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Perceptual learning retunes the perceptual template in 
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What is learned during perceptual learning? We address this question by analyzing how perceptual inefficiencies improve 
over the course of perceptual learning (Dosher & Lu, 1998). Systematic measurements of human performance as a 
function of both the amount of external noise added to the signal stimulus and the length of training received by the 
observers enable us to track changes of the characteristics of the perceptual system (e.g., internal noise[s] and efficiency 
of the perceptual template) as perceptual learning progresses, and, therefore, identifies the mechanism(s) underlying the 
observed performance improvements. Two different observer models, the linear amplifier model (LAM) and the perceptual 
template model (PTM), however, have led to two very different theories of learning mechanisms. Here we demonstrate 
the failure of an LAM-based prediction – that the magnitude of learning-induced threshold reduction in high external noise 
must be less or equal to that in low external noise. In Experiment 1, perceptual learning of Gabor orientation identification 
in fovea showed substantial performance improvements only in high external noise but not in zero or low noise. The LAM-
based model was “forced” to account for the data with a combination of improved calculation efficiency and  (paradoxical) 
compensatory increases of the equivalent internal noise. Based on the PTM framework, we conclude that perceptual 
learning in this task involved learning how to better exclude external noise, reflecting retuning of the perceptual template. 
The data provide the first empirical demonstration of an isolable mechanism of perceptual learning. This learning 
completely transferred to a different visual scale in a second experiment. 
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Introduction 
Perceptual learning — improvements in performance 

with training or practice — has been demonstrated in adult 
human observers in a wide range of perceptual tasks 
(Ahissar & Hochstein, 1996; Ball & Sekuler, 1982; Beard, 
Levi, & Reich, 1995; DeValois, 1977; Dosher & Lu, 1998; 
Dosher & Lu, 1999; Fahle & Edelman, 1993; Fine & Ja-
cobs, 2000; Fiorentini & Berardi, 1980; Fiorentini & Ber-
ardi, 1981; Furmanski & Engel, 2000; Karni & Sagi, 1991; 
Karni & Sagi, 1993; Mayer, 1983; McKee & Westheimer, 
1978; Mollon & Danilova, 1996; Ramachandran & Brad-
dick, 1973; Saarinen & Levi, 1995; Sagi & Tanne, 1994; 
Shiu & Pashler, 1992; Vogels & Orban, 1985). Most stud-
ies on perceptual learning have investigated transfer or lack 
of transfer of perceptual learning to modified forms of the 
same task or to different, related tasks (Ahissar & 
Hochstein, 1996; Ahissar & Hochstein, 1997; Ahissar, 
Laiwand, Kozminsky, & Hochstein, 1998; Ball & Sekuler, 
1987; Berardi & Fiorentini, 1987; Dorais & Sagi, 1997; 
Fiorentini & Berardi, 1980; Fiorentini & Berardi, 1981; 
Karni & Sagi, 1993; Liu & Vaina, 1998; Poggio, Fahle, & 
Edelman, 1992; Ramachandran & Braddick, 1973; Ruben-
stein & Sagi, 1993; Schoups, Vogels, & Orban, 1995; Shiu 
& Pashler, 1992). These studies do not directly assess task-

relevant changes to the perceptual system during learning 
itself; rather, they assess the generalizability of perceptual 
learning at the end of training or practice with important 
implications for the character and locus of learning.  

But, how does the perceptual system change during 
perceptual learning? What underlies the improved percep-
tual performance as a result of practice or training? First 
investigated by Saarinen and Levi (1995) in perceptual 
learning of a Vernier task, the mechanisms of perceptual 
learning have been the focus of a number of recent studies 
(Chung & Tjan, & Levi,  ; 2001
Dosher & Lu, 1998; Dosher & Lu, 1999; Gold, Bennett, 
& Sekuler, 1999; Li, Levi & Klein, 2003; Tjan, Chung, & 
Levi, 2002). Using the external noise approach (Dosher & 
Lu, 1998; Lu & Dosher, 1998; Lu & Dosher, 1999), these 
studies directly evaluate the mechanisms underlying per-
formance improvements throughout perceptual learning by 
analyzing the inefficiencies of the perceptual system over 
the course of practice.  

Originally developed by electrical engineers in analyz-
ing noisy amplifiers, the external noise method has become 
an important tool widely used to characterize and analyze 
inefficiencies of the perceptual system (Ahumada & Wat-
son, 1985; Burgess, Shaw, & Lubin, 1999; Burgess, Wag-
ner, Jennings, & Barlow, 1981; Lu & Dosher, 1999; Naga-
raja, 1964; Pelli, 1981; Pelli & Farell, 1999). In a typical 
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application, the threshold — signal stimulus energy required 
for an observer to achieve a given performance level — is 
measured as a function of the contrast of external noise 
(the “TVC” function). The method quantitatively assays 
perceptual inefficiencies in terms of equivalent internal 
noise(s) and efficiency of the perceptual template. By meas-
uring TVC functions over the course of perceptual learn-
ing, the external noise approach to perceptual learning 
tracks changes of the characteristics of the perceptual sys-
tem (e.g., internal noise[s] and efficiency of the perceptual 
template) as perceptual learning progresses and therefore 
identifies the mechanism(s) underlying the observed per-
formance improvements (Dosher & Lu, 1998, 1999). 

