 0.357 8.307 0.014* T12-S6 0.756 52.571 0.000*

T2-S7 0.897 0.180 0.687 T4-S7 0.323 14.383 0.005* T8-S7 0.560 17.769 0.001* T12-S7 0.340 20.550 0.000*

Group 0.959 0.087 0.778 Group 0.844 5.901 0.041* Group 0.625 77.994 0.000* Group 0.345 43.544 0.000*

Te = 2, Fixed
No noise

T2-S1 0.985 0.564 0.481 T4-S1 0.951 0.608 0.458 T3-S1 0.348 26.367 0.001* T1 2-S1 0.579 4.539 0.049*

T2-S2 0.893 23.295 0.003* T4-S2 0.851 0.905 0.369 T8-S2 0.898 1.688 0.213 T12-S2 0.843 25.846 O.001
T2-S3 0.996 1.183 0.318 T4-S3 0.837 15.701 0.004* T8-S3 0.586 0.574 0.463 T12-S3 0.628 13.774 0.002*

T2-S4 0.763 4.947 0.068* T4-S4 0.949 13.616 0.006* T3-S4 0.847 3.446 0.088 T12-S4 0.808 0.151 0.703
T2-S5 0.958 3.619 0.106 T4-SS 0.910 4.394 0.058* T8-SS 0.913 22.738 0.001* T12-S5 0.827 1.306 0.270
T2-S6 0.847 2.323 0.178 T4-S6 0.974 1.623 0.239 T8-S6 0.427 40.894 0.000* T12-S6 0.972 6.179 0.024*

T2-S7 0.976 1.556 0.259 T4-S7 0.847 1.707 0.228 T3-S7 0.697 9.276 0.010* T12-S7 0.471 19.244 0.001*

Group 0.990 0.277 0.618 Group 0.992 0.401 0.544 Group 0.892 29.948 0.000* Group 0.879 10.905 0.005*

High noise
T2-S1 0.968 0.324 0.590 T4-S1 0.885 0.387 0.551 T8-S1 0.541 11.317 0.006* T12-S1 0.476 17.280 0.001*

T2-S2 0.778 6.517 0.043* T4-S2 0.685 3.115 0.116 T8-S2 0.861 0.077 0.786 T12-S2 0.732 16.231 0.001*

T2-S3 0.987 1.549 0.260 T4-S3 0.760 0.085 0.778 T3-S3 0.701 0.922 0.356 T12-S3 0.134 5.650 0.030*

T2-S4 0.333 0.067 O.804 T4-S4 0.715 0.210 0.659 TS-S4 0.504 1 891 0.134 T12-S4 0.585 0.016 0.900
T2-S6 0.904 0.061 0.313 T4-S6 0.783 0.003 0.961 T8-S6 0.794 0.247 0.623 T12-S5 0.468 12.386 0.003*

T2-S6 0.898 0 121 0.740 T4-S6 0.672 0.144 0.714 T3-S6 0.556 2.023 0.180 T12-S6 0.887 14.085 0.002*

T2-S7 0.897 0 180 0.687 T4-S7 0.417 11.251 0.010* TS-S7 0.786 2.487 0.141 T12-S7 0.630 4.503 0.050*

Group 0.959 0.087 0.778 Group 0.902 0.637 0.448 Group 0.906 9.799 0.009* Group 0.633 17.395 0.001*

Te = 0, Fixed
No noise

T2-S1 0.447 222.858 0.000* T4-S1 0.525* 4.517 0.000* T8-S1 0.796 0.239 0.634 T12-S1 0.623 2.373 0.143
T2-S2 0.909 18736 0.005* T4-S2 0.527 22.225 0.002* T8-S2 0.478 57 802 0.000* T12-S2 0.866 19.774 0.000*

T2-S3 0.606 651.323 0.000* T4-S3 0.806 19.600 0.002* T8-S3 0.530 2.266 0.158 T12-S3 0.749 4.415 0.052
T2-S4 0.823 2.350 0.176 T4-S4 0.448 223.420 0.000* T8-S4 0.603 23.018 0.000* T12-S4 0.567 20.497 0.000*

