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Eye-transfer tests, external noise manipulations, and observer
models were used to systematically characterize learning mecha-
nisms in judging motion direction of moving objects in visual
periphery (Experiment 1) and fovea (Experiment 2) and to inves-
tigate the degree of transfer of the learning mechanisms from
trained to untrained eyes. Perceptual learning in one eye was
measured over 10 practice sessions. Subsequent learning in the
untrained eye was assessed in five transfer sessions. We charac-
terized the magnitude of transfer of each learning mechanism to
the untrained eye by separately analyzing the magnitude of
subsequent learning in low and high external noise conditions. In
both experiments, we found that learning in the trained eye
reduced contrast thresholds uniformly across all of the external
noise levels: 47 � 10% and 62 � 8% in experiments 1 and 2,
respectively. Two mechanisms, stimulus enhancement and tem-
plate retuning, accounted for the observed performance improve-
ments. The degree of transfer to the untrained eye depended on
the amount of external noise added to the signal stimuli: In high
external noise conditions, learning transferred completely to the
untrained eye in both experiments. In low external noise condi-
tions, there was only partial transfer of learning: 63% in experi-
ment 1 and 54% in experiment 2. The results suggest that template
retuning, which is effective in high external noise conditions, is
mostly binocular, whereas stimulus enhancement, which is effec-
tive in low external noise displays, is largely monocular. The
two independent mechanisms underlie perceptual learning of
motion direction identification in monocular and binocular motion
systems.

interocular transfer � stimulus enhancement � external noise exclusion �
mechanisms of perceptual learning

Perceptual learning, which involves improvements of human
performance in perceptual tasks through training or prac-

tice, has been demonstrated in a large variety of perceptual tasks
(1–10). Transfer of perceptual learning to modified forms of the
same task or to different related tasks has been the primary
behavioral tool for discovering what is learned and inferring the
functional locus and physiological basis of that learning. Transfer
has been evaluated in terms of retinal position (1, 7, 11–13), eye
of training (1, 3, 12, 14–16), orientation or spatial frequency (1,
7, 15, 17, 18), and retinal size (12, 15, 19), among other
properties. In many cases, the observed pattern of transfer in
combination with known properties of the visual system have led
to conclusions about the neural mechanisms and locus of
learning. In this study, we focused on transfer of perceptual
learning in identifying motion direction of moving luminance
modulations from trained to untrained eyes.

Previous studies on perceptual learning in motion-direction
identification have found a large degree of transfer from trained
to untrained eyes (13, 16, 20, §) and therefore suggested a largely
binocular site of learning. This conclusion seems to be consistent
with the binocularity of most middle temporal visual area
neurons. However, it appears to be inconsistent with the func-
tional architecture of human motion perception. Based on

different temporal modulation transfer functions and pedestal
immunities measured with monocular and interocular motion
displays, Lu and Sperling (21, 22) proposed that luminance
motion is computed by two monocular and one (less sensitive)
binocular motion systems (23). A recent psychophysical study
found that learning motion discrimination was possible when
middle temporal visual area was presumably ‘‘knocked out’’ by
using psychophysical procedures (24). Single-unit recording
studies in monkeys also suggested that perceptual learning of
motion direction could take place in sites located downstream
from the superior temporal sulcus (25, ¶).

There is one critical difference between the studies on the eye
transfer of perceptual learning of motion-direction identification
and the psychophysical studies on the monocular�binocular
nature of motion systems: all of the studies on eye transfer of
perceptual learning of motion direction used high-contrast mo-
tion displays with large amounts of random noise, whereas the
studies on the monocular�binocular nature of motion systems
used displays with signal contrasts near discrimination thresh-
olds without added noise. It is possible that perceptual learning
of motion-direction discrimination has a large monocular com-
ponent in displays without added noise, although it is largely
binocular in displays with large amounts of added noise.