In a previous application of the external noise ap-
proach, Dosher and Lu (1998, 1999) found that perceptual 
learning improved performance (reduced contrast thresh-
olds) at all levels of external noise in an orientation identi-
fication task in visual periphery. Detailed statistical analyses 
suggested that although performance improvements in zero 
and high external noise co-occurred, the magnitudes of 
these separate improvements were only partially, not per-
fectly, coupled. Using a theoretical framework based on the 
perceptual template model (PTM) of a human observer (Lu 
& Dosher, 1999), Dosher and Lu (1998, 1999) identified a 
mixture of stimulus enhancement and external noise exclu-
sion (see below) as the mechanism of perceptual learning 
(Dosher & Lu, 1998; Dosher & Lu, 1999).  The data pat-
tern observed by Dosher and Lu (1998, 1999), reduction of 
contrast threshold throughout an entire range of external 
noise levels, was later replicated by Gold et al. (1999) using 
the same external noise approach in two different tasks: 
band-pass noise and novel face identification. Although the 
data patterns were identical, Gold et al. (1999) concluded 
that perceptual learning enhances processing efficiency only 
for the signal stimulus, a very different conclusion from 
Dosher and Lu (1998, 1999).  

The two drastically different theoretical interpretations 
of the same data pattern stem from two different models of 
the human observer, the linear amplifier model (LAM) in 
Gold et al. (1999) and the perceptual template model 
(PTM) in Dosher and Lu (1998, 1999). Although it has 
been frequently shown that LAM is an inadequate observer 
model for human performance (Burgess & Colborne, 
1988; Chung & Tjan, & Levi, 2001; Eckstein, Ahumada, 
& Watson, 1997; Lu & Dosher, 2002a; Lu & Dosher, 
1999; Pelli, 1985; Tjan et al., 2002), the LAM-based effi-
ciency-improvement account of perceptual learning none-
theless has been adopted by some researchers because (1) it 
requires less systematic data to specify, and (2) it can pro-
vide an adequate description of TVC functions at a single 
performance level. In contrast, although the PTM requires 
slightly more data to specify, the PTM with a single set of 
parameters has been shown to coherently account for hu-
man performance over a wide range of performance levels 
or the full psychometric functions (Lu & Dosher, 1999; Lu 
& Dosher, 2001); the PTM-based accounts of performance 
improvements in perceptual learning provide very strong 

constraints on the magnitudes of perceptual learning at 
multiple performance levels. 

The ability of the PTM to account for performance at 
different criterion performance levels, and hence the psy-
chometric function, with a single consistent set of parame-
ters is by itself an important advantage.  However the 
choice of model framework – LAM or PTM – also has sig-
nificant substantial consequences in interpretation of the 
underlying mechanisms of perceptual learning. Attributing 
perceptual learning to improved-processing efficiency in a 
LAM leads to very strong predictive constraints on the rela-
tive magnitudes of perceptual learning in high and low ex-
ternal noise levels based on improved calculation efficiency.  
In contrast, the PTM accommodates independent mecha-
nisms of expressions of perceptual learning in high and low 
external noise levels. 

Detailed theoretical analyses of various external noise 
methods, observer models including the LAM and the 
PTM, and theoretical accounts of perceptual learning and 
attention based on these methods and models have been 
presented in conferences (Lu & Dosher, 2002a; Lu & 
Dosher, 2002b) and are in preparation. In this study, we 
investigate one theoretical constraint for the LAM-based 
efficiency account of perceptual learning to be parsimoni-
ous: magnitude of threshold reduction in low external 
noise cannot be less than that in high external noise.  

We begin by reviewing the LAM, the PTM, and the as-
sociated theoretical framework for interpreting the effects 
of perceptual learning in external noise, as well as the em-
pirical literature on the relationship between learning mag-
nitude and external noise level. 

The LAM and the efficiency account of per-
ceptual learning 

The LAM (Figure 1a) models the human observer in 
analogy to a noisy linear amplifier, consisting of a noise-free 
linear amplification with perceptual or calculation effi-
ciency E , an equivalent additive internal noise , and a 
decision stage (Ahumada & Watson, 

Neq
1985; Barlow, 1956; 

Burgess et al., 1981; Nagaraja, 1964; Pelli, 1981).  The con-
cept of perceptual or calculation efficiency is not well un-
derstood; however, it is usually interpreted as a reflection of 
the ability of the observer to utilize sensory information. 
The equivalent additive noise determines the absolute 
threshold for the observer. 

For a signal stimulus embedded in Gaussian external 
noise with SD Next, the LAM predicts that the threshold c 
at a given performance level τ (e.g., 70.7% correct) as 

cτ (Next) =
Neq

2 + Next
2

Eτ
 (1) 

Note that the calculation efficiency Eτ in Equation 1 
depends on the performance level upon which threshold is 
defined. Whereas Equation 1  often provides excellent ac-
counts of psychophysical data at a single performance level 
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in a wide range of perceptual tasks (for a review, see Burgess 
et al., 1999), it in general fails to account for human behav-
ior at multiple performance levels, even with a reasonable 
elaboration that relates Eτ  to the corresponding perform-
ance levels (Lu & Dosher, 1999).  

Because the LAM consists of two parameters, the 
equivalent additive internal noise (Neq) and the calculation 
efficiency (Eτ), there are essentially two possible ways per-
ceptual learning can improve the performance (reducing 
thresholds) of the model: (1) increasing calculation effi-
ciency, which results in threshold reduction with equal 
magnitude (in log) across the full range of external noise 
levels (Figure 1b), and/or (2) reducing equivalent internal 
noise, which results in threshold reduction restricted in low 
external noise conditions (Figure 1c). Therefore, a “pure” 
efficiency account of perceptual learning (e.g., Gold et al., 
1999) predicts perceptual improvements with equal magni-
tude across all the external noise levels, a prediction re-
jected by Dosher and Lu (1999). 