T2-S5 0.542 99.731 0.000* T4-SS 0.738 29.731 0.001* T8-SS 0.467 201.194 0.000* T12-S5 0.577 24.990 0.000*

T2-S6 0.463 21.493 0.004* T4-S6 0.610 130.662 0.000* T8-S6 0.870 0.055 0.819 T12-S6 0.552 282.981 0.000*

T2-S7 0.712 34.154 0.000* T4-ST 0.554 20.251 0.002* T8-S7 0.760 4.805 0.049* T12-S7 0.764 0.031 0.863
Group 0.681 185.274 0.000* Group 0.598 393.931 0.000* Group 0.830 53.650 0.000* Group 0.759 37.622 0.000*

High noise
T2 S1 0.623 69.699 0.000* T4-S1 0.646 16.732 0.004* T3-S1 0.764 0.002 0.965 T12-S1 0.748 0.023 0.882
T2-S2 0.894 0.955 0.366 T4-S2 0.763 0.338 0.577 T8-S2 0.623 20.763 0.001* T12-S2 0.833 4.108 0.060
T2-S3 0.751 140.660 0.000* T4-S3 0.449 10.477 0.012* T8-S3 0.658 2.778 0.121 T12-S3 0.360 0.001 0.980
T2-S4 0.142 1.803 0.228 T4-S4 0.619 2.963 0.124 T8-S4 0.532 1.206 0.294 T12-S4 0.566 0.136 0.717
T2-S5 0.722 11.569 0.015* T4-S5 0.540 9.007 0.017* T8-S5 0.588 12.422 0.004* T12-S5 0.700 0.019 0.892
T2-S6 0.690 12.204 0.013* T4-S6 0.521 3.911 0.083 T3-S6 0.604 0.427 0.526 T12-S6 0.790 43.033 0.000*

T2-S7 0.665 13.601 0.010* T4-S7 0.758 0.072 0.795 T8-S7 0.743 5.431 0.038* T12-S7 0.687 1.361 0.260
Group 0.749 31.654 0.001* Group 0.759 13.159 0.007* Group 0.865 19.135 0.001 Group 0.824 0.005 0.942

Note: Results of nested significance tests of nested models that fix te, reporting the R2 summary of goodness of fit for the fixed model, the F-test for significance relative to the
fuller model with te free to vary, reported in Table 1, and the corresponding p-value. One model ‘‘te = 0” assumes 0% transfer, corresponding to 100% specificity. Another model,
‘‘te = Number of training blocks” assumes 100% transfer, or 0% specificity of training. A third model, ‘‘te = 2” assumes transfer of the first two training blocks (1st day) only.
* Indicates significant differences between the free and constrained model, at least at the 0.05 level.
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specificity than merely training and testing independent neural
representations.

Taken together, the nested model tests on te suggest that after
additional training until asymptote, performance is worse in the
transfer stage for group T12 than for the T2 group that trained
the least, thus reinforcing the notion that optimized learning is less
likely to transfer. The majority of F-tests for the individual observ-
ers were generally consistent with these conclusions (Fig. 3a–d).
The T4 and T8 groups having an intermediate pattern of specificity,
suggesting a continuous reversal of transfer towards specificity
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with increased training.5 These results are remarkable – improve-
ments seen after transfer to a second task following only two blocks
of training are largely eliminated after more extended training to
yield increasing specificity.

A framework that suggests specificity is due to training and
testing separate neural populations in early visual cortex cannot
account for the data. A framework suggesting that more training
can lead to additional transfer is also rejected. We are lead to infer
that learning is a dynamic process that has different consequences
for transfer and specificity for different amounts of training. Possi-
ble interpretations are considered in the discussion.