Recent investigations of the mechanisms of perceptual learn-
ing based on the external noise method suggest that distinctive
learning mechanisms are engaged in displays with and without
added external noise (4, 19, 26–29). By using the perceptual
template model (PTM) (30), perceptual inefficiencies are at-
tributed to three limitations: internal additive noise that sets the
absolute thresholds for perceptual tasks; perceptual templates,
often not perfectly matched to the signal in the stimulus, allow
unnecessary influence of external noise or distractors on per-
formance; and internal multiplicative noise that increases with
input stimulus energy diminishes the benefit from increasing
stimulus contrast and therefore predicts Weber’s law behavior.
Three mechanisms of perceptual learning, each improving on
one of the perceptual limitations, can be distinguished: ‘‘stimulus
enhancement’’ reduces absolute thresholds by reducing internal
additive noise; ‘‘perceptual template retuning’’ optimizes the
perceptual template to exclude external noise or distractors; and
‘‘contrast-gain control reduction’’ decreases the impact of inter-
nal multiplicative noise. These three mechanisms exhibit signa-
ture performance patterns when the external noise method is
used to measure and compare threshold vs. contrast (TvC)
functions at during perceptual learning (27). Stimulus enhance-
ment increases the relative gain (vs. internal additive noise) of
both the signal and the external noise in the stimulus and
improves performance only in low or zero external noise.

Abbreviations: PTM, perceptual template model; TvC, threshold vs. contrast.
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Perceptual template retuning improves the ability of the ob-
server to exclude external noise and therefore improves perfor-
mance only in high external noise. Contrast-gain control reduc-
tion increases system response to stimulus contrast yielding
improvements throughout the full range of external noise.

The differential conditions of eye transfer in the prior motion-
learning studies suggested that different learning mechanisms
might have different degrees of eye transfer in motion-direction
discrimination. In this study, we combined eye-transfer tests, the
external noise method, and observer models to systematically
investigate eye transfer of each learning mechanism in motion-
direction identification in visual fovea and periphery. Observer
performance in eight levels of external noise was measured in
one eye in 10 training sessions and then in the other eye for
another 5 transfer sessions. Learning curves and mechanisms of
perceptual learning were characterized separately for the train-
ing and transfer sessions.

Most studies in the perceptual learning literature evaluate the
magnitude of transfer with a three-step design, measuring pre-
learning performance in several conditions, training or practice
in one particular condition, and measuring postlearning perfor-
mance in all of the conditions. Transfer of perceptual learning
is then evaluated by comparing postlearning and prelearning
performance levels in each condition. Another design, fre-
quently occurring in the cognitive learning literature but less
often in perceptual learning, uses two steps: training or practice
in one condition and further training or practice in other
conditions. In this design, transfer of learning is evaluated by
measuring the amount of further learning in the conditions not
included in the training. Depending on the learning rate and the
number of trials involved in obtaining reliable performance
measures, the two designs have different pros and cons (31).
Because measurements of TvC functions at two performance
levels requires 1,000 trials or so, it is impractical to use the first
design to obtain initial performance levels in both eyes without
inducing significant learning in them. We instead chose the
second design in this study. Here, the magnitude and mecha-
nisms of subsequent learning in transfer sessions were used to
characterize the degree of transfer of each learning mechanism.
If a learning mechanism is substantially trained and then trans-
ferred completely, no subsequent learning would be associated
with this mechanism; otherwise, the mechanism would exhibit

subsequent learning. We quantified the magnitude of transfer
with

transfer index � 1 �
total�threshold�reduction(transfer)
total�threshold�reduction(training)

.

[1]

Ranging from 0 to 1, the index is 0 in the absence of any transfer
and 1 in complete transfer.

Materials and Methods
Experiment 1. Observers identified the motion direction of a
moving luminance sine-wave grating embedded in white noise in
the visual periphery while performing a central fixation task
(Fig. 1a). The central fixation task was used to encourage
observers to maintain fixation. All of the stimulus materials were
presented to one eye (‘‘the trained eye’’) in 10 training sessions
and then to the other ‘‘untrained eye’’ in 5 transfer sessions. A
blank screen with background luminance was shown to the eye
that did not receive stimulus materials.