Here we focus on another theoretical constraint placed 
by the LAM-based account of perceptual learning – the 
magnitude of threshold reduction as a result of perceptual 
learning in high external noise should be less or equal to 
that in low external noise (Figure 1d). This constraint fol-
lows directly from the model prediction that efficiency im-
provements reduce thresholds with equal magnitude across 
all the noise levels and internal noise reduction reduces 
thresholds only in low external noise levels. Therefore, any 
mixture of the two mechanisms should produce equal or 
larger threshold reduction in low external noise. If thresh-
old reduction with larger magnitude in high external noise 
were observed, the LAM-based theory would be “forced” to 
generate an apparently paradoxical account: perceptual 

learning improves calculation efficiency yet increases (dis-
improves) additive internal noise. Though mathematically 
possible, such an account of perceptual learning would, 
however, render the theory much less parsimonious, and 
additionally would require an explanation of why practice 
increases the level of internal additive noise. 

The PTM and three mechanisms of percep-
tual learning 

The PTM (Lu & Dosher, 1999) attributes perceptual 
inefficiencies to three limitations: internal additive noise 
sets the absolute thresholds for perceptual tasks; perceptual 
templates, often not perfectly matched to the signal in the 
stimulus, allow unnecessary influence of external noise or 
distractors on performance; and internal multiplicative 
noise that increases with input stimulus energy diminishes 
the benefit from increasing stimulus contrast and therefore 
predicts Weber’s Law behavior. A PTM consists of five 
components (Figure 2a): (1) a perceptual template, (2) a 
nonlinear transducer function, ||•||γ, (3) a multiplicative 
Gaussian internal noise whose SD is proportional (with a 
factor of Nmul) to the total energy in the stimulus after the 
nonlinear transformation, (4) an additive internal noise 
whose amplitude (Nadd) is independent of the stimulus 
strength, and (5) a decision process (see Lu & Dosher, 
1999, for the formal development and quantitative tests for 
the form of the PTM model). In the PTM, threshold signal 
contrast at a particular performance level (i.e., d’) is ex-
pressed as a function of external noise contrast Next: 
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Figure 1. Linear amplifier model (a) and performance signatures
of the two mechanisms (b and c) of perceptual learning and their
mixture (d). 
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cτ =
1
β

(1+ Nmul
2 )Next

2γ + Nadd
2

(1 / d '2 − Nmul
2 )













1
2γ

.  (2) 

A full specification of the parameters of a PTM re-
quires measurements of TVC functions at a minimum of 
three threshold performance levels. In contrast to LAM, 
the PTM has been shown to provide an excellent account 
of threshold versus contrast functions at multiple perform-
ance levels and full psychometric functions across a wide 
range of external noise levels with a single set of parameters 
(Lu & Dosher, 1999).  

Three mechanisms of perceptual learning can be dis-
tinguished within the PTM: stimulus enhancement reduces 
absolute thresholds by reducing internal additive noise; 
perceptual template retuning optimizes the perceptual tem-
plate to exclude external noise or distractors; and contrast-
gain control reduction decreases the impact of internal multi-
plicative noise. These three mechanisms exhibit signature 
performance patterns (Figure 2) when we compare TVC 
functions at several points during perceptual learning 
(Dosher & Lu, 1999). Stimulus enhancement increases the 
relative (vs. internal additive noise) gain of both the signal 
and the external noise in the stimulus and is associated 
with performance improvements only in low or zero exter-
nal noise (Figure 2b). Perceptual template retuning improves 
the ability of the observer to exclude external noise and 
therefore is associated with performance improvements 
only in high external noise (Figure 2c). Contrast-gain control 
reduction increases system response to stimulus contrast and 
is associated with improvements throughout the full range 
of external noise (Figure 2d). In addition, we can distin-
guish various mechanism mixtures by measuring TVC 
functions at multiple performance levels (e.g., 70% and 
80% correct). 

The three mechanisms of perceptual learning in PTM 
provide a complete mathematical basis to accommodate all 
possible systematic patterns of performance improvements. 
An important theoretical question is whether one can em-
pirically isolate each of the three mechanisms of perceptual 
learning within a task domain, and specify the circum-
stances under which these mechanisms operate.  
       In the domain of visual attention, pure cases of tem-
plate retuning (Dosher & Lu, 2000a, 2000b; Lu & Dosher, 
2000) and stimulus enhancement (Lu & Dosher, 1998; Lu 
& Dosher, 2000; Lu, Liu, & Dosher, 2000)  have been 
documented separately and in different circumstances. 
And, the results from the PTM approach have already 
proved useful in recasting and reorganizing the existing 
attention literature (Dosher & Lu, 2000b). 

In the PTM-based theoretical framework, very strong 
constraints are placed on the relative magnitude of percep-
tual learning across different performance levels for a given 
external noise condition (Dosher & Lu, 1999). On the 
other hand, performance improvements in the presence of 
high external noise are attributed to a mechanism of per-

ceptual template retuning, while improvements in the ab-
sence of external noise are attributed to a separate stimulus 
enhancement mechanism. In the LAM-based efficiency 
framework, performance improvements in the presence 
and absence of external noise are completely coupled for 
improved efficiency; additional improvements in the ab-
sence of external noise are accounted for by internal noise 
reduction. An empirical demonstration of larger perform-
ance improvements in high external noise than those in 
low external noise, a natural prediction of the PTM-based 
framework, would pose an empirical challenge to the LAM-
based account of perceptual learning. 

