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ABSTRACT

Perceptual learning—improvement in the perform-
ance of a perceptual task as a function of practice or
training—is a widely observed phenomenon that may
have important practical and theoretical consequences.
Perceptual learning may reflect plasticity in different
levels of perceptual analysis, including changes in
early visual, auditory, or somatic cortices, as well as
higher-order changes in the weighting of information
in task performance. Perceptual learning, as distinct
from cognitive learning or strategy selection, often
exhibits significant specificity to the trained stimuli or
tasks, and is assessed by transfer (or, conversely, gen-
eralization) tests. At a behavioral level, the effects of
perceptual learning on an observer’s performance are
characterized by external noise tests within the frame-
work of noisy ideal observer models. In visual per-
ceptual tasks, behavioral analysis, combined with
evidence from neuroscience, supports perceptual
learning at several levels that has the function of
improving two separable mechanisms: tuning of the
task relevant perceptual template (external noise
exclusion) and enhancing the stimulus (reducing
absolute threshold). These two mechanisms of
improvement are separable in certain circumstances,
but often coexist, albeit with decoupled magnitude.
Many improvements due to perceptual learning reflect
retuning through reweighting of unchanged early
sensory representations.

I. PERCEPTUAL LEARNING

Large improvements in performance on even the
simplest perceptual tasks as a result of practice or
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training have been observed in adult humans in vir-
tually every sensory modality. Improvement in per-
formance as a result of practice can have a profound
impact on the speed or accuracy of performance in
perceptual tasks. Perceptual learning has been
documented in a wide variety of tasks, but the
mechanism(s) by which performance is improved
have been more difficult to identify. Transfer of per-
ceptual learning to modified forms of the same task or
to different related tasks has been the primary tool for
discovering what is learned and inferring the physio-
logical basis of that learning (Fahle and Poggio, 2002;
Fine and Jacobs, 2002). Recently, however, transfer
methods have been augmented by the use of observer
models and external noise tests that identify more
precisely the consequences and mechanisms of per-
ceptual learning (Dosher and Lu, 1998; Dosher and Lu,
1999). The focus in this review is on visual perceptual
learning.

A. Perceptual Learning in Visual Tasks

Since Gibson’s (1969) influential review, learning
effects in adults have been reported for the detection
or discrimination of visual gratings, stimulus orienta-
tion judgments, motion direction discrimination,
texture discrimination, time to perceive random dot
stereograms, stereoacuity, hyperacuity, and vernier
tasks (see Ahissar and Hochstein, 1998; Dosher and Lu,
1999 for reviews). Improvements in performance are
claimed to reflect perceptual learning, as opposed to
cognitive learning, strategy selection, motor learning,
or automatization of stimulus-response relations
(Schneider and Shiffrin, 1997) whenever the perform-
ance is shown to be specific to either a retinal location
or to a basic stimulus dimension such as orientation or
spatial frequency (Karni and Sagi, 1991).
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B. Specificity of Perceptual Learning

Specificity to a retinal location, or to a stimulus
feature such as orientation does provide a strong argu-
ment for the perceptual nature of learning. However,
it is more difficult to unambiguously identify the
mechanism of perceptual learning. It is more difficult
still to infer the functional locus of that learning
(Dosher and Lu, 1998; Mollon and Danilova, 1996),
although strong claims have been made about plastic-
ity in early visual areas (Karni and Sagi, 1991). Per-
ceptual learning has been evaluated for specificity (or
conversely, transfer) to retinal position, eye of origin,
orientation or spatial frequency, and retinal size. Speci-
ficity of learning to retinal position is often observed
in texture discrimination, phase discrimination, orien-
tation discrimination, and visual search (see Fahle and
Poggio, 2002). Position specificity is generally evalu-
ated by visual quadrant (Dosher and Lu, 1999; Karni
and Sagi, 1991); finer location specificity of one degree
or less has also been reported in several tasks. Simi-
larly, orientation discrimination and motion direction
discrimination are at least partially specific to orienta-
tion, although sometimes transfer occurs for mirror
reversed orientations or homologous locations across
the midline. Whether task specificity or generalization
obtains in a task has recently been postulated to
depend on task difficulty (Ahissar and Hochstein,
1997; Liu and Vaina, 1998).