The stimuli were displayed on a Eizo Nanao Technology
Flexscan 6600 monitor (Torrance, CA) with a P4 phosphor, a
refresh rate of 120 Hz, and a background luminance of 27 cd�m2.
Each trial started with a 500-ms fixation display. A string of five
characters, containing either a ‘‘5’’ or an ‘‘S’’ in the third
temporal position and two randomly selected digits other than 5,
replaced the fixation cross in the center of the display. Each
character was shown for 33.3 ms. Simultaneous with the onset of
the character string, five frames of a moving sine-wave grating
(spatial frequency, 2.03 cycles per degree; temporal frequency,
7.5 Hz; size, 1.54° � 1.54°; center displaced 3.2° horizontally and
2.4° vertically from the fixation) embedded in external noise
appeared in the stimulus quadrant, each lasting 33.3 ms. The
sine-wave grating, with a random initial phase, moved either to
the left or right, with 90° phase shifts between successive frames.
External noise images were constructed from 0.03 � 0.12-pixel
patches with identically distributed contrasts drawn indepen-
dently from Gaussian distributions with mean of 0 and standard
deviation (SD) of Next � {0,0.02,0.04,0.08,0.12,0.16,0.25,0.33}.
The maximum SD was set at 0.33 to conform reasonably well
with Gaussian distributions. External noise was added to the
signal sine-wave gratings by means of spatial and temporal
integration: In a given frame, signal and external noise were

Fig. 1. Experimental procedures. (a) Illustration of a stimulus display sequence (Experiment 1). All of the stimulus materials were presented to the right eye
during training. In transfer sessions, the stimuli were all presented to the left eye in corresponding spatial locations. (b) Stimulus display sequence for Experiment
2. For some observers, training was administered in the left eye. For others, training was in the right eye. (c) Motion stimuli embedded in eight different amounts
of external noise. Each image shows five frames of a rightward moving sine-wave grating. The phase shift between successive frames is 90°.
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displayed in alternative 0.03° rows; across frames, the pixels in a
given row were alternately drawn from signal and noise images
(Fig. 1c).

Observers identified the character (5 or S) in the central task
and the direction of motion in the periphery. An auditory beep
followed each correct response. Observer’s threshold contrasts
at two performance criterion levels were estimated for the
peripheral task at each of eight external noise levels by using two
interleaved staircase procedures (32). The two staircases esti-
mated thresholds at 79.3% and 70.7% correct, corresponding to
d� of 1.634 and 1.089 in two alternative forced-choice identifi-
cation, by increasing contrast by 10% (Cnew � 1.1C) after each
error and reducing contrast by 10% (Cnew � 0.9C) after three or
two correct responses, respectively. Measurements of contrast
thresholds at two criterion levels are critical in discriminating
mixtures of perceptual learning mechanisms (27).

Three observers, Q.K., R.K., and S.L., with corrected-to-
normal vision and naı̈ve to the purpose of the experiment,
participated in the study. The right eye is the dominant eye for
R.K. and S.L., and the eye dominance of Q.K. is unknown. They
each ran 10 training and then 5 transfer sessions. There were
1,120 trials per session, 80 and 60 trials per 3-down-1-up and
2-down-1-up staircases. Each session lasted �45 min. All in all,
each observer ran 16,800 trials.

Experiment 2. The method for Experiment 2 was identical to that
of Experiment 1 except that the motion stimuli were presented
in fovea, there was no fixation task (Fig. 1b), and the initial
training eye was different for different subjects. Three observers,
T.J., U.P., and Y.Y., all with normal or corrected-to-normal
vision and naı̈ve to the purpose of the experiment, participated
in the study. For T.J. (dominant eye, right), the initial training
was performed in the right eye. For U.P. (dominant eye, right)
and Y.Y. (dominant eye, right), the initial training was per-
formed in the left eye.