Dependence of the magnitude of perceptual 
improvements on external noise 

The magnitude of perceptual learning may be highly 
dependent on the eccentricity of the stimulus presentation, 
the complexity of the task, and the presence or absence of 
mask/noise in the stimuli (Fine & Jacobs, 2002). For sim-
ple, in low-level tasks presented in fovea, a number of stud-
ies have documented the absence of or only small amount 
of perceptual learning in a clear field (Dorais & Sagi, 1997; 
Fiorentini & Berardi, 1981; Furmanski & Engel, 2000; 
Johnson & Leibowitz, 1979; Matthews, Liu, Geesaman, & 
Qian, 1999; Ramachandran & Braddick, 1973). Other 
studies using hyper-acuity (Bennett & Westheimer, 1991; 
McKee & Westheimer, 1978) or unfamiliar task situations 
(Matthews, Liu, & Qian, 2001; Vogels & Orban, 1985) did 
demonstrate perceptual learning in noiseless foveal dis-
plays. And whether perceptual learning improves absolute 
detection threshold in noiseless displays in fovea (Adini, 
Sagi, & Tsodyks, 2002; Mayer, 1983; Yu, Klein, & Levi, 
2003) is still under debate. On the other hand, substan-
tially more learning in fovea has been observed over a wide 
range of simple visual tasks using stimuli that contained 
external noise (Ball & Sekuler, 1982; Dorais & Sagi, 1997; 
Fine & Jacobs, 2000; Furmanski & Engel, 2000; Gold et 
al., 1999; Saarinen & Levi, 1995; Schoups et al., 1995).  

Overview 
In this study, we exploited the external noise depend-

ency of the magnitude of perceptual improvements in fovea 
to test the theoretical constraint set by the LAM-based the-
ory of perceptual learning. The aim of the study is to dem-
onstrate that it is possible to observe a larger magnitude of 
learning in the presence of high external noise than that in 
the absence of external noise and therefore pose a challenge 
to the LAM-based theoretical framework. Although learn-
ing may of course occur in some circumstances in noiseless 
displays, the literature suggested that the magnitude of 
learning in noiseless condition might be limited, whereas 
learning in high noise circumstances might be more easily 
expressed.  

In Experiment 1, we evaluated effects of perceptual 
learning in a simple foveal orientation identification task 
over a full range of systematically manipulated contrasts of 
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external noise. We compared the LAM- and PTM-based 
theoretical frameworks in their ability to account for the 
data. In Experiment 2, we evaluated whether further per-
ceptual improvements can be obtained at a different view-
ing distance after the observers were trained at one particu-
lar viewing distance. 

Methods 

Apparatus 

All stimuli were presented on a Nanao Technology 
FlexScan-6600 monitor with a P4 phosphor and a 120 
frames/s refresh rate. The display was controlled by a 
7500/100 Power Macintosh computer using a program 
based on PsychToolbox (Brainard, 1997; Pelli, 1997) in 
MATLAB (1998). A special circuit (Pelli & Zhang, 1991) 
combined two 8-bit output channels of the video card and 
divided the full luminance range of the monitor (1 to 53 
cd/m2) into 6144 distinct gray levels (12.6 bits). The display 
was gamma corrected using a psychophysical procedure (Lu 
& Sperling, 1999). All displays were viewed binocularly 
with natural pupil at a viewing distance of approximately 
72 cm in Experiment 1 and 36 cm in Experiment 2 in a 
dimly lighted room. 

 

Stimuli 
The "signals" in the perceptual learning task were Ga-

bor patterns tilted ± 8 deg clockwise or counter-clockwise 
from 45 deg: 

l(x, y) = l0

1.0 + c sin[2π f (x cos(π (45 ± 8) / 180)

+ y sin(π (45 ± 8) / 180))]exp(− x2 + y2

2σ 2
)



















 (3) 

where background luminance l0 = 27 cd/m2, Gabor center 
frequency f = 1.34 c/deg, and Gabor spatial window  σ  = 
0.75 deg. The peak contrast c was set by the adaptive stair-
case procedures.  

External noise images were generated using pixel con-
trasts drawn independently from identical Gaussian distri-
butions. To increase the noise energy in the task-relevant 
spatial frequency channels, the external noise images were 
filtered with a pass-band from one octave below to one oc-
tave above the center frequency of the Gabors. The root 
mean square (RMS) contrast of the filtered images was set 
at 0, 0.021, 0.041, 0.083, 0.124, 0.165, 0.248, and 0.33. 
Whereas the maximum possible contrast in the display is 
1.0, we limited the maximum SD of the external noise to 
0.33 to conform to a Gaussian distribution.  

Both the Gabor patterns and the noise frames were 
rendered on a 64 x 64 pixel grid (3.0 x 3.0 deg) and win-
dowed by a 3.0-deg diameter disk to eliminate explicit cues 
for 45 deg in the display (Figure 3a and 3b). 

Figure 3. Stimuli and proced
bor is tilted 8 deg counter-cl
d. A sample 3/1 adaptive sta
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Design and procedure 
The display sequence of a typical trial is shown in 

Figure 3c. Following a key press, a fixation-cross appeared 
for 250 ms. A stimulus sequence was then presented in the 
center of the display: a frame of random external noise, a 
Gabor patch tilted either +8 or –8 deg from 45 deg, and 
another frame of random external noise, each lasting 16.7 
ms. Both noise frames in each trial were independent sam-
ples from the same noise distribution. The noise is com-
bined with the signal through temporal integration. The 
subject identified the orientation of the Gabor patch by 
pressing one of two keys. A brief beep followed each correct 
response. 

Threshold contrasts at two performance criterion levels 
were estimated for the orientation identification task at 
each of the eight external noise levels using two interleaved 
staircase procedures (Levitt, 1971). One staircase procedure 
(Figure 3d) decreased signal contrast by 10% after three 
successive correct responses and increased signal contrast 
by 10% after every error (a three-down one-up or 3/1 stair-
case). It tracked a two-alternative forced-choice threshold at 
79.3% correct (d’ of 1.634) performance level. The other 
staircase procedure (Figure 3e) decreased signal contrast by 
10% after two successive correct responses and increased 
signal contrast by 10% after every error (a two-down one-up 
or 2/1 staircase). It tracked a two-alternative forced-choice 
threshold at 70.7% correct (d’ of 1.089) performance level.  