Such location specificity is associated by some
(Karni and Sagi, 1991) with early locus in the visual
system, perhaps V1, with small receptive fields (but
see Mollon and Danilova, 1996 for a critique). Orien-
tation specificity is also often associated with early
visual areas (V1, V2). Specificity to the trained eye has
been seen in a very few cases, and this also specifies
early visual cortex as the relevant region of perceptual
coding. Specificity of perceptual learning to a retinal
location or orientation does implicate representations
early in the visual system, but the conclusion that such
specificity implicates plasticity or perceptual retuning
in those early visual areas is by no means obligatory
(Dosher and Lu, 1998; Dosher and Lu, 1999; Mollon
and Danilova, 1996). Instead, it may be the connections
between the early visual system representations and
decision processes at higher levels that embody system
plasticity. This issue is relevant in the consideration of
the physiological evidence.

C. Task Compatibility

Protocols for learning two or more interrelated
perceptual tasks may also provide constraints on the
inferred level of perceptual learning. If perceptual

learning has retuned the neurons representing certain
orientations in V1, for example, then transfer to a
nearby but different orientation should be difficult,
and retesting of the original orientation after new
training on a second orientation should show alter-
ation in performance. However, two apparently con-
flicting sets of targets can sometimes be learned either
successively or simultaneously without significant
interference. This implies that, although the relevant
stimulus features may be coded early in visual system,
learning may consist of changes in connectivity from
the output of those early areas to an interaction struc-
ture or to a decision structure (Dosher and Lu, 1998;
Dosher and Lu, 1999).

II. MECHANISMS OF
PERCEPTUAL LEARNING

A converging methodology for the investigation of
perceptual learning characterizes the limitations in
performance of the observer and then identifies the
aspects of performance that have improved with prac-
tice or training. Observer models and external noise
tests are useful for this purpose. They allow the char-
acterization of the dependence of perceptual perform-
ance in zero noise (absolute threshold) and in relation
to limits on performance from high external noise in
the stimulus. Improvements in performance can then
be classified as stimulus enhancement improvements
in zero or low noise or as external noise exclusion
when the system is retuned to exclude limiting exter-
nal noise.

A. Observer Models

Perceptual performance is limited by such factors as
intrinsic stimulus variability, receptor sampling errors,
randomness of neural responses, and loss of informa-
tion during neural transmission. At an overall system
level, these inefficiencies can be quantified in terms of
a noisy ideal observer limited by equivalent internal
noise—random internal noise necessary to produce
the degree of inefficiency exhibited by the perceptual
system (e.g., Lu and Dosher, 1999; Pelli, 1981). The
amount of equivalent internal noise is estimated by sys-
tematically manipulating the amount of external noise
(like TV snow or auditory white noise) added to the
signal stimulus and observing how threshold—signal
stimulus energy required for an observer to maintain
a given performance level—depends on the amount of
external noise (see Lu and Dosher, 1999 for a review).
These methods characterize the overall limitations of
the perceptual system, and allow comparisons of the
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efficiency of the perceptual system in different percep-
tual tasks. In fact, specification of internal noise has
become a requirement of any computational model of
human perception (Sperling, 1989).

The noisy perceptual template model (PTM) (Lu
and Dosher, 1999) includes (1) a perceptual template
with signal stimulus with gain f; (2) a power function
nonlinearity %, (3) an multiplicative internal noise N,
that is proportional to the energy in the stimulus;
(4) an additive internal noise N,;, that accounts for
absolute threshold; and finally, (5) a decision process
that operates on the noisy internal representation of
the stimulus. The amount of noise in the external stim-
ulus is N,,;.

This model leads to a fundamental signal to noise
equation for the observer system with three possible
mechanisms of learning:

Y ()
JAYNZ + AZNZ,0((Be)” + AN )+ A2NZ,

The three learning improvement factors are A; (0 <
A;< 1), which reduces external noise N, A, (0 < A, <
1), which reduces internal additive noise N,, and A,,
(0 £ A, £ 1), which reduces internal multiplicative
noise N,,. This equation is rewritten to give the contrast
threshold for a criterion d”:
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The PTM observer model, its relation to earlier
linear observer models, and tests for mechanism mix-
tures (Lu and Dosher, 1999), are described in more
detail in chapter 79, which develops the mechanisms
of attention within the same framework.

B. Mechanism Signatures

There are three distinct mechanisms of perceptual
learning: stimulus enhancement, external noise exclusion,
and changes in gain control. These mechanisms are
analogous to three aspects of signal processing: ampli-
fication, filtering, and gain control modification. Each
of the three mechanisms has a key signature in per-
ceptual task performance.

Learning through external noise exclusion is seen as
improvement (A in the ability to filter out external
noise added to the stimulus, resulting in reduced
thresholds in high external noise. It reflects learning to
focus on the appropriate time, spatial region, and/or
feature content of the signal stimulus. Learning
through stimulus enhancement is seen as impro-
vement (A,) in the amplification of the stimulus,

resulting in reduced thresholds in zero or low external
noise (e.g., absolute threshold). Learning through
multiplicative noise reduction or through a change in
nonlinear transducer are learning-induced changes
(A,) in gain control, would be seen in all external noise
conditions.