3.5. Specificity index

The pattern described in the previous sections has a parallel
expression when summarized with specificity indices. Specificity
indices quantify the performance at the initial point of transfer
as a proportion of the total improvement in the training phase that
does not transfer. An initial performance in the transfer phase that
matches the initial performance in the first task (assuming
equivalence of the two tasks) corresponds to a specificity of 1.0.
Fig. 4 shows the results for a form of the index S0c ¼

Ci
X1 � Ci

Tendþ1

� �
= Ci

T1 � Ci
Tendþ1

� �
(see Section 2 for discussion) that

uses the final contrast threshold expected at the next block

Ci
Tendþ1 as the estimated final learning in the training stage in order

to take into account rapid learning in the early stages of practice.
This is modified from the standard index (Ahissar & Hochstein,
1997; Jeter et al., 2009), developed for cases were initial training
has already reached asymptotic levels of performance, which omits
the +1 in the subscript. (The standard index leads slightly smaller
estimates especially for briefer training conditions, and yields a
negative estimate of specificity for T2, corresponding to perfor-
mance even better than the final block of the initial task.) Specific-
ity indices are plotted for each training group for tests with and
without external noise masks (Fig. 4). The specificity scores in-
crease with the amount of initial training, with the highest speci-
ficity for T8 and T12. These specificity indices are generally also
higher for high noise test conditions than for no noise tests. In high
noise trials, all groups except T2 showed significant degrees of
specificity as measured by the index (all p < 0.05 by one sample
t-test), while those for T2 were not significantly different from zero
(n.s.). In no noise trials, T2 and T4 specificity scores showed no sig-
nificant difference from zero, indicating transfer (all p > 0.10) while
T8 and T12 showed partial specificity. The high noise tests may
have larger specificity indices because these tests are more sensi-
tive to mistuning of weight templates for external noise exclusion
(Dosher & Lu, 1998) upon changing to the transfer task.

3.6. Switchback session

We also evaluated the impact of continued training during the
second, transfer phase (the eight blocks after the task switch) on
the performance of the initial task through a ‘‘switchback” test. A
subset of subjects was switched back to the initial training task
in an additional session after training and transfer stages were
completed (see Fig. 2c right and Section 3.6). The performance in
the switchback block is statistically equivalent, with one exception,
to the last block in the initial training phase (see Fig. 5), which
5 An anonymous reviewer suggested that individual observers show either ful
transfer or full specificity, with different mixtures in different training conditions. Due
to the fact that each observer appears in only one group, we cannot rule out this
interpretation. However, continuous changes in optimized weight structures provide
an alternative and consistent account of the results, one we feel is more consisten
with the overall pattern of data.
l

t

tested the identical task, stimuli, and retinal location (all p > 0.10
by paired t-test with the exception of T2 in Hi Noise where the
switchback threshold is significantly better i.e., lower than the
threshold from the last day of initial training). Despite having prac-
ticed for eight additional blocks on a different position and orien-
tation during the transfer phase, performance on the initial task
was essentially unchanged. There are two possible interpretations
of these data. One is that there is an asymmetry of influence pre-
serving the earlier-learned information: training in the initial stage
task alters performance in the transfer stage task, but training in
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the transfer phase task does not go back to corrupt learning on the
initial training task. Another possibility – one that we favor – is
that there are two influences on learning, namely general learning
improvements, and specific learning switch costs, that oppose and
approximately cancel one another in this situation. These possibil-
ities are considered further below.
4. Discussion

In summary, the group that trained the least (T2), correspond-
ing to the early stages of the training process where learning is
most rapid (Hawkey, Amitay, & Moore, 2004; Poggio, Fahle, & Edel-
man, 1992), also has the most transfer. While providing the best fi-
nal performance for the first task, training that approaches
asymptotic performance (e.g., T12) also engages specific learning
that increasingly limits the transfer to the second task with similar
but different stimuli and judgments. Groups that have not reached
asymptotic performance in training (e.g. T4, T8) show an interme-
diate pattern of transfer at the initial point in the transfer stage.
Continued training on the transfer task results in perceptual learn-
ing of that task. So, the most specificity, or least transfer, was ob-
served for group T12 with the most training at the initial point of
transfer. Although the T12 performance in the transfer task with
different orientation and locations showed almost full specificity
at the switch point, yet there was some indication in the data that
the subsequent perceptual learning of the new task is not quite as
efficient as the initial learning: The learning in the transfer task
was slightly but significantly slower than the learning in the origi-
nal task for the same number of training blocks. When switched
back to the initial training task in the final session, performance
was essentially where it left off. So either the intervening training
on the transfer task does not interfere significantly with the origi-
nal learning, or else, as we believe, increasing specificity offsets
ongoing general learning6. These results demonstrate that specific-
ity of learning to stimulus dimensions such as orientation and retinal
position changes dynamically over the course of training. To our
knowledge, this is the first systematic empirical examination of
the effects of increased training on transfer in perceptual learning.
The current study examined the case of transfer to a different feature
value (i.e., reference orientation angle) in different visual location,
which plausibly incurs switch costs due to the inconsistency in ori-
entation angles. Further research is needed to fully understand the
boundary conditions for the phenomena.