All the experimental conditions and staircases were in-
termixed. There were 1,440 trials per session, consisting of 
100 trials for each 3/1 staircase and 80 trials for each 2/1 
staircase at each external noise level. Data were collected in 
10 sessions on separate days. The staircases in every new 
session started from the contrasts in the end of the previous 
session.  

To get better estimates of the thresholds, we pooled the 
data from the two staircases in each external noise condi-
tion and fitted psychometric functions to them using a 
maximum likelihood procedure (Hays, 1981). For each ob-
server, there were 360 trials in each external noise condi-
tion in each training block. Five Weibull functions 
(Wichmann & Hill, 2001)  

Pc(c) = max− (max− 0.5) 2
−

c
α








η

, (4) 

with the same max and η, but independent α ’s, were fit to 
the five data sets in each external noise condition. Thresh-
olds at Pc = 70.7% and Pc = 79.3% were computed from 
the psychometric functions in order to quantify threshold 
versus external noise contrast functions. 

Observers 
 Four graduate students (aged 19 to 24 years), all with 

normal or corrected-to-normal vision and naive to the pur-
poses of the experiment, participated in Experiment 1 with 

informed consent.  Three of these four observers partici-
pated in Experiment 2 immediately after they finished Ex-
periment 1.  

Modeling 
Two mechanisms of perceptual learning based on the 
LAM 

In the LAM-based theoretical framework, there are two 
mechanisms for perceptual improvements due to percep-
tual learning. The first mechanism, perceptual learning-
induced efficiency improvement, is modeled by multiplying 
the perceptual efficiency Eτ in learning block t by a learning 
parameter AEτ(t). This learning parameter may in general 
depend on the performance level on which threshold is 
defined. If this dependency on criterion performance level 
occurs, this represents a failure of parameter consistency of 
the model. The second mechanism, perceptual learning-
induced internal noise reduction, is modeled by multiply-
ing the equivalent internal noise by Aeq(t). From Equation 
1 , we have 

c70.7% (Next , t) =
Aeq

2 (t)Neq
2 + Next

2

AE70.7% (t)E70.7%
  (5a) 

c79.3% (Next , t) =
Aeq

2 (t)Neq
2 + Next

2

AE79.3% (t)E79.3%
 . (5b) 

The signature performance patterns of each of the two 
mechanisms and their mixture are shown in Figure 1. 
Without losing generality, we set Aeq = 1.0 and 

 This simply scales all learning 
in relation to the initial performance level. A full model of 
the data collected in Experiment 1, therefore, consists of 
N

AE70.7% (1) = AE79.3% (1) = 1.0.

eq, E70.7%, E79.3%, Aeq(2,…,5), AE70.7%(2,…,5), and 
AE79.3%(2,…,5), a total of 15 parameters. 

Three mechanisms of perceptual learning based on 
the PTM 

In the PTM-based theoretical framework, perceptual 
learning impacts performance in one or a combination of 
three different ways: (1) retuning the perceptual template 
differentially excludes external noise. This is modeled by 
multiplying the amount of external noise in learning block 
t by a learning parameter ; (2) stimulus enhancement 
amplifies the stimulus (both the signal and the external 
noise). This is mathematically equivalent to reducing inter-
nal additive noise by  (Lu & Dosher, 

Af (t)

a (t)A 1998);  (3) 
changes in contrast-gain control properties result in a re-
duction of internal multiplicative noise by  Equation 
2 can be modified to incorporate the learning parameters as 
follows: 

Am(t).

cτ =
1
β

(1+ ( Am(t)Nmul )2 )( Af (t)Next )2γ + ( Aa (t)Nadd )2

(1/ d '2 − ( Am (t)Nmul )2 )















1
2γ

,(6) 
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The signature performance patterns of each of the 
three mechanisms are shown in Figure 2. Again, without 
losing generality, we set , , and 

. A full model of the data collected in Experi-
ment 1 therefore consists of N

Aa (1) = 1.0 Aa (1) = 1.0
Aa (1) = 1.0

a, Nm,, β, γ, Aa(2,…,5), 
Af(2,…,5), and Am(2,…,5), a total of 16 parameters. 

Fitting procedures 
Six forms of the LAM-based models were considered: 

(1) no perceptual learning (i.e., all learning parameters = 
1.0), (2) changed equivalent internal noise, (3) improved 
efficiencies with separate magnitudes at different perform-
ance levels (independent AE70.7%(t) and AE79.3%(t)), (4) im-
proved efficiencies with same magnitudes at different per-
formance levels (AE70.7%(t) = AE79.3%(t)), (5) a combination 
of (2) and (3), and (6) a combination of (2) and (4). In addi-
tion, eight forms of the PTM-based models were consid-
ered, ranging from no change of any learning parameter 
with increased training to changes of all the learning pa-
rameters with increased learning. 

For each model form, the best-fitting model minimized 
the least square difference between the log of the measured 
threshold contrasts and the log of the model-predicted 
thresholds. The log is used to approximately equate the SE 
of the measured thresholds. The goodness of fit is gauged 
by the r2  statistic  

r2 = 1.0 −
[log(cτ

theory ) − log(cτ )]2∑
[log(cτ ) − mean(log(cτ ))]2∑

,  (7) 

where and mean() were across all the practice and ex-
ternal noise conditions at both performance levels. Of the 
six LAM-based and eight PTM-based models, some are re-
duced models (proper subsets) of the others. F-tests for 
nested models were used to compare these models: 

∑

F(df1, df 2 ) =
(rfull

2 − rreduced
2 ) df1

(1− rfull
2 ) df2

, (8) 

where , and . The s are 
the number of parameters in each model, and N is the 
number of predicted data points. The minimal yet suffi-
cient (i.e., statistically equivalent to the maximum) model 
was selected as the best-fitting model for the data, separately 
for the LAM-based and the PTM-based model lattices. 

df1 = k full − kreduced df2 = N − k full k.