Changes in external noise exclusion and in stimulus
enhancement both show effects that are the same (on
a log scale of performance) regardless of the criterion
performance level used to define threshold, c..
Changes in gain control, and specifically in multi-
plicative internal noise, lead to effects that appear
larger (on a log scale) at higher criterion performance
levels (Dosher and Lu, 1999). To date, changes in gain
control due to perceptual learning have not been
observed, but both isolated cases of external noise
exclusion and mixtures of external noise exclusion and
stimulus enhancement have been observed in percep-
tual learning.

C. Observed Mechanisms

Perceptual learning may improve external noise
exclusion (filtering), stimulus enhancement (amplifi-
cation), or both. When both forms of improvement
occur, one mechanism of learning may be more effec-
tive than the other. Consider several examples.

Figure 78.1 shows an example (Dosher and Lu, 1998;
Dosher and Lu, 1999) in which both mechanisms of
learning are prominent, although the magnitudes are
partially decoupled. Performance in an orientation dis-
crimination task in visual periphery was dramatically
improved with practice. Figure 78.1a shows the spatial
layout of the stimulus, which used a dual-task format:
the character 5/S was discriminated in a rapid stream
of characters at fovea, whereas the orientation (top
tilted 12 deg from vertical) of a small sine wave patch
(Gabor) was discriminated in the periphery. Contrast
thresholds were measured using two different adap-
tive staircases (see Figs. 78.1b and c) yielding 70.3%
and 70.7% accuracies. Performance was measured in a
range of external noise conditions (see Fig. 78.1d).

The threshold signal contrasts depend upon crite-
rion accuracy, external noise level, and practice (see
Fig. 78.1e). Higher criterion accuracy demands higher
contrast thresholds. In the high-noise region where
external noise is the limiting factor in performance,
contrast thresholds increase with increasing external
noise. Practice reduces contrast thresholds by a down-
ward vertical shift (in the log) with practice in both
zero and in high external noise (albeit with slightly dif-
ferent magnitudes). We also observed a shift relation-
ship between thresholds at the two performance
criteria. These strong shift properties in the log

SECTION III. MECHANISMS

o



INO078 10/18/2004 4:28 PM Page 474

—p—

474

CHAPTER 78. MECHANISMS OF PERCEPTUAL LEARNING

2.30° 17 540l

31.8 ; ; ‘ ‘ ;
79.3% Accuracy 70.7% Accuracy
15.9/ © Day1/2 |
A Day 3/4
O Day 5/6 A
8.0l x Day7/8 )/
< Day 9/10 o/t

Signal Contrast (%)
[\ >
C? o

—_
o

External Noise Contrast (%)

C
JN N N )

FIGURE 78.1 A perceptual learning task using the external noise paradigm. A. Spatial
layout of the task, including the peripheral orientation discrimination Gabor stimulus,
and a central letter stimulus for a secondary task. B. Contrast threshold (Gabor signal
contrast corresponding to the criterion accuracy) as a function of the external noise in the
stimulus. Threshold is a systematic function of criterion, external noise, and practice (data
from Dosher and Lu, 1998). C. Examples of a signal of constant contrast embedded in

increasing amounts of external noise.

contrast threshold as a function of criterion are a
special characteristic of the perceptual template model.
These results were subsequently replicated in face and
in texture identification tasks (Gold, Bennett, and
Sekuler, 1999).

Other studies using the external noise paradigm
and framework have clearly documented the inde-
pendence of these two mechanisms of learning in high
and low external noise. For example, in certain condi-
tions, such as training orientation discrimination in
fovea, external noise exclusion is isolated as a separate
mechanism. Figure 78.2 illustrates the results of prac-
tice in an orientation discrimination task at the fovea.
Oriented sinewave patches (Gabors) of 45° £ 8° were

discriminated (Lu and Dosher, submitted). This result
is important because it isolates learning to exclude
high external noise as distinct from enhancement of
the stimulus. This rules out explanations of perceptual
learning as an improvement in calculation efficiency.