In any case, the results of the current experiment would seem to
rule out several of the hypotheses about transfer and specificity
outlined in the introduction. The separate neural representations
framework in its simple form predicts specificity regardless of the
extent of initial training since the two tasks are assumed to train
separate and independent representations for the different orien-
tations and different visual positions. That initially transferrable
improvements are eliminated and reversed with extended training
suggests that the classic observations of specificity following
asymptotic training does not reflect retuning or other modification
of different, independent, pieces of visual cortex (Ahissar & Hoch-
stein, 1997; Gilbert et al., 2001; Karni & Sagi, 1991), at least in any
simple way. Even if this framework were modified to allow for
some small amount of general learning at the beginning, these ini-
tial benefits due to general task familiarization should be main-
tained even if subsequent learning is 100% specific.

The incremental transfer framework argues that whatever is ac-
quired at each incremental stage of learning has some chance of
transfer, so that net transfer can only be improved with further
6 These switchback results may depend upon ongoing general learning and the
distance between the orientations trained in the two tasks.
training. This is also inconsistent with our findings – it predicts ex-
actly the opposite ordering of empirical transfer reported here,
such that the longest initial training should have had the highest,
not the lowest amount of benefit at the point of task switch.

The reverse hierarchy theory (Ahissar & Hochstein, 1997, 2004)
states that ‘‘easy” tasks are learned at higher levels of the visual
hierarchy and therefore are transferrable, while ‘‘difficult” tasks re-
quire learning at lower levels of the visual hierarchy, and are spe-
cific to spatial location and for features such as orientation or
spatial frequency. The relevant predictions for training on a high
precision task (a ‘‘difficult” task in RHT labeling, see Jeter et al.,
2009) are not specified in the source papers, and so open to inter-
pretation. We suggest that the most likely prediction is that early
improvements, and associated transfer, reflect changes at high lev-
els in the visual hierarchy, while subsequent improvements reflect
changes at lower, fully specific, levels. The cascade of learning pro-
posed by newer forms of the RHT (Ahissar & Hochstein, 2004)
claims that learning first occurs at high and transferrable levels
of the visual hierarchy, and then cascades to lower levels of the vi-
sual hierarchy if that level leads to improvements in performance.
This framework predicts constant and complete specificity with
the exception of an early and constant transfer benefit. The current
data were not compatible with these claims: either all training
should be specific in as much as the task is high precision and so
must be learned at a low, nontransferable, level of the visual hier-
archy; or some small early amount is transferred, but all subse-
quent training should have no effect on the amount of transfer.
The RHT provides no explanation why an early transfer should be
reversed – if performance of the new task based on higher-level
learning leads to better performance, then learning of the switch
task should begin with the transferrable performance as the start-
ing point of subsequent learning.

We suggest instead that the dynamic properties of specificity in
perceptual learning are better understood as the learned optimiza-
tion of the selection or weighting of sensory inputs to the task
(Dosher & Lu, 1998; Petrov et al., 2005). During training, a first-
approximation to the optimum connections (weights) that selec-
tively enhances the channels near the signal stimuli and down-
weights the task-irrelevant channels are learned first, and a more
specific weight optimization that more narrowly focuses on the
signal stimuli is refined and solidified as learning continues. This
possible interpretation is generally consistent with an Augmented
Hebbian Reweighting Model (AHRM) of perceptual learning (Pet-
rov et al., 2005). It may also provide an explanation for reported
differences in brain activation during different phases of percep-
tual learning (Yotsumoto, Watanabe, & Sasaki, 2008).