SDs were estimated for the parameters of the best-
fitting LAM-based and PTM-based models using a re-
sampling method (Maloney, 1990). Each of the 80 thresh-
olds was assumed to have resulted from a normal distribu-
tion with its mean and SD equal to the estimated values 
from the experimental procedure. We “re-generated” 1,000 
copies of theoretical datasets by drawing one sample from 
the 80 threshold distributions each time. We then fit the 
LAM-based and PTM-based models to each copy of the re-
sampled datasets and calculated the SDs of the model pa-
rameters from the results of the fits. 

Results 
Experiment 1 
TVC functions 

In 10 sessions of practice, observers identified the ori-
entation of a Gabor patch (a windowed sinusoidal grating) 
as tilted clockwise or counter-clockwise ( ±  8 deg) from 45 
deg. The Gabor patches were tested in fovea in eight levels 
of external noise. Thresholds at two criterion performance 
levels (Pc = 70.7% and Pc = 79.3%) were estimated in each 
external noise condition using adaptive staircase procedures 
(Figure 3d and 3e). This design yielded a total of 20 [10 
sessions × 2 criterion levels] TVC functions, each sampled 
at eight external noise levels. The average of these TVC 
functions across all the observers are shown in Figure 4, 
pooled over every two sessions. 

Thresholds increased six-fold or more as external noise 
increased, from about 0.086 to 0.56 averaged across the 
training sessions. As expected, the less stringent perform-
ance criterion (70.7%) required lower thresholds than the 
more stringent performance criterion (79.3%). The thresh-
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Figure 4.  a. Threshold versus external noise contrast (TVC)
functions at two performance-criterion levels (70.7% and 79.3%
correct) over 10 training sessions in Experiment 1, averaged
across the four observers. The smooth curves represent the best
fit of the PTM model. The relative SEs of the thresholds are
about 5%. b. Af versus training session blocks for the four ob-
servers as well as the “average” observer AVG. For the average
observer AVG, Af reduced to 0.7289 after 10 sessions of prac-
tice.
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Parameter Value SE 
Neq 0.0417 0.0013 
E70.7% 0.3484 0.0122 
E79.3% 0.2261 0.0078 
Aeq(2) 1.114 0.051 
Aeq(3) 1.389 0.064 
Aeq(4) 1.451 0.066 
Aeq(5) 1.374 0.064 
AE(2) 1.234 0.057 
AE(3) 1.697 0.083 
AE(4) 1.979 0.096 
AE(5) 1.949 0.099 

Table 1. Parameters of the LAM-based model. 

old ratio between the two criterion levels is essentially con-
stant across the eight noise levels and training sessions 
(mean= 1.24; SE = 0.024). Ratio constancy across external 
noise and practice levels indicates that practice did not alter 
contrast-gain control properties of the perceptual system 
(Dosher & Lu, 1999; Lu & Dosher, 1999). 

No significant threshold reduction was observed in the 
noiseless condition on average over 10 days of practice. 
Contrast thresholds, averaged across observers and crite-
rion levels, were about 0.087 in sessions 1 and 2 and 0.084 
in sessions 9 and 10. On the other hand, substantial 
threshold reduction was observed in the high external noise 
conditions over 10 days of practice. Contrast thresholds, 
averaged across observers and criterion levels, reduced by 
about 33%, from 0.72 to 0.48 in the highest external noise 
condition. The magnitude of the improvement is represen-
tative of individual observers. In short, observers were spe-
cifically learning to exclude external noise. Independent of 
any particular model, the data provided an empirical dem-
onstration of a pure, separable mechanism of perceptual 
learning that operates only in the presence of large 
amounts of external noise. 

LAM-based modeling 
In the LAM-based theoretical framework, more learn-

ing in high external noise than in low external noise re-
quires a paradoxical account: a mixture mechanism of im-
proved efficiency and increased damage to performance in 
internal noise. For the data shown in Figure 4a, the LAM-
based model that assumes improved efficiencies with the 
same magnitude at different performance levels (AE70.7%(t) 
= AE79.3%(t)) and increased equivalent internal noise pro-
vided the best fit. With 11 parameters and r2= 0.9915, this 
model is statistically equivalent to the most saturated model 
(F(4,65)=0.0031, p > .95) and is superior to all the models 
with fewer learning mechanisms: (1) F(4,69)=7.542, p < 

, for a comparison with the model that assumes 
modifications of calculation efficiency but constant internal 
noise across training sessions; (2) F(4, 69)=22.72, p < 10 , 
for a comparison with the model that assumes internal 
noise changes but constant calculation efficiency across 
training sessions; and (3) F(8,69)=12.12, p < 10 , for a 
comparison with the model that assumes no learning at all. 
The parameters of the best-fitting model are shown in 

5 × 10−5

−11

−9

Table 1. 
The predictions of the best-fitting LAM-based model 

are plotted in Figure 5a, along with the best-fitting AE  val-
ues in Figure 5b, and best-fitting Aeq values in Figure 5c. 