Results
Experiment 1. The central task was used to encourage observers
to maintain fixation. Central task performance was essentially

constant, and good, across all training and transfer sessions as
follows: 83 � 9%, 87 � 3%, and 83 � 4% for the three observers.
External noise level in the perceptual task did not significantly
affect accuracy on the central task (P � 0.10).

An average learning curve (log threshold contrast as a func-
tion of log training days) for each external noise condition was
calculated for training and transfer sessions by averaging thresh-
old contrasts across observers and performance criteria for
separate training days. The learning curves are shown in Fig. 2
a and b for the training and transfer phases of the experiment.
Learning rates were estimated by using log–log linear regressions
of the learning curves, consistent with power-law learning
(33–35).

Over the 10 initial training sessions, practice reduced thresh-
olds in the trained eye in all of the external noise conditions (P �
0.015) with an average of 47 � 10% total reduction and a rate
of �0.29 � 0.06 log units reduction per log unit of training
session. The existence and magnitude of subsequent learning in
the untrained eye depended on the external noise condition.
Subsequent learning was significant in three (P � 0.03) and
marginally significant in two (P � 0.09) of the five lowest external
noise conditions and not significant in the highest three external
noise conditions (P � 0.50). In the lowest five external noise
conditions, contrast threshold reduced on average a total of 20 �
5% at a rate of �0.12 � 0.03 log units of reduction per log
session. In the highest three external noise conditions, threshold
reduced 4 � 8% on average over five transfer sessions at a rate
of �0.06 � 0.02 log units per log session.

The transfer index (Eq. 1) was calculated for the low and high
external noise conditions separately and is shown in Fig. 3. In the
lowest five external noise conditions, the average transfer index
was 55 � 12%, significantly less than 1.0 (P � 0.05). In the
highest three external noise conditions, the average transfer
index was 89 � 17%, not significantly different from 1.0 (P �
0.25). The results suggest that training in one eye transferred
completely to the other eye in high external noise conditions.
There was only partial transfer of learning from the trained to
the untrained eyes in low external noise conditions.

Thresholds, averaged over observers, are shown as functions

Fig. 2. Results. (a–d) Average learning curves in Experiments 1 (a and b) and 2 (c and d) for the trained and untrained eyes. (e–h) TvC functions at two
performance criterion levels [79.3% (Left) and 70.7% (Right) correct] in Experiments 1 (e and f ) and 2 (g and h) in the trained and untrained eyes.
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of external noise contrast (TvC functions) at the two perfor-
mance criterion levels in Fig. 2 e and f. The TvC functions were
pooled over every two training sessions (Left) and displayed for
each single transfer session (Right). The ratio of thresholds
corresponding to 79.3% and 70.7% correct is essentially constant
across the eight noise levels and practice in the training (mean,
1.26; SD, 0.15) and transfer sessions (mean, 1.26; SD, 0.16). The
observed ratio constancy across external noise and practice
levels indicates that practice did not alter contrast-gain control
properties of the perceptual system (27, 30).

TvC functions over training days were fit with the PTM to
characterize the mechanisms of learning (see Appendix). The
data for the two eyes were fit separately. In the trained eye,
performance improved by means of a mixture of stimulus
enhancement and template retuning, estimated by the PTM as
an 87% internal additive noise reduction (or an equivalent 658%
stimulus enhancement) and a 38% external noise exclusion (by
means of template retuning) across the training sessions. The
best-fitting model, accounting for 98.5% of the variance, is
statistically equivalent to the most saturated model that assumes
all three mechanisms of perceptual learning (P � 0.90) and is
superior to all its subset models (P � 0.00001).

In the untrained eye, subsequent learning during transfer
sessions was explained by learning-induced stimulus enhance-
ment in low external noise (51% internal additive noise reduc-
tion or, equivalently, 103% stimulus enhancement) with smaller
(7%) although significant template retuning in high external
noise. The best fitting model (r2 � 98.9%) is statistically equiv-
alent to the most saturated model (P � 0.90) and is superior to
all its subset models (P � 0.01).