Petrov et al. (2005) trained observers in an orientation discrim-
ination task, alternating fairly extended training in each of two
distinct external noise contexts, and found that the AHRM model
(for learning in a single location) predicted two aspects of learning
also seen in the data: a general improvement in performance over
practice, and a cost for switching task environments that persisted
over multiple back and forth task changes. Adaptive reweighting of
sensory representation inputs to a decision unit over practice
changes the weight profile to increasingly focus on relevant spatial
frequencies and orientations, while at the same time task-specific
weight optimization caused substantial and persistent costs at task
switches. The experiment in the current paper differs in the change
of angles over tasks, rather than external noise characteristics, and
also by training in a new visual location; it also measures only two
task-training phases. Even so, the current data pattern is similar to
the early phases of the Petrov et al. model predictions and data:
Extensive training on a first task should produce general improve-
ments, especially early in training, offset by increasingly specific
weight optimization that will increase the switch cost at the change
of tasks. The principles of general improvement increasingly offset
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by switch costs associated with highly specific optimization after
extensive training are consistent with the current data set.

This incremental reweighting framework also provides a possi-
ble explanation for the current ‘‘switchback” condition measure-
ments, which are consistent with the observations of Petrov et al.
(2005) for the earliest switch costs, where general improvements
are offset by switch costs to yield a ‘‘switchback” at about the last
level on the previous task. This interpretation is only distinguished
in the Petrov et al. data by the successive, multiple, switch design –
a little used but powerful design for distinguishing between inde-
pendent learning and push–pull optimization of alternate task
performance.

According to the AHRM model, switch costs are specific to cases
where the two tasks have significant differences between shared
parts of the optimized weight structures. In the case where the
optimum weight structures for the two tasks are closely similar
and generally consistent with one another, cooperative learning
may occur in addition – or instead. This framework suggests that
the finding of increased training leading to increased switch costs
for the second task likely reflects the switch of angles between the
two tasks. A location switch without a switch of angle might very
well show less specificity with extended training. Development of
a fully implemented AHRM model that generates quantitative pre-
dictions for transfer across retinal locations, a multi-location
AHRM, is a substantial independent project.

In sum, we favor the incremental reweighting framework’s ac-
count of the current data on the extent of training and the effects
on transfer and specificity. Our results and conclusion will benefit
by further testing either in related between-group designs on dif-
ferent task combinations, or in related task paradigms. Together
with consideration of interesting recent reports of location double
training on transfer to different locations in perceptual learning
Xiao et al. (2008), this work addresses one of the most important
questions in perceptual learning: why and how does learned per-
ceptual expertise transfer?

Our study documented the effect of different amounts of trans-
fer by comparing learning in different groups of observers. An
alternative approach (suggested by a reviewer) might have been
to assess transfer on a second task after different stages of percep-
tual learning in a primary task. The alternative within-observer de-
sign is complicated by two factors. First, the work of Xiao et al.
(2008) showed that alternate training of locations may in some cir-
cumstances ‘‘promote” transfer from one location to another. The
effects of double training are not fully understood yet; the compar-
ison of transfer in groups receiving different amounts of training
avoids them. Second, the periodic assessment of performance on
a transfer task within an observer is a variant of the Petrov et al.
(2005, 2006) paradigm in which observers alternate between two
learning or task contexts, perhaps with only a single block of prac-
tice in the transfer ‘‘assessment” phases interspersed with longer
training phases on the main task. The Petrov et al. study, described
above, found general learning as well as optimization for each task/
context and consequent switch costs following every task alterna-
tion. These results document that the transfer assessment phases
of a within-observer design would alter the system it is trying to
measure – a form of Heisenberg principle in perceptual learning.
Interpretation of such data, as suggested above, would require a
quantitative model – a new elaboration of the Petrov et al.
(2005) Augmented Hebbian Reweighting Model (AHRM) (or a con-
tender model) – for transfer across different retinal locations to
provide a system within to assess the potentially complex interac-
tions of primary and transfer training. The substantive theoretical
elaboration and experimental testing of such a model remain for
future investigations. Together with critical empirical tests, these
model developments aim to contribute to a broad theoretical ac-
count of specificity and transfer in perceptual learning.
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