According to the LAM-based model, perceptual learn-
ing improved efficiency by a factor of 1.95. It also increased 
internal noise by a factor of 1.4. Whereas learning-induced 
enhancement of efficiency results in equivalent perform-
ance improvements (threshold reduction) across all the ex-
ternal noise levels, an exactly compensatory increase of 
equivalent internal noise is necessary to account for the 
lack of perceptual learning in the low noise conditions. 
However, that perceptual learning increases equivalent in-

ternal noise seems to be rather paradoxical, and the re-
quirement that it does so by exactly the amount required to 
cancel the efficiency improvement appears to fail require-
ments of representativeness. Another paradoxical result 
from this modeling exercise is that the estimated calcula-
tion efficiency depends on performance criterion – in fact, 
lower efficiency for 79.3% correct than 70.7% correct. 
Both of these paradoxical results lead to questions about 
the internal coherence of the efficiency model account of 
perceptual learning.  
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Figure 5. a. Threshold versus external noise contrast (TVC) func-
tions at two performance-criterion levels (70.7% and 79.3% cor-
rect) over 10 training sessions in Experiment 1, averaged across
the four observers. The smooth curves represent the best fit of
the LAM model.  AE (b) and Aeq (c) as functions of training from
the best-fitting LAM-based model. 
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PTM-based modeling 
In the PTM theoretical framework, learning only in the 

presence of relatively high external noise implies that per-
ceptual learning retuned the perceptual template to selec-
tively exclude external noise. The hypothesis was tested sta-
tistically. Perceptual template retuning was uniquely identi-
fied as the mechanism of perceptual learning underlying 
the observed performance improvements. With eight pa-
rameters and r2= 0.9915, this model is statistically equiva-
lent to the fullest model that assumes all three perceptual 
learning mechanisms (F(8,64)=0.5582, p > .75) and is supe-
rior to the model that assumes no perceptual learning at all 
(F(4,72)=  12.63, p < 10-7). The parameters of the best-fitting 
model are shown in Table 2. 

In summary, defining the impact of external noise to 
be 1.0 (100%) in (the average of) sessions 1 and 2, retuning 
of the perceptual template during perceptual learning re-
duced the impact of external noise to 0.907, 0.783, 0.729, 
and 0.729 in sessions 3 and 4, 5 and 6, 7 and 8, and 9 and 
10 (Figure 4b). In other words, by sessions 7 and 8 and 9 
and 10, the impact of the external noise was equivalent to 
73% of the original impact of that same external noise in 
the beginning of the practice. The theoretical predictions of 
the best-fitting model are plotted in Figure 4a, along with 
the corresponding Af values for the training sessions in 
Figure 4b.  

Experiment 2 
Experiment 2 was designed to evaluate the specificity of 

learning to spatial scale. Most studies that evaluate specific-
ity of perceptual learning have used a three-stage design: 
initial evaluation of performance levels in several condi-
tions, training or practice in one particular condition, and 
re-evaluation of performance levels in all the conditions. 
The specificity of perceptual learning is then evaluated by 
comparing performance levels before and after training.1 
Another design, frequently used in studies of cognitive 
learning but less frequently used in studies of perceptual 
learning, involves two stages: training or practice in one 
condition, and further training or practice in other condi-
tions. In this design, the specificity of learning is evaluated 

by measuring the amount of further learning in the condi-
tions not included in the initial training. Depending on the 
learning rate and the number of trials involved in reliable 
performance measures, the two designs have different pros 
and cons (Pennington & Rehder, 1995). We chose the sec-
ond design in this study because measurements of TVC 
functions at eight external noise and two performance lev-
els involved relatively large numbers of trials 
(1,440/session). 

Parameter Value SE 
Nadd 0.00115 0.00041 
Nmul 0.037 0.081 
β 0.579 0.011 
γ 2.185 0.1348 
Af(2) 0.907 0.020 
Af(3) 0.783 0.018 
Af(4) 0.729 0.017 
Af(5) 0.729 0.016 

Table 2. Parameters of the PTM-based model. 

 

In pilot studies, we observed perceptual learning at 
both 72- and 36-cm viewing distances. In the main experi-
ment, three of the four observers were tested with exactly 
the same procedure used in Experiment 1, except at half 
the viewing distance. Over six training sessions, no further 
performance improvement was found at any level of exter-
nal noise (Figure 6). Statistical testing failed to identify fur-
ther learning (p > .25). This suggests a complete transfer of 
perceptual learning of the orientation identification task at 
fovea to a viewing distance at half of the original. If transfer 
had not been complete, practice at the new scale would 
have produced new learning, which was not observed. In 
other words, perceptual learning of this task is scale invari-
ant in the range tested (1 to 2). The best-fitting model has 
four parameters (Nadd, Nmul, β, γ ) with r2= 0.9959. 

Discussion and conclusions 
The observed lack of perceptual learning in the noise-

less condition and substantial learning in higher external 
noise conditions in foveal orientation identification is con-
sistent with the results of a number of studies in the litera-
ture (Ball & Sekuler, 1982; Dorais & Sagi, 1997; Fine & 
Jacobs, 2000; Fiorentini & Berardi, 1981; Furmanski & 
Engel, 2000; Gold et al., 1999; Johnson & Leibowitz, 1979; 
Matthews et al., 1999; Ramachandran & Braddick, 1973; 
Saarinen & Levi, 1995; Schoups et al., 1995). On the other 
hand, several other studies have demonstrated perceptual 
learning in fovea in noiseless displays (Bennett & Wes-
theimer, 1991; Matthews et al., 2001; Mayer, 1983; McKee 
& Westheimer, 1978; Vogels & Orban, 1985; Yu et al., 
2003). The exact nature of external noise dependence of 
foveal perceptual learning in this and other tasks requires 
further systematic investigation.  