The learning parameters are listed in Table 1 for individual
observers and their average. The pattern of results is consistent
across the observers.

Experiment 2. The learning curves for Experiment 2 are shown in
Fig. 2 c and d.� Over the 10 initial training sessions, practice
reduced thresholds in the trained eye in all of the external noise
conditions (P � 0.001) with on average a 62 � 8% total reduction
and a rate of �0.40 � 0.06 log units reduction per log unit of
training. Similar to Experiment 1, the existence and magnitude
of subsequent learning in the untrained eye depended on the

external noise condition. Subsequent learning in the untrained
eye over the five transfer sessions was significant in two (P �
0.03) and marginally significant in three (P � 0.10) of the five
lowest external noise conditions and not significant in the highest
two external noise conditions (P � 0.35). In the lowest five
external noise conditions, contrast threshold reduced on average
a total of 30 � 10% at a rate of �0.22 � 0.08 log units of
reduction per log session. In the highest two external noise
conditions, there was on average a total of 11 � 5% threshold
reduction over five transfer sessions at an average rate of
�0.05 � 0.03 log units per log session.

The transfer index (Eq. 1) was calculated for the low and high
external noise conditions separately (Fig. 3). In the lowest five
external noise conditions, the average transfer index was 48 �
8%, significantly less than 1.0 (P � 0.02). In the highest three
external noise conditions, the average transfer index was 83 �
10%, not significantly different from 1.0 (P � 0.10). The results
suggest that training in one eye transferred almost completely to
the other eye in high external noise conditions. There was only
partial transfer of learning from the trained to the untrained eyes
in low external noise conditions.

The average TvC functions are shown in Fig. 2 g and h for the
two criterion levels. The ratio of thresholds corresponding to
79.3% and 70.7% correct was essentially constant across the
eight noise levels and practice in the training (mean, 1.28; SD,
0.03) and transfer sessions (mean, 1.27; SD, 0.03), indicating that
practice did not alter contrast-gain control properties of the
perceptual system.

The TvC functions for the two eyes were fit with the PTM
separately. In the trained eye, performance improved by means
of a mixture of stimulus enhancement (91.4% internal additive
noise reduction) and external noise exclusion (46.7%) across the
training sessions. The best fitting model (r2 � 97.7%) is statis-
tically equivalent to the most saturated model that assumes all
three mechanisms of perceptual learning (P � 0.90) and is
superior to all its subset models (P � 0.00001).

In the untrained eye, subsequent learning during transfer
sessions was explained by learning-induced stimulus enhance-
ment (69.8% internal additive noise reduction or, equivalently,
231% stimulus enhancement) only across transfer sessions. The
best fitting model (r2 � 97.6%) is statistically equivalent to the
most saturated model (P � 0.50) and is superior to all its subset
models (P � 0.00001). The pattern of results is consistent across
the observers (Table 1).

Summary and Discussion
In two experiments, one conducted in visual periphery and the
other in fovea, we found that monocular learning improved
performance (reduced contrast thresholds) with virtually equal
(log) magnitude across a wide range of external noise levels with
no significant change in central task performance. We identified
a mixture of stimulus enhancement in clear or low noise displays
and template retuning in high external conditions as the mech-
anisms of perceptual learning. The degree of transfer of learning
from the trained to the untrained eyes depended on the external
noise level. In high external noise conditions, learning trans-
ferred (nearly) completely to the untrained eye, and training in
the second eye yielded almost no (Experiment 1) or no (Exper-
iment 2) further improvement. In low external noise conditions,
only 63% (Experiment 1) and 54% (Experiment 2) of transfer
was found. Performance further improved by means of stimulus
enhancement in the untrained eye during the five transfer
sessions.

In displays with no or little added external noise, observer
performance is limited by internal noise and can only be
improved by stimulus enhancement. The improvements in the
trained eye only transferred partially to the untrained eye.
Subsequent learning by means of stimulus enhancement in the

�Because Y.Y. could not perform the task in the highest external noise condition, all average
data only included seven noise levels. Data from all eight noise levels were included in
analyzing the data of T.J. and U.P.