D. Attention in Perceptual Learning

Many behavioral tests of perceptual learning in
vision require the observer to maintain fixation while
carrying out the critical perceptual task(s) in the
periphery. Sometimes (Dosher and Lu, 1998; Karni and
Sagi, 1991), fixation is ensured by the presence of a task
at fovea. This requires the division of perceptual
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FIGURE 78.2 Perceptual learning in fovea that isolates external
noise exclusion, reflecting learning about when, where, and what to
look for in the target stimulus. These data (Lu and Dosher, submit-
ted) measured the threshold signal contrast to discriminate the ori-
entation (45° £ 8°) of a sine wave patch at fovea at two different
performance criteria.

resources across the task at fixation and the task in the
periphery, and/or division between overt direction of
the eye and attention. The importance of learning to
attend to the perceptual task, especially when this
involves sharing resources between fovea and periph-
ery, deserves further systematic investigation. Even in
cases where fixation and perception are not divided,
learning has been reported to be restricted to the rele-
vant or attended feature of a perceptual stimulus
(Ahissar and Hochstein, 1998), whereas irrelevant vari-
ations that later become the aspect to be judged may
benefit little if at all from exposure to variation in an
irrelevant feature. Alternatively, some researchers
have claimed that perceptual sensitivity is improved
by practice even when the relevant stimuli are sub-
liminal adjuncts to the primary task, although learning
of unattended stimuli appears to require correlation
with an attended task (Seitz and Watanabe, 2003).

III. RETUNING VERSUS
REWEIGHTING

Visual perceptual learning may reflect plasticity in
early visual areas that alters the basic sensory coding
of the stimulus (Karni and Sagi, 1991) or it may reflect
plasticity of the connections between the sensory
coding of the stimulus and decision units that may
reside at higher cortical levels (Dosher and Lu, 1998;
Mollon and Danilova, 1996). If retinal or stimulus
feature specificity is demonstrated, then this implicates
the selection of early visual representations in the con-
nections to decision, but it does not require that early
visual representations be altered by training. Plasticity
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FIGURE 78.3 Schematic diagram of the perceptual system and
perceptual learning via reweighting. The visual input is represented
in early sensory filters, and this information is then fed to decision
units. Perceptual learning that is specific to an attribute of early
sensory filters (e.g., location, orientation, scale) may reflect retuning
of the sensory representation (not shown), or a constant sensory rep-
resentation with changes in the feed-forward weights to decision.

based on reweighting has the additional advantage
that early visual representations are left unchanged, so
that perceptual learning of one task need not impact
on another task and is hence compatible with observed
abilities for compatible training of multiple perceptual
tasks.

A schematic of reweighting due to practice is shown
in Fig. 78.3. Early sensory filters specified for different
spatial frequencies (and orientations) improve their
connections to decision without changing the proper-
ties of the filters themselves. Perceptual learning may
consist in learning optimal weights for inputs from
early sensory coding. Network models are beginning
to be developed to account for perceptual learning in
specific tasks (Fahle and Poggio, 2002).
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IV. PHYSIOLOGICAL
CORRELATES OF LEARNING

Alteration of early sensory representations through
training or exposure has been widely reported in audi-
tory (Bakin and Weinberger, 1990) and somatosensory
cortex (Recanzone, Merzenich, Jenkins, Grajski, and
Dinse, 1992). In these cases, repeated experience with
certain stimuli causes either narrowed tuning of the
early cortical cells, or recruited additional cells into
responding to the trained stimuli.

In the case of visual perceptual learning, however,
evidence for substantial alterations in early visual
cortices with training or practice is lacking. In three
separate studies (Crist, Li, and Gilbert, 2001; Ghose,
Yang, and Maunsell, 2002; Schoups, Vogels, Qian, and
Orban, 2001) in awake behaving monkeys, behav-
ioural performance has improved significantly, these
improvements are to some degree specific, yet there is
little (Schoups et al., 2001) or no (Crist et al., 2001;
Ghose et al., 2002) evidence for significant changes in
tuning of cells in V1 or V2. These results suggest that,
minimally, perceptual learning must involve plasticity
at many levels, certainly at a range of levels above V1
and V2. On the other hand, location and orientation
specificity of learning identifies these early visual areas
as the locus of the relevant sensory representations
that are read-out to higher levels.

A combined analysis and correlation of physiol-
ogical evidence, sophisticated behavioral analysis—
including observer models and external noise
tests—and explicit (network) models of the learning
process in future developments will allow a full spec-
ification of perceptual learning at the neural and the
behavioural levels.

V. IMPACT OF PERCEPTUAL
LEARNING

The mechanisms of perceptual learning have wide
ranging implications for the nature of plasticity in
adult systems. The existence of perceptual learning
also has possible practical implications for many tech-
nical areas of assisted perception and recovery from
injury or damage. For example, perceptual learning
processes can be very important following the intro-
duction of hearing aids or cochlear implants. Techno-
logical environments with assisted perception displays
may require training and perceptual learning to
support optimized performance. How to optimize per-
ceptual learning remains an important question for
many practical applications.
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