The observed pattern of perceptual learning – its de-
pendence on the amount of external noise added to the 
signal stimulus – poses major challenges to the LAM-based 
accounts of perceptual learning (Gold et al., 1999). The 
performance improvements in high external noise condi-
tions required improved calculation efficiency in the LAM-
based model, which predicts equivalent performance im-
provements (threshold reduction) across all the external 
noise levels. However, because no learning or less learning 
was observed in low external noise conditions, paradoxical 
compensatory increases of the equivalent internal noise 
were necessary to account for the lack of perceptual learn-
ing in the low noise conditions. This plus the lack of a 
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Lu, 2003) accounted for a very complex behavioral data set 
in a non-stationary environment through incremental 
channel re-weighting without altering early stages of visual 
processing, lending an existence proof of re-weighting of 
early visual channels as a plausible mechanism of percep-
tual learning (Dosher & Lu, 1998; Ghose et al., 2002; Mol-
lon & Danilova, 1996). At the overall system level, a 
mechanism of perceptual template retuning reflects chan-
nel re-weighting, which can have larger consequences for 
external noise exclusion in high noise conditions. 

In Experiment 2, we observed no further learning of 
the foveal orientation identification task at a viewing dis-
tance half of the original. The result suggests a complete 
transfer of perceptual learning to the new viewing distance. 
Manipulating viewing distance while keeping the visual 
display constant simultaneously changes the spatial fre-
quency and the size of the stimuli on the retina but pre-
serves object frequency (Parish & Sperling, 1991). It corre-
sponds to changes of receptive field properties in V1 at dif-
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Figure 6. Threshold versus external noise contrast (TVC) func-
tions at two performance criterion levels (70.7% and 79.3% cor-
rect) over six training sessions in Experiment 2, averaged across
the three observers. The smooth curves are the best fits of the
PTM model. 
principled account of the calculation efficiency at different 
performance-criterion levels render the LAM-based theo-
retical framework both inconsistent and less parsimonious. 

In contrast, the PTM model provides a coherent ac-
count of data in both attention and perceptual learning 
across multiple performance levels and task situations (Lu 
& Dosher, 2002b; Tjan et al., 2002). We conclude, based 
on the PTM framework, that perceptual learning in this 
task involved learning how to better exclude external noise. 
The PTM framework specifies two separate mechanisms of 
improved performance in noiseless and high noise condi-
tions. The empirical result alone demonstrates the possibil-
ity of observing one mechanism – external noise exclusion 
– in the absence of the other. 

The nature of adult plasticity underlying these changes 
in performance with perceptual learning in visual tasks is 
still under debate. Topographical reorganization of cortical 
maps reflecting neuronal recruitment as a result of percep-
tual learning has been documented in primary somatosen-
sory cortex (Elbert, Pantev, Wienbruch, Rockstroh, & 
Taub, 1995; Recanzone, Merzenich, & Schreiner, 1992) 
and primary auditory cortex (Bakin & Weinberger, 1990; 

urup & Fessard, 1935; Recanzone, Schreiner, & Merzen-
ch, 1993; Weinberger, Ashe, Metherate, McKenna, Dia-

ond, & Bakin, 1990). Cortical changes in primary visual 
ortex associated with perceptual learning have shown a 
ack of topographical map reorganization (Crist, Li, & Gil-
ert, 2001; Ghose, Yang, & Maunsell, 2002; Schoups, Vo-
els, Qian, & Orban, 2001). While one study (Schoups et 
l., 2001) found some modest changes of orientation tun-
ng in V1 that accounted for a small fraction of the behav-
oral improvement, others (Crist et al., 2001; Ghose et al., 
002) failed to find any pronounced changes in neural re-
ponsitivity associated with behavioral improvements with 
asks suited for early visual cortical areas. A recent compu-
ational model of perceptual learning (Petrov, Dosher, & 

ferent spatial frequency scales. Transfer of perceptual learn-
ing from one viewing distance to another therefore implies 
scale invariance in the learning mechanism and a form of 
learning that may generalize within a hyper-column of vis-
ual system. It might also suggest that equivalent computa-
tions at multiple resolution (or scales) of the visual pyramid 
may share learning at one particular scale of resolution. 
Because the range of viewing distance change was rather 
limited in this experiment (from 2 to 1), we can’t draw any 
general conclusions about scale invariance of perceptual 
learning in fovea. However, the results are highly suggestive 
and will certainly deserve further investigation. 

Dosher and Lu (1998, 1999) concluded that based on 
perceptual learning of orientation identification in visual 
periphery, the mechanism of perceptual learning consisted 
of a mixture of stimulus enhancement and template retun-
ing. In this study, we found that a single template retuning 
accounted for performance improvements in foveal orien-
tation identification. There are three primary differences 
between the two sets of experiments: (1) orientation identi-
fication was tested in fovea in the current study, but in the 
periphery in Dosher and Lu (1998, 1999), (2) there was a 
simultaneous central letter identification task at fixation in 
Dosher and Lu (1998, 1999), and (3) observers identified 
orientations at ±15 deg from vertical in Dosher and Lu 
(1998, 1999) but ±8 deg from 45 deg in the current study. 
Each of these factors probably partially contributes to the 
different empirical results, although the relative importance 
of the contributions remains to be specified. In general, 
they suggest that the mechanism of perceptual learning for 
any particular task may depend on the exact nature of the 
neural computation and/or visual pathway involved in per-
forming that task.  

The current study provides the first empirical demon-
stration of a pure, that is, isolated, perceptual template retun-
ing mechanism of perceptual learning in a psychophysical 
study. The results are important for theories of perceptual 
learning because they behaviorally demonstrate the exis-
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tence of an isolable mechanism. Much as the spectroscopic 
methods of atomic physics enabled physicists to unravel the 
structure of atoms, applications of the external noise 
method will enable us to discover the different mechanisms 
of perceptual learning. 
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