Fig. 3. Transfer indices in Experiment 1 (E1) and Experiment 2 (E2) in low and
high external noise conditions.

Lu et al. PNAS � April 12, 2005 � vol. 102 � no. 15 � 5627

PS
YC

H
O

LO
G

Y



untrained eye reduced the contrast thresholds to comparable
levels of the trained eye in the end of training. The results suggest
that stimulus enhancement has a large monocular component. In
high external noise conditions, observer performance is limited
by external noise and can only be improved by template retuning.
The effects of template retuning in the trained eye transferred
virtually completely to the untrained eye. The transfer results in
high external noise conditions are completely consistent with
those of previous studies on eye-specificity of perceptual learn-
ing of motion direction discrimination in noisy displays (13, 16,
20). The observed partial eye-transfer of perceptual learning in
low external noise is consistent with and provides further support
for the existence of monocular luminance motion systems (21–
23). In a related study, we (Z.-L.L., W.C., B.A.D., and S.L.,
unpublished data) investigated transfer of perceptual learning of
Gabor orientation identification across eyes by using the same
design as in Experiment 1. We found complete transfer of
perceptual learning from trained to untrained eyes across all of
the noise levels. The particular pattern of transfer observed in
the current study is probably unique for motion perception.

According to Lu and Sperling (22), there are two monocular
and one (less sensitive) binocular luminance motion systems. All
three systems provide inputs to motion integration and decision
on motion direction. One possible interpretation of the relative
sensitivities of the monocular and binocular motion systems is
that the monocular systems have less internal noise and the
binocular system is limited by a higher amount of internal noise.
Training in one eye affects both the corresponding monocular
motion system and the binocular motion system. In displays with
no or little added external noise, both the monocular and the
binocular motion systems are limited by internal noise; effective
learning should mostly result from further reduction of the
internal noise in the more sensitive monocular motion system.
Because the relative sensitivity of the monocular and binocular
system is �2:1 (22), not infinity, a certain amount of training of
the binocular system is of course inevitable. This characteristic
could account for the observed partial transfer of learning from
the trained to the untrained eyes. In high external noise displays,
the monocular and binocular motion systems are mostly limited
by external rather than internal noise; learning by means of

template retuning improves both systems. Our results suggest
that the binocular system might be more susceptible to template
retuning, consistent with recent neurophysiological results in
largely binocular middle temporal visual area neurons (36).

Perceptual learning ref lects plasticity in the adult brain. The
physiological basis of the plasticity underlying perceptual
learning is a current topic of research. Although topographical
reorganization of cortical maps as a result of perceptual
learning has been documented in primary somatosensory
cortex (37, 38) and primary auditory cortex (39–42), compar-
isons of the primary visual cortices before and after perceptual
learning have not found any significant topographical map
reorganization (43–45). Although one study (44) found some
modest changes of orientation tuning in V1 that accounted for
a small fraction of the behavioral improvement, others (43, 45)
failed to find any pronounced changes in neural responsitivity
associated with behavioral improvements with tasks suited for
early visual cortical areas. A recent computational model of
perceptual learning** accounted for a very complex behav-
ioral data set in a nonstationary environment through incre-
mental channel reweighting without altering early stages of
visual processing, lending an existence proof of reweighting of
early visual channels as a plausible mechanism of perceptual
learning (26, 45, 46).

The results from this study suggest that perceptual learning in
identifying motion direction of moving luminance-defined ob-
jects involves two independent mechanisms. The existence of the
monocular stimulus enhancement learning mechanism in dis-
plays with no or little added external noise does not necessarily
imply, however, that the learning mechanism resides in monoc-
ular neurons. Even though binocular neurons receive inputs
from both eyes, the internal noise in the two monocular inputs
to them might be uncorrelated. Performance improvements of
binocular neurons may reflect reduction of internal noise asso-
ciated with each monocular input and therefore is eye specific
(47). A combined taxonomy of mechanisms and physiological

**Petrov, A., Dosher, B. A. & Lu, Z.-L. (2003) J. Vision 3, p. 670a, abstr. 670.

Table 1. Summary of learning parameters

Parameter

Experiment 1 Experiment 2

QK RK SL Avg TJ UP YY Avg

Training
Aadd (2) 0.039 0.427 0.381 0.208 0.117 0.120 0.211 0.195
Aadd (3) 0.022 0.600 0.219 0.158 0.053 0.051 0.142 0.103
Aadd (4) 0.017 0.522 0.297 0.161 0.026 0.052 0.231 0.099
Aadd (5) 0.017 0.248 0.305 0.132 0.080 0.019 0.149 0.086
Aext (2) 0.714 0.731 0.856 0.749 0.688 0.800 0.738 0.700
Aext (3) 0.700 0.700 0.782 0.707 0.585 0.695 0.566 0.580
Aext (4) 0.643 0.522 0.686 0.643 0.569 0.730 0.491 0.530
Aext (5) 0.632 0.583 0.663 0.625 0.644 0.700 0.478 0.533
r2 0.969 0.963 0.990 0.983 0.975 0.980 0.925 0.977

Transfer
Aadd (2) 0.552 1.25 0.478 0.739 0.510 0.448 0.515 0.471
Aadd (3) 0.795 0.885 0.400 0.576 0.967 0.403 0.556 0.609
Aadd (4) 0.636 1.05 0.356 0.591 0.495 0.203 0.301 0.307
Aadd (5) 0.619 0.498 0.426 0.391 0.413 0.280 0.255 0.302
Aext (2) 0.736 1.0 0.847 0.829 0.843 1.0 1.0 1.0
Aext (3) 0.878 1.0 0.785 0.859 0.953 1.0 1.0 1.0
Aext (4) 0.762 1.0 0.784 0.807 0.755 1.0 1.0 1.0
Aext (5) 0.972 1.0 0.753 0.930 0.877 1.0 1.0 1.0
r2 0.974 0.970 0.985 0.990 0.977 0.970 0.908 0.976

Avg, average.
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sites of perceptual learning is necessary for the understanding of
the nature of perceptual learning.

Appendix
The PTM (30) is an observer model that quantitatively models
human performance in signal detection and discrimination. A
PTM consists of the following five components: (i) a perceptual
template; (ii) a nonlinear transducer function, ����; (iii) a mul-
tiplicative Gaussian internal noise whose SD is proportional
(with a factor of Nmul) to the total energy in the stimulus after
the nonlinear transformation; (iv) an additive internal noise
whose amplitude (Nadd) is independent of the stimulus strength;
and (v) a decision process (see ref. 30 for the formal development
and quantitative tests for the form of the PTM).

The three mechanisms of perceptual learning in PTM, stim-
ulus enhancement, external noise exclusion, and multiplicative
noise reduction, provide a complete mathematical basis to
accommodate all possible systematic patterns of performance
improvements. The mechanisms of perceptual learning are
modeled by multiplying the corresponding noise in the PTM with
learning parameters Aadd(t), Aext(t), and Amul(t) in each training
block t (19, 26, 27). In the most saturated PTM that includes all

three mechanisms of perceptual learning, thresholds are ex-
pressed as functions of external noise by in the following
equation:

c� �
1
�
�(1 	 (Amul(t)Nmul)2)(Aext(t)Next)2� 	 (Aadd(t)Nadd)2

(1�d�2 � (Amul(t)Nmul)2) �
1

2�

.

[2]

To identify the mechanism(s) of perceptual learning, all eight
possible versions of PTMs, consisting of various combinations of
the three mechanisms of perceptual learning, were fit to each set
of TvC functions by using a least-square minimization proce-
dure. The results were compared statistically by using nested
model tests based on F-statistics (48). The best fitting model,
statistically equivalent to the fullest yet with the minimum
number of parameters, identified the mechanism(s) of percep-
tual learning